首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic and hypoxic regulation of angiogenesis in gliomas   总被引:6,自引:0,他引:6  
Infiltrative astrocytic neoplasms are by far the most common malignant brain tumors in adults. Clinically, they are highly problematic due to their widely invasive nature which makes a complete resection almost impossible. Biologic progression of these tumors is inevitable and adjuvant therapies are only moderately effective in prolonging survival. Glioblastoma multiforme (GBM WHO grade IV), the most malignant form of infiltrating astrocytoma, can evolve from a lower grade precursor tumor (secondary GBM) or can present as high grade lesion from the outset, so-called de novoGBM. Molecular genetic investigations suggest that GBMs are comprised of multiple molecular genetic subsets. Notwithstanding the diversity of genetic alterations leading to the GBM phenotype, the vascular changes that evolve in this disease, presumably favoring further growth, are remarkably similar. Underlying genetic alterations in GBM may tilt the balance in favor of an angiogenic phenotype by upregulation of pro-angiogenic factors and down-regulation of angiogenesis inhibitors. Increased vascularity and endothelial cell proliferation in GBMs are also driven by hypoxia-induced expression of pro-angiogenic cytokines, such vascular endothelial growth factor (VEGF). Understanding the contribution of genetic alterations and hypoxia in angiogenic dysregulation in astrocytic neoplasms will lead to the development of better anti-angiogenic therapies for this disease. This review will summarize the properties of angiogenic dysregulation that lead to the highly vascularized nature of these tumors.  相似文献   

2.
Cellular heterogeneity is a hallmark of advanced cancers and has been ascribed in part to a population of self-renewing, therapeutically resistant cancer stem cells (CSCs). Glioblastoma (GBM), the most common primary malignant brain tumor, has served as a platform for the study of CSCs. In addition to illustrating the complexities of CSC biology, these investigations have led to a deeper understanding of GBM pathogenesis, revealed novel therapeutic targets, and driven innovation towards the development of next-generation therapies. While there continues to be an expansion in our knowledge of how CSCs contribute to GBM progression, opportunities have emerged to revisit this conceptual framework. In this review, we will summarize the current state of CSCs in GBM using key concepts of evolution as a paradigm (variation, inheritance, selection, and time) to describe how the CSC state is subject to alterations of cell intrinsic and extrinsic interactions that shape their evolutionarily trajectory. We identify emerging areas for future consideration, including appreciating CSCs as a cell state that is subject to plasticity, as opposed to a discrete population. These future considerations will not only have an impact on our understanding of this ever-expanding field but will also provide an opportunity to inform future therapies to effectively treat this complex and devastating disease.  相似文献   

3.
Glioblastoma multiforme (GBM) is the most malignant form of the brain tumors and shows different genetic and epigenetic abnormalities. Gene amplification, genetic instability, disruption of apoptotic pathways, deregulated oncogene expression, invasive phenotypical changes, abnormal angiogenesis, and epigenetic changes have all been described in GBMs. These abnormalities indicate that a number of different signaling pathways are deregulated in GBM. Increasing number of studies provide a better understanding of the tumor biology, genetic, and epigenetic background of the GBM. Also, current research provides us useful approaches in designing novel therapies for GBM. In this review, we summarize the receptor tyrosine kinase-Ras-PI 3 kinase-Akt signaling network, focusing on the potential molecular targets for anti-signaling molecular therapies in this pathway.  相似文献   

