首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A radioautographic study of the European eel (Anguilla anguilla) was carried out in ten female specimens at the catadromic migratory silver stage. Terminal arborizations of contralaterally projecting visual fibres were identified in ten hypothalamic structures (area optica preoptica ventralis and the nuclei suprachiasmaticus, opticus hypothalamicus ventromedialis, preopticus magnocellularis lateralis, posterioris lateralis, posterioris dorsalis periventricularis posterioris dorsalis lateralis, posterioris dorsalis medialis, posterioris ventralis lateralis, and posterioris ventralis periventricularis), ten thalamo-pretectal structures (Areas C1 and C2, area optica tractus opticus ventrolateralis and the nuclei dorsolateralis thalami, ventrolateralis thalami pars ventralis, opticus ventralis thalami, geniculatus lateralis, opticus pretectalis partes dorsalis et ventralis, and opticus commissurae posterioris), and in the tectal strata opticum partes externa et interna, fibrosum et griseum superficiale, griseum centrale and album centrale. An accessory optic system was identified, and a contralateral retinal projection to the anterior region of the anterior semicircular torus (n. opticus dorsolateralis mesencephali) was identified. Ipsilateral projections to hypothalamic and thalamopretectal structures were also observed. Apart from the retinal projection to the preoptic area, which is exceptionally important in the silver eel, the general plan of organization of the primary visual centres of this form is comparable to that described in other species of teleost. However, the architecture of some primary visual centres shows characteristics similar to those described in more primitive Actinopterygians.  相似文献   

2.
The efferent projections of the pigeon visual Wulst upon the diencephalon and mesencephalon were investigated using the autoradiographic technique following the combined injection of [3H] proline and [3H] leucine into the rostral hyperstriatum accessorium. Repeated measures of silver grain densities were performed bilaterally in different brain structures using a computer-assisted system of image analysis. The density values were compared (Mann-Whitney U-Test) with those recorded in three homolateral control structures (tractus opticus, n. rotundus, n. pretectalis principalis) and in corresponding contralateral areas and nuclei. The data showed ipsilateral projections from the visual Wulst and via the tractus septomesencephalicus upon the dorsal thalamus (n.: dorsolateralis anterior superficialis parvocellularis), ventral thalamus (n.: intercalatus, ventrolateralis, geniculatus lateralis pars ventralis--GLv), pretectum (n.: superficialis synencephali, geniculatus pretectalis, griseus tectalis, pretectalis: diffusus, pars lateralis and pars medialis, area pretectalis) as well as to the nucleus of the basal optic root, n. spiriformis medialis and optic tectum (layer 2-4, 6, 7, 12 and 13). Crossed projections were observed to pass through the supraoptic decussation and the posterior commissure, however only the contralateral n. GLv was found to be significantly labeled. Interspecies variations in the organization of descending visual Wulst projections, related to the terminal distribution and relative size of the crossed components may be linked to differences in the degree of overlap of the binocular fields. Correspondingly, this may reflect the degree of bilateralization upon the Wulst of direct input from the visual thalamus.  相似文献   

3.
The retinofugal and retinopetal projections of the cichlid fish Astronotus ocellatus were studied by applying cobaltous-lysine to the optic nerve. Retinal axons terminate bilaterally in a preoptic-suprachiasmatic region between the base of the third ventricle and the anterior genu of the horizontal commissure and among periventricular cells along the sides of the ventricle. Other retinal axons innervate the tuberal region of the hypothalamus anterior to the infundibulum. Targets innervated in the pretectum include nucleus lateralis geniculatus and dorsal, medial, and ventral pretectal nuclei. Three other targets (nucleus opticus dorsolateralis, nucleus opticus commissurae posterior, nucleus opticus ventrolateralis) are innervated by fibers that leave the medial edge of the dorsal optic tract. Two other targets (basal optic nucleus and accessory optic nucleus) are innervated by fibers from the ventral optic tract. These retinal projections are similar to those previously reported for goldfish in an experiment that used the cobaltous-lysine method (Springer and Gaffney, J. Comp. Neurol. 203:401-424, '81). Retinotectal optic axons were found in a superficial lamina just above the stratum opticum, in the stratum opticum, in three layers of the stratum fibrosum et griseum superficiale, in a lamina just beneath the stratum fibrosum et griseum superficiale, and in the stratum album centrale just above the stratum periventriculare. This result is similar to that previously reported for goldfish; however, the spatial relationships between the various retinorecipient laminae differ for goldfish and Astronotus ocellatus. Efferents to the retina originate in two nuclei and both project contralaterally. The first is the nucleus olfactoretinalis, which is located ventrally between the olfactory lobe and telencephalon. It consists of about 400 cells, of which, approximately 200 cells project to the retina. The second retinopetal nucleus, nucleus thalamoretinalis, is a diffuse group of about 200 cells that project to the retina.  相似文献   