4.
Opinion statement Glioblastomas (GBMs) are among the most aggressive of all known human tumors. The median survival times remain in the 12- to 15-month range despite aggressive surgery, radiation, and chemotherapy. Through molecular and genetic profiling efforts, underlying mechanisms of resistance to these therapies are becoming better understood. The present standard of care has been shaped by the recently reported phase III study by the European Organisation for Research and Treatment of Cancer and the National Cancer Institute of Canada, which found that the addition of temozolomide (TMZ) to radiation therapy significantly improved outcome compared with radiation alone. However, careful examination of these data reveals that not all GBM patients benefited from the addition of TMZ to radiation therapy. A companion correlative study found that GBM patients with tumors with MGMT promoter methylation appeared to derive the greatest benefit from the addition of TMZ to radiation therapy. Although this finding is provocative, it should be kept in mind that this study was performed retrospectively and that prospective validation is required before MGMT methylation can be used for clinical stratification purposes. However, this study does show promise for the tailoring of future treatments according to the molecular and genetic profiles of an individual's tumor rather than using the “one-glove-fits-all≓ approach that is currently being followed. As more effective “smart drugs≓ are developed, molecular and genetic profiling will assume even greater importance in this regard.  相似文献   

5.
Glioblastoma multiforme (GBM) is a highly malignant brain tumor with an extremely short time to relapse following standard treatment. Since recurrent GBM is often resistant to subsequent radiotherapy and chemotherapy, immunotherapy has been proposed as an alternative treatment option. Although it is well established that GBM induces immune suppression, it is currently unclear what impact prior conventional therapy has on the ability of GBM cells to modulate the immune environment. In this study, we investigated the interaction between immune cells and glioma cells that had been exposed to chemotherapy or irradiation in vitro. We demonstrate that treated glioma cells are more immunosuppressive than untreated cells and form tumors at a faster rate in vivo in an animal model. Cultured supernatant from in vitro‐treated primary human GBM cells were also shown to increase suppression, which was independent of accessory suppressor cells or T regulatory cell generation, and could act directly on CD4+ and CD8+ T cell proliferation. While a number of key immunosuppressive cytokines were overexpressed in the treated cells, including IL‐10, IL‐6 and GM‐CSF, suppression could be alleviated in a number of treated GBM lines by inhibition of prostaglandin E2. These results reveal for the first time that conventional therapies can alter immunosuppressive pathways in GBM tumor cells, a finding with important implications for the combination of immunotherapy with standard treatment.  相似文献   

6.
Kidney cancer accounts for about 2% of all cancers and worldwide >250,000 new cases of kidney cancer are diagnosed each year. Renal cell carcinoma (RCC) is the most common form of adult kidney cancer and this review describes our current knowledge of the genetic and epigenetic basis of sporadic RCC. Though to date major advances in understanding the underlying the molecular basis of renal cell carcinoma (RCC) have often been derived from studies of rare familial forms of renal cell carcinoma, large-scale genomic and epigenomic studies of sporadic tumours are beginning to provide clearer pictures of the genomic and epigenomic landscape of RCC and the key pathways implicated in the initiation and progression of the disease. Although current knowledge of the molecular pathogenesis of RCC is incomplete, and mostly relates to clear cell (conventional) RCC, the next five years will see an unprecedented flood of genomic and epigenomic data and the key future challenges will relate to the utilisation of this data to develop novel genetic and epigenetic markers for diagnosis and prognosis and to develop novel targeted therapies in order to enable an age of personalised medicine.  相似文献   

7.
Reardon DA  Wen PY 《The oncologist》2006,11(2):152-164
Despite advances in standard therapy, including surgical resection followed by radiation and chemotherapy, the prognosis for patients with glioblastoma multiforme (GBM) remains poor. Unfortunately, most patients die within 2 years of diagnosis of their disease. Molecular abnormalities vary among individual patients and also within each tumor. Indeed, one of the distinguishing features of GBM is its marked genetic heterogeneity. Nonetheless, recent developments in the field of tumor biology have elucidated signaling pathways and genes involved in the development of GBM, and several novel agents that target these signaling pathways are being developed. As new details on the genetic characteristics of this disease become available, innovative treatment regimens, including a variety of traditional treatment modalities such as surgery, radiation, and cytotoxic chemotherapy, will be combined with newer targeted therapies. This review introduces these new targeted therapies in the context of current treatment options for patients with GBM. It is hoped that this combined approach will overcome the current limitations in the treatment of patients with GBM and result in a better prognosis for these patients.  相似文献   

8.
9.
Opinion statement Imatinib mesylate (STI571) is an oral 2-phenylaminopyrimidine derivative that acts as a selective inhibitor against several receptor tyrosine kinases and has been viewed as one of the therapeutic success stories of the 21st century. Imatinib was first shown to inhibit the causative molecular translocation in chronic myelogenous leukemia, BCRABL. Because imatinib could also inhibit the activity of KIT, a 145-kD transmembrane glycoprotein, and because gastrointestinal stromal tumors (GISTs), the most common mesenchymal tumors of the digestive tract, are characterized by expression of a gainof-function mutation in KIT, imatinib was used in therapeutic trials of GISTs beginning in 1999. The initial success has now resulted in more widespread use of imatinib for the treatment of patients with GIST. Molecular genetic studies have shown that most GISTs possess a KIT mutation in exon 9, 11, 13, or 17. Clinically, GIST patients with KIT exon 11 mutations (ie, the juxtamembrane region) are the most prevalent and sensitive to imatinib. In addition to the inhibitory effect on KIT, imatinib also inhibits the activity of mutant platelet-derived growth factor receptor-α (PDGFRα) found in a subset of GIST. What is becoming evident is that there are patients with GIST who lack mutations in KIT or PDGFRα, or possess “imatinib-resistant” mutations (such as exon 17 mutations in KIT and exon 18 mutations in PDGFRα). These patients typically do not respond well to imatinib therapy. Therefore, identifying additional genetic factors that contribute to the pathogenesis of GIST, independent of KIT and PDGFRα, will be important in developing additional anti-GIST therapies. As one might suspect from previous experiences with antitumor therapies, primary and secondary resistance to imatinib is also becoming a major clinical problem in the treatment of this disease. Therefore, new drugs that can serve as alternative therapies in imatinibresistant patients with GIST or that can be used in combination with imatinib will be needed. As with most recent efforts to derive novel molecular target therapies to treat cancer, improved therapy of GIST will continue to benefit from advances in the molecular characterization of this disease.  相似文献   

10.
Glioblastoma (GBM) is the most common primary tumor of the CNS in the adult. It is characterized by exponential growth and diffuse invasiveness. Among many different genetic alterations in GBM, e.g., mutations of PTEN, EGFR, p16/p19 and p53 and their impact on aberrant signaling have been thoroughly characterized. A major barrier to develop a common therapeutic strategy is founded on the fact that each tumor has its individual genetic fingerprint. Nonetheless, the PI3K pathway may represent a common therapeutic target to most GBM due to its central position in the signaling cascade affecting proliferation, apoptosis and migration. The read-out of blocking PI3K alone or in combination with other cancer pathways should mainly focus, besides the cytostatic effect, on cell death induction since sublethal damage may induce selection of more malignant clones. Targeting more than one pathway instead of a single agent approach may be more promising to kill GBM cells.  相似文献   

11.
12.
Metastatic melanoma is an aggressive, immunogenic and molecularly heterogeneous disease for which most patients require systemic treatment. Recently, significant clinical breakthroughs have revolutionized the treatment of advanced melanoma, leading to the licensing of ipilimumab, a monoclonal antibody targeting cytotoxic T-lymphocyte-associated antigen 4, and vemurafenib, a BRAF inhibitor used in patients whose tumors contain a V600 mutation in the BRAF gene. This recent success has led to optimism and momentum has gathered with updated trial results from these therapies, next-generation compounds that target validated molecular pathways and novel agents that are mechanistically distinct. This review summarizes the recent advances and updated results since the licensing of vemurafenib and ipilimumab, the benefits and limitations of these agents, future strategies to improve upon existing treatments and overcome acquired resistance, in-progress and future clinical trials, as well as novel therapeutic targets, pathways and therapies that hold promise in advancing clinical benefit.  相似文献   