4.
Retinal projections were studied using Fink-Heimer and radioautographic methods in Polypterus senegalus, a species which is representative of a small group of African fresh-water bony fish often considered to be very primitive.The large optic nerve showed partial decussation at the chiasm. Two major contralateral tracts were observed: the axillary and marginal optic tracts, with the latter being subdivided posteriorly into the tractus opticus medialis and tractus opticus lateralis. The retina projected onto the: (1) hypothalamus (area optica postoptica); (2) thalamus (nucleus opticus dorsolateralis thalimi, nucleus dorsomedialis thalami, corpus geniculatum laterale, area optica dorsolateralis thalami, area optica ventrolateralis thalami); (3) pretectum (nuclei commissurae posterioris, pretectalis ventralis, pretectalis dorsalis); and (4) optic tectum (stratum marginale, stratum opticum, stratum griseum et fibrosum superficiale, stratum griseum et album centrale, stratum griseum et fibrosum periventriculare). Ipsilateral retinal projections were demonstrated to the same 4 levels and more precisely to the nucleus opticus dorsolateralis thalami, area optica dorsolaterale thalami, nucleus commissurae posterioris, stratum marginale and stratum griseum et album centrale. The existence of a retinal projection to the mesencephalic tegmentum is discussed.Comparing the primary optic system of Polypterus with that of other jawed vertebrates, and particularly with that of other bony fish, indicated that this species possesses a combination of characteristics which are both actinopterygian and sarcopterygian. The phylogenetic significance of this mozaic anatomical arrangement is discussed.  相似文献   

5.
Direct pretectal projections to limited regions of the inferior olivary nucleus were found in the rabbit by means of the Nauta-Gygax and Fink-Heimer methods. The lesions were produced stereotaxically in the pretectal region of five rabbits. They encroached commonly upon the nucleus tractus opticus, the rostral half of the nucleus olivaris pretectalis, and involved some of the nucleus pretectalis posterior and anterior. Degeneration in the inferior olivary nucleus was found ipsilaterally in the dorsal cap and in the medial and dorsal aspects of the β-nucleus. Degeneration in the dorsal cap was marked and that in the β-nucleus was slight. Degenerated fibers terminating within these regions of the inferior olivary nucleus appeared to descend the brain stem ipsilaterally, mainly through the medial portions of the tegmentum, with no tendency to form compact fascicles. Based on the present and previous findings, it is presumed that the pretecto-olivary fibers provide a link of the pathways for the visual inputs to the vestibular nuclei and cerebellum.  相似文献   

6.
Projections of the pretectal region to forebrain and midbrain structures were examined in two species of turtles (Testudo horsfieldi and Emys orbicularis) by axonal tracing and immunocytochemical methods. Two ascending gamma-aminobutyric acid (GABA)ergic pathways to thalamic visual centers were revealed: a weak projection from the retinorecipient nucleus lentiformis mesencephali to the ipsilateral nucleus geniculatus lateralis pars dorsalis and a considerably stronger projection from the nonretinorecipient nucleus pretectalis ventralis to the nucleus rotundus. The latter is primarily ipsilateral, with a weak contralateral component. The interstitial nucleus of the tectothalamic tract is also involved in reciprocal projections of the pretectum and nucleus rotundus. In addition, the pretectal nuclei project reciprocally to the optic tectum and possibly to the telencephalic isocortical homologues. Comparison of these findings with previous work on other species reveals striking similarities between the pretectorotundal pathway in turtles and birds and in the pretectogeniculate pathway in turtles, birds, and mammals.  相似文献   

7.
The retinofugal of the lizard Podarcis hispanica has been examined by means of enzymatic method with horseradish peroxidase (HRP). The retinal ganglion cells project contralaterally to thalamus (nucleus geniculatus lateralis pars dorsalis, nucleus geniculatus lateralis pars ventralis and nucleus ventrolateralis pars ventralis and nucleus ventrolateralis pars ventralis), pretectum (nucleus lentiformis mesencephali, nucleus geniculatus pretectalis and nucleus posterodorsalis) and optic tectum (layers 14 and 12, mainly, and layers 13 and 11). A small ipsilateral tract has been observed. Some of these fibers project to the lateral geniculate complex and the nucleus ventrolateralis pars ventralis. Most of the ipsilateral fibers have been observed in the neuropil of nucleus geniculatus pretectalis and the layer 14 of the optic tectum. The ipsilateral component, an inconstant structure in reptiles, presents an important development in Podarcis hispanica, although the number of its fibers is relatively small.  相似文献   

8.
The retinofugal projections of 5 species (Acanthodactylus boskianus, Scincus scincus, Tarentola mauritanica, Uromastix acanthinurus and Zonosaurus ornatus) belonging to 5 different families of Type I and Type II lizards have been examined by means of the radioautographic method. In the 5 species the retinal ganglion cells project to the contralateral hypothalamus (nucleus suprachiasmaticus), thalamus (nucleus geniculatus lateralis pars ventralis, nucleus geniculatus lateralis pars dorsalis), pretectum (nuclei lentiformis mesencephali, geniculatus pretectalis, postero-dorsalis griseus tectalis), tectum opticum (layer 2 to layer 6 of the stratum griseum et fibrosum superficiale) and tegmentum mesencephali (nucleus opticus tegmenti). Ipsilateral optic fibers were never observed in Uromastix acanthinurus, whereas an uncrossed quota was visible in both nucleus geniculatus lateralis pars dorsalis and nucleus postero-dorsalis in the other species. An ipsilateral retinotectal projection was observed only in Tarentola mauritanica. With the exception of the nucleus griseus tectalis the contralateral optic centers identified in this material have to a large extent been observed in other reptiles belonging to the different orders. The presence in reptiles of a general pattern of contralateral visual projections indicates that these were established very clearly in the course of evolution. Similarities become apparent when this plan is compared with that observed in birds. In marked contrast the ipsilateral component in reptiles is unstable and mutable in nature. This ipsilateral retinotectal projections do not appear to be a feature restricted to Type I lizards. On the other hand, the presence of this optic component cannot be linked solely to nocturnal habits.  相似文献   

9.
We have used anterograde autoradiographic and retrograde HRP techniques to investigate the efferent connections of the retinorecipient pretectal nuclei in the pigeon. In the accompanying paper we identified these nuclei in the pigeon as the nucleus lentiformis mesencephali--pars lateralis and pars medialis, the tectal gray, the area pretectalis, and pretectalis diffusus. Although there are reports of a few of the projections of these nuclei, they had not previously been the subject of a detailed study. We found that different cell types in the lentiformis mesencephali, pars medialis and the lentiformis mesencephali, pars lateralis have descending projections to different targets. These targets include the inferior olive, the cerebellum, the lateral pontine nucleus, the nucleus papillioformis, the nucleus of the basal optic root, the nucleus mesencephalicus profundus, pars ventralis, the nucleus principalis precommissuralis, and the stratum cellulare externum. We found that a few cells in the lentiformis mesencephali project to the medial pontine nucleus, but that a much heavier projection arises from the nucleus laminaris precommissuralis, which is medial to the nucleus lentiformis mesencephali, pars medialis. The tectal gray has predominantly ascending projections to the diencephalon. The nuclei that it projects to are the nucleus intercalatus thalami, the nucleus of the ventral supraoptic decussation, the nucleus posteroventralis, the ventral lateral geniculate nucleus, the nucleus dorsolateralis medialis, and the nucleus dorsolateralis anterior. The tectal gray also projects topographically to layers 4 and 8-13 of the optic tectum. Area pretectalis has both ascending and descending projections. It has ipsilateral ascending projections to the nucleus dorsolateralis anterior, pars magnocellularis, the nucleus lateralis anterior, and the nucleus ventrolateralis thalami. It has ipsilateral descending projections to the central gray, the nucleus of the basal optic root, pars dorsalis, the lateral pontine nucleus, and the deep layers of the optic tectum. It has contralateral projections to the area pretectalis, the nucleus Campi Foreli, the interstitial nucleus of Cajal, the nucleus of Darkschewitsch, the cerebellum, and the Edinger-Westphal nucleus. The efferent projections of pretectalis diffusus are limited. It projects contralaterally to the pretectalis diffusus, and ipsilaterally to the nucleus of the ventral supraoptic decussation, the lateral pons, and the cerebellum.4  相似文献   