13.
Glioblastoma multiforme (GBM) arises from genetic and signaling abnormalities in components of signal transduction pathways involved in proliferation, survival, and the cell cycle axis. Studies to date with single-agent targeted molecular therapy have revealed only modest effects in attenuating the growth of these tumors, suggesting that targeting multiple aberrant pathways may be more beneficial. Heat-shock protein 90 (HSP90) is a molecular chaperone that is involved in the conformational maturation of a defined group of client proteins, many of which are deregulated in GBM. 17-allylamino-17-demethoxygeldanamycin (17-AAG) is a well-characterized HSP90 inhibitor that should be able to target many of the aberrant signal transduction pathways in GBM. We assessed the ability of 17-AAG to inhibit the growth of glioma cell lines and glioma stem cells both in vitro and in vivo and assessed its ability to synergize with radiation and/or temozolomide, the standard therapies for GBM. Our results reveal that 17-AAG is able to inhibit the growth of both human glioma cell lines and glioma stem cells in vitro and is able to target the appropriate proteins within these cells. In addition, 17-AAG can inhibit the growth of intracranial tumors and can synergize with radiation both in tissue culture and in intracranial tumors. This compound was not found to synergize with temozolomide in any of our models of gliomas. Our results suggest that HSP90 inhibitors like 17-AAG may have therapeutic potential in GBM, either as a single agent or in combination with radiation.  相似文献   

14.
Introduction: The outcome for patients with glioblastoma (GBM) remains poor, and there is an urgent need to develop novel therapeutic approaches. T cells genetically modified with chimeric antigen receptors (CARs) hold the promise to improve outcomes since they recognize and kill cells through different mechanisms than conventional therapeutics.

Areas covered: This article reviews CAR design, tumor associated antigens expressed by GBMs that can be targeted with CAR T cells, preclinical and clinical studies conducted with CAR T cells, and genetic approaches to enhance their effector function.

Expert commentary: While preclinical studies have highlighted the potent anti-GBM activity of CAR T cells, the initial foray of CAR T-cell therapies into the clinic resulted only in limited benefits for GBM patients. Additional genetic modification of CAR T cells has resulted in a significant increase in their anti-GBM activity in preclinical models. We are optimistic that clinical testing of these enhanced CAR T cells will be safe and result in improved anti-glioma activity in GBM patients.  相似文献   


15.
Cancer of the exocrine pancreas represents the fifth leading cause of cancer death in the Western population with an average survival after diagnosis of 3 to 6 months and a five-year survival rate under 5%. Our understanding of the molecular carcinogenesis has improved in the last few years due to the development of novel molecular biological techniques. Pancreatic cancer is a multi-stage process resulting from the accumulation of genetic changes in the somatic DNA of normal cells. In this article we describe major genetic alterations of pancreatic cancer, mutations in the proto-oncogene K-RAS and the tumor suppressors INK4A, TP53 and DPC4/SMAD4. The accumulation of these genetic changes leads to a profound disturbance in cell cycle regulation and continuous growth. The knowledge of the underlying molecular mechanisms will offer new therapeutic and diagnostic options and hopefully improve the outcome of this aggressive disease.  相似文献   

16.
赵丽红  张弓 《现代肿瘤医学》2022,(18):3428-3431
胶质母细胞瘤(glioblastoma,GBM)是一种致命的脑癌,约占美国恶性脑瘤的80%。目前有许多治疗方法可用于GBM,但是其预后水平低,中位生存时间不到15个月。因此,为了创造更有效的靶向治疗的新可能性,人们正在进行大量的研究,以了解GBM发展和进展的分子和遗传基础。CircRNA是普遍存在于各种生物体内,但最近才被发掘和证明,并逐步引起注重和深刻研讨的一种非编码RNA。环状RNA与癌症的发生息息相关。但对于胶质母细胞瘤来说,环状RNA的作用仍未知。本文以环状RNA在恶性胶质瘤(GBM)病理生物学中的作用,以及它们在恶性胶质瘤治疗中的潜在应用作一综述。  相似文献   