10.
Radio-autography and Fink-Heimer technique were performed in two rodents, the nocturnal Meriones shawi (Cricetidae, Gerbillidae) and the subterranean Arvicola terrestris (Arvicolidae) in order to investigate the organization of the primary visual system. In general the whole visual system is poorly developed in Arvicola. In two species, contralaterally, visual inputs project to nuclei geniculatus dorsalis and ventralis, pretectum and colliculus anterior (at the level of stratum opticum and the stratum griseum superficiale). In Meriones the nucleus geniculatus dorsalis receive specially an important projection. Ipsilaterally, in Meriones, retinofugal fibres reach the two geniculates, the pretectum and anterior third of the colliculus; in Arvicola, fibres do not pass the pretectum where they project to the nucleus tractus optici only. Few differences exist between rat and Arvicola accessory optic systems. In Meriones the system is entirely contralateral, the nucleus terminalis medialis receive one of the two fasciculi superior only. The retino-hypothalamic system in Meriones shawi shows crossed projections and each pathway reaches the antero-medial hypothalamic area. In Arvicola terrestris fibres reach the contralateral suprachiasmatic nucleus; such a structural difference may be related to the behavioural difference existing between the two rodents.  相似文献   

11.
The efferent connections and axonal and dendritic morphologies of periventricular neurons were examined in the optic tectum of rainbow trout to classify periventricular efferent neurons in salmonids. Among the target nuclei of tectal efferents, tracer injections to the following four structures labeled periventricular neurons: the area pretectalis pars dorsalis (APd), nucleus pretectalis superficialis pars magnocellularis (PSm), nucleus ventrolateralis of torus semicircularis (TS), and nucleus isthmi (NI). Two types of periventricular neurons were labeled by injections to the APd. One of them had an apical dendrite ramifying at the stratum fibrosum et griseum superficiale (SFGS), with an axon that bifurcated into two branches at the stratum griseum centrale (SGC), and the other had an apical dendrite ramifying at the SGC. Two types of periventricular neurons were labeled after injections to the TS. One of them had an apical dendrite ramifying at the boundary between the stratum opticum (SO) and the SFGS, and the other had dendritic branches restricted to the stratum album centrale or stratum periventriculare. Injections to the PSm and NI labeled periventricular neurons of the same type with an apical dendrite ramifying at the SO and a characteristic axon that split into superficial and deep branches projecting to the PSm and NI, respectively. This cell type also possessed axonal branches that terminated within the tectum. These results indicate that periventricular efferent neurons can be classified into at least five types that possess type-specific axonal and dendritic morphologies. We also describe other tectal neurons labeled by the present injections.  相似文献   

12.
On the basis of the development of the dorsal ventricular ridge of the telencephalon, lizards can be divided into a type I group, to which Gekko and the majority of lizard families belong, and a type II group with more derived features, of which Iguana is representative. Most studies of retinal projections have utilized lizards of the type II group, which are adapted to a diurnal niche. Gekko gecko is differently adapted in that it is nocturnal. Study of the retinal projections was undertaken in Gekko gecko in order to insure that conclusions regarding the pattern of retinal pathways in saurians would be based on a sample which was more representative of the total range of variation. Unilateral removal of the retina by suction cannula was carried out on 12 adult specimens of Gekko gecko. After survival times of 10 to 74 days, brains were processed with various silver methods. The retina projects contralaterally to the pars dorsalis and pars ventralis of the lateral geniculate nucleus and the pars ventralis of the ventrolateral nucleus in the thalamus, nuclei geniculatus pretectalis, lentiformis mesencephali, and posterodorsalis in the pretectum, layers 8–14 of the optic tectum and nucleus opticus tegmenti. Additionally, the retina projects ipsilaterally to the dorsal and ventral lateral geniculate nuclei and to the pretectal nuclei, as well as to the optic tectum, particularly layers 8 and 9. The finding of ipsilateral retinothalamic projections in Gekko supports the idea that this pathway is generalized among saurians. However, presence of ipsilateral retinothalamic projections and the degree of binocular overlap cannot be correlated when lizards, snakes, crocodiles, and turtles are compared. The functional significance of this pathway therefore remains obscure. Ipsilateral retinotectal projections have not been previously described in land vertebrates other than mammals. Whether their presence is correlated with nocturnal visual habits or is generalized among type I lizards remains to be determined. The pattern of retinal projections has been studied in too few representatives of non-mammalian land vertebrates to presently permit conclusions regarding the origin of non-decussating pathways.  相似文献   

13.
Visual projections in lamprey were investigated using two methods,--one by revealing transport of horseradish peroxidase, and the other by silver impregnation of degenerating axons and terminals after enucleation of the eye. Both methods produced similar results. The chiasm showed incomplete crossing of retinal fibres, the major part of which, as an optic tract, proceed along the contralateral thalamus up to the entry into the optic tectum, while the smaller part takes the same course on the ipsilateral side. Besides, from the posterior part of the optic chiasm an axial optic tract branches off, which proceeds through the central part of the contralateral thalamus up to the pretectal nucleus, individual fibres of which enter the central grey layer of the optic tectum. On the contralateral side, the visual projections are localized in the lateral geniculate body, pretectal nucleus, in the three upper layers of the optic tectum, in the ventrolateral area of the optic tectum and as solitary diffuse projections in the mesencephalic tegmentum. Innervation of thalamic and pretectal nuclei are realized by two tracts--the tractus opticus proper, and tractus opticus axialis. On the ipsilateral side visual projections, excepting the optic tract, are scarce and in the thalamus appear as small areas of the lateral geniculate body and pretectum adjacent to the optic tract. Solitary visual projections were found in two upper layers of the rostral optic tectum and in larger numbers in the 3rd and 4th layers of the caudal part and in ventrolateral area of the optic tectum. Projections in mesencephalic tegmentum were single. Diffuse visual projections in the lateral part of hypothalamus could be revealed only by the silver impregnation method. Using the peroxidase method two types of cells were observed in mesencephalic tegmentum where, possibly, the centrifugal fibres proceeding to retina, originate. A comparison is made of central visual projections in lampreys and other representatives of nonmammalian vertebrates.  相似文献   

14.
15.
The cytoarchitecture of nuclei in the preoptic area, ventral thalamus, dorsal thalamus, epithalamus, hypothalamus, posterior tuberculum, synencephalon, and pretectum and the accessory optic nuclei was analyzed in the clupeomorph teleost, Clupea harengus. Plesiomorphic (evolutionarily primitive) and apomorphic (evolutionarily derived) features of nuclei were identified by cladistic analysis. Plesiomorphic features include the cytoarchitectonic organization of most of the preoptic nuclei, the somewhat scattered cells of nucleus ventrolateralis, the compact, oval shape of nucleus intermedius, the presence of dorsoventrally oriented laminae in the central posterior nucleus, and most features of the hypothalamic nuclei. Also plesiomorphic are the presence of a thick, prominent paraventricular organ, a nucleus of the paraventricular organ, a nucleus tuberis posterior, and a preglomerular complex in which the boundaries between multiple nuclei are relatively difficult to distinguish. Additionally, the cytoarchitecture of the three synencephalic nuclei present in Clupea, the presence of small cells in nucleus pretectalis superficialis pars parvicellularis and of larger, scattered cells in nucleus pretectalis superficialis pars magnocellularis, the presence of large cells in the dorsal accessory optic nucleus that form a rostrocaudally oriented column, and the feature of a small, cell-sparse ventral accessory optic nucleus are plesiomorphic. Apomorphic features include the presence of a single, large, circular lamina that surrounds a central neuropil in all but the most caudal part of nucleus anterior, a lack of bilateral asymmetry in the habenular nuclei, the relatively small size of the periventricular nucleus of the posterior tuberculum, the presence of two, distinguishable caudomedial nuclei in the posterior tuberculum, elongation and folding of the neuropil of nucleus pretectalis superficialis pars parvicellularis, and the relatively large size of nucleus pretectalis superficialis pars magnocellularis and the posterior pretectal nucleus. © 1993 Wiley-Liss, Inc.  相似文献   