17.
It has been evident for some time that individuals from some families exhibit a genetic predisposition to breast cancer. Since the discovery of the first breast cancer susceptibility gene, BRCA1 in the 1990s, much work has been carried out to identify further breast cancer susceptibility genes. This has led to the identification of another high-penetrance gene, BRCA2, a number of moderate-penetrance genes and, more recently, common low-penetrance genes and loci. The clinical benefit of the identification of such susceptibility genes and loci is in allowing an estimate of the risk of developing breast cancer in carriers. Ultimately, it is hoped that knowledge of an individual’s genetic profile in relation to these genes may allow the use of targeted therapies to maximize efficacy in the treatment of breast cancer.  相似文献   

18.
Rogers AE  Le JP  Sather S  Pernu BM  Graham DK  Pierce AM  Keating AK 《Oncogene》2012,31(38):4171-4181
Glioblastoma multiforme (GBM) is an aggressive brain tumor, fatal within 1 year from diagnosis in most patients despite intensive multimodality therapy. The migratory and microscopically invasive nature of GBM as well as its resistance to chemotherapy renders conventional therapies inadequate in its treatment. Although Mer receptor tyrosine kinase (RTK) inhibition has been shown to decrease the long-term survival and improve the chemosensitivity of GBM in vitro, its role in malignant cellular migration has not been previously evaluated. In this study, we report for the first time a role for Mer RTK in brain tumor migration and show that Mer inhibition profoundly impedes GBM migration and alters cellular morphology. Our data demonstrate that Mer RTK inhibition results in altered signaling through focal adhesion kinase (FAK) and RhoA GTPase and a transformation of cytoskeletal organization, suggesting both molecular and structural mechanisms for the abrogation of migration. We also describe a novel and translational method of Mer RTK inhibition using a newly developed monoclonal antibody, providing proof of principle for future evaluation of Mer-targeted translational therapies in the treatment of GBM. Previous findings implicating Mer signaling in glioblastoma survival and chemotherapy resistance coupled with our discovery of the role of Mer RTK in GBM cellular migration support the development of novel Mer-targeted therapies for this devastating disease.  相似文献   

19.
Glioblastoma (GBM) is both the most common and the most lethal primary brain tumor. It is thought that GBM stem cells (GSCs) are critically important in resistance to therapy. Therefore, there is a strong rationale to target these cells in order to develop new molecular therapies.To identify molecular targets in GSCs, we compared gene expression in GSCs to that in neural stem cells (NSCs) from the adult human brain, using microarrays. Bioinformatic filtering identified 20 genes (PBK/TOPK, CENPA, KIF15, DEPDC1, CDC6, DLG7/DLGAP5/HURP, KIF18A, EZH2, HMMR/RHAMM/CD168, NOL4, MPP6, MDM1, RAPGEF4, RHBDD1, FNDC3B, FILIP1L, MCC, ATXN7L4/ATXN7L1, P2RY5/LPAR6 and FAM118A) that were consistently expressed in GSC cultures and consistently not expressed in NSC cultures. The expression of these genes was confirmed in clinical samples (TCGA and REMBRANDT). The first nine genes were highly co-expressed in all GBM subtypes and were part of the same protein-protein interaction network. Furthermore, their combined up-regulation correlated negatively with patient survival in the mesenchymal GBM subtype. Using targeted proteomics and the COGNOSCENTE database we linked these genes to GBM signalling pathways.Nine genes: PBK, CENPA, KIF15, DEPDC1, CDC6, DLG7, KIF18A, EZH2 and HMMR should be further explored as targets for treatment of GBM.  相似文献   

20.
Glioblastoma (GBM) has been recognized as a clinical and pathologic entity for more than a century. Throughout its history, its cells of origin have been in question. Its behavior is aggressive and despite decades of effort, median survival is just beginning to improve. Surgical techniques and radiotherapy schemas continue to be refined, but the most recent progress has been achieved through improved medical therapies. These are the result of both pharmacological advances and a deeper understanding of the biological characteristics of GBM. Due to a combination of its complex phenotype and organ-specific clinical manifestations, efforts to refine GBM treatment with targeted therapies largely have been frustrated. In this review, we discuss recent attempts to exploit new molecular insights, consider the reasons for slow progress in developing better treatments, and examine future therapeutic options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号