16.
The contribution of retinal ganglion cells situated in different retinal quadrants to the innervation of eight nontectal, retinorecipient targets was examined in goldfish. In some fish, cobaltous-lysine was used to selectively fill severed intraretinal ganglion cell axons and the number of filled axons within each nucleus was determined. In other fish, either the dorsal or ventral or nasal or temporal retina was ablated and the remaining axons from the intact retina were filled with cobalt. The density of the cobalt-filled axons within the retinorecipient targets was quantified with a microdensitometer. All of the eight targets received different degrees of innervation when the contributions from dorsal and ventral retina were compared. The suprachiasmatic nucleus received axons from ventral, but not from dorsal, retinal ganglion cells (RGCs), while the nucleus opticus dorsolateralis, nucleus opticus commissurae posterior, and nucleus opticus pretectalis dorsalis received more axons from ventral than from dorsal RGCs. The tuberal region, nucleus corticalis, and the accessory optic nucleus received axons from dorsal, but not from ventral, RGCs. The nucleus opticus pretectalis ventralis received more axons from dorsal then from ventral RGCs. Only one target, nucleus corticalis, appeared to receive more axons from nasal than from temporal RGCs. In general, those nuclei that were closest to the dorsal optic tract were innervated exclusively or predominantly by ventral RGC axons, whereas those nuclei that were closest to the ventral optic tract were innervated exclusively or predominantly by dorsal RGC axons. These data indicate that in this particular vertebrate, the dorsal and ventral retinal regions are not homogeneous with respect to their projections to nontectal nuclei. The possible role that the nontectal nuclei play in determining the course of optic axons is discussed.  相似文献   

17.
Retinofugal projections in the blind cave fish A. hubbsi and in the highly visual A. mexicanus were studied with both reduced silver and autoradiographic methods. Contrary to what has been reported for other teleosts, ipsilateral, as well as the generally accepted contralateral, projections were found in A. mexicanus. Bilateral retinofugal projections were traced to the dorsolateral thalamic nucleus and area pretectalis. Contralateral projections were traced to the lateral geniculate nucleus, nucleus pretectalis, accessory optic nucleus, nucleus corticalis, nucleus opticus hypothalamicus and the superficial layers of the optic tectum (strata opticum, fibrosum and griseum superficiale, and the cellular zone of griseum centrale). Retinal efferents in the blindfish, A. hubbsi, are sparse and totally crossed. Areas receiving a retinal projection include nucleus opticus hypothalamicus, lateral geniculate and the superficial layers of the medial third of the optic tectum. Preliminary behavioral studies are described and discussed in relation to the possible visual potential of this teleost.  相似文献   

18.
Efferent projections of the optic tectum were studied with the anterograde degeneration method in the longnose gar. Ascending projections were found bilaterally to 3 pretectal nuclei — the superficial pretectal nucleus, nucleus pretectalis centralis and nucleus pretectalis profundus — and to a number of targets which lie further rostrally — the central posterior nucleus, dorsal posterior nucleus, accessory optic nucleus, nucleus ventralis lateralis, nucleus of the ventral optic tract, rostral part of the preglomerular complex, suprachiasmatic nucleus, anterior thalamic nucleus, nucleus ventralis medialis, nucleus intermedius, nucleus prethalamicus and rostral entopeduncular nucleus. Projections of the tectum reach the contralateral side via the supraoptic decussation and are less dense contralaterally than ipsilaterally. Descending projections resulting from tectal lesions include: (1) a tectal commissural pathway to the core of the torus longitudinalis bilaterally and the contralateral tectum and torus semicircularis; and (2) a pathway leaving the tectum laterally from which fibers terminate in the ipsilateral torus semicircularis, an area lateral to the nucleus of the medial longitudinal fasciculus, lateral tegmental nucleus, nucleus lateralis valvulae, nucleus isthmi and the reticular formation. A component of this bundle decussates at the level of the lateral tegmental nucleus to project to the contralateral reticular formation.

On the basis of comparisons of these findings with the pattern of retinal projections in gars and other data, it is argued that the nuclei previously called the lateral geniculate and rotundus in fish are not the homologues of the nuclei of those names in land vertebrates but are rather pretectal cell groups. The overall organization of both retinal and tectal projections in gars is strikingly similar to that in land vertebrates; at present, the best candidate for a rotundal homologue is the dorsal posterior nucleus.  相似文献   


19.
Monoclonal antibodies against two alpha-bungarotoxin-binding subunits (alpha 7 and alpha 8) of the nicotinic acetylcholine receptors (nAChRs) were used as immunohistochemical probes to map their distribution in the chick diencephalon and mesencephalon. The distribution of the alpha 7 and alpha 8 nAChR subunits was compared to the distribution of immunoreactivity produced by a monoclonal antibody against the beta 2 structural subunit of the nAChRs. Structures that contained high numbers of alpha 7-like immunoreactive (LI) somata included the intergeniculate leaflet, nucleus intercalatus thalami, nucleus ovoidalis, organum paraventricularis, nucleus rotundus, isthmic nuclei, nucleus trochlearis, oculomotor complex, nucleus interstitio-pretecto-subpretectalis, stratum griseum centrale of the optic tectum, and nucleus semilunaris. Neuropil staining for alpha 7-LI was intense in the nucleus dorsomedialis hypothalami, nucleus geniculatus lateralis ventralis, griseum tecti, isthmic nuclei, nucleus lentiformis mesencephali, nucleus of the basal optic root, and stratum griseum et fibrosum superficiale of the tectum. High numbers of alpha 8-LI somata were found in the stratum griseum et fibrosum superficiale of the tectum and the nucleus interstitio-pretecto-subpretectalis, and intense neuropil staining for alpha 8-LI was found in the dorsal thalamus, nucleus geniculatus lateralis ventralis, lateral hypothalamus, griseum et fibrosum superficiale of the tectum. High numbers of beta 2-LI somata were found only in the nucleus spiriformis lateralis, whereas neuropil staining for beta 2-LI was intense in the nucleus geniculatus lateralis ventralis, nucleus suprachiasmaticus, nucleus lateralis anterior, nucleus habenularis lateralis, area pretectalis, griseum tecti, nucleus lentiformis mesencephalis, nucleus externus, and nucleus interpeduncularis, and in the stratum griseum centrale, stratum griseum et fibrosum superficiale, and stratum opticum of the tectum. These results indicate that there are major disparities in the localization of the alpha-bungarotoxin-binding alpha 7 and alpha 8 nAChR subunits and the beta 2 structural nAChR subunit in the chick diencephalon and mesencephalon. These nAChR subunits appear, however, to coexist in several regions of the chick brain.  相似文献   

20.
We have studied the connections of the tectum of the rattlesnake by tectal application of horseradish peroxidase. The tectum receives bilateral input from nucleus lentiformis mesencephali, posterolateral tegmental nuclei, anterior tegmental nuclei and periventricular nuclei; ipsilateral input from nucleus geniculatus pretectalis, and lateral geniculate nucleus pars dorsalis; and contralateral input from dorso-lateral posterior tegmental nucleus and the previously undescribed nucleus reticularis caloris (RC). RC is located on the ventro-lateral surface of the medulla and consists of large cells 25--45 micrometer in diameter. Efferent projections from the tectum can be traced to the ipsilateral nucleus lentiformis mesencephali, the ipsilateral lateral geniculate region, anterior tegmental region and a wide bilateral area of the neuropil of the ventral tegmentum and ventral medualla. We have not found any direct tectal projections from the sensory trigeminal nuclei including the nucleus of the lateral descending trigeminal tract (LTTD). We suggest that in the rattlesnake, RC is the intermediate link connecting LTTD to the tectum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号