首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We applied single-molecule photobleaching to investigate the stoichiometry of human Orai1 and Orai3 channels tagged with eGFP and expressed in mammalian cells. Orai1 was detected predominantly as dimers under resting conditions and as tetramers when coexpressed with C-STIM1 to activate Ca(2+) influx. Orai1 was also found to be tetrameric when coexpressed with STIM1 and evaluated following fixation. We show that fixation rapidly causes release of Ca(2+), redistribution of STIM1 to the plasma membrane, and STIM1/Orai1 puncta formation, and may cause the channel to be in the activated state. Consistent with this possibility, Orai1 was found predominantly as a dimer when coexpressed with STIM1 in living cells under resting conditions. We further show that Orai3, like Orai1, is dimeric under resting conditions and is predominantly tetrameric when activated by C-STIM1. Interestingly, a dimeric Orai3 stoichiometry was found both before and during application of 2-aminoethyldiphenyl borate (2-APB) to activate a nonselective cation conductance in its STIM1-independent mode. We conclude that the human Orai1 and Orai3 channels undergo a dimer-to-tetramer transition to form a Ca(2+)-selective pore during store-operated activation and that Orai3 forms a dimeric nonselective cation pore upon activation by 2-APB.  相似文献   

2.
Orai1 and stromal interaction molecule (STIM)1 are critical components of Ca(2+) release-activated Ca(2+) (CRAC) channels. Orai1 is a pore subunit of CRAC channels, and STIM1 acts as an endoplasmic reticulum (ER) Ca(2+) sensor that detects store depletion. Upon store depletion after T-cell receptor stimulation, STIM1 translocates and coclusters with Orai1 at sites of close apposition of the plasma membrane (PM) and the ER membrane. However, the molecular components of these ER-PM junctions remain poorly understood. Using affinity protein purification, we uncovered junctate as an interacting partner of Orai1-STIM1 complex. Furthermore, we identified a Ca(2+)-binding EF-hand motif in the ER-luminal region of junctate. Mutation of this EF-hand domain of junctate impaired its Ca(2+) binding and resulted in partial activation of CRAC channels and clustering of STIM1 independently of store depletion. In addition to the known mechanisms of STIM1 clustering (i.e., phosphoinositide and Orai1 binding), our study identifies an alternate mechanism to recruit STIM1 into the ER-PM junctions via binding to junctate. We propose that junctate, a Ca(2+)-sensing ER protein, is a structural component of the ER-PM junctions where Orai1 and STIM1 cluster and interact in T cells.  相似文献   

3.
Increases in cytosolic Ca2+ concentration regulate diverse cellular activities and are usually evoked by opening of Ca2+ channels in intracellular Ca2+ stores and the plasma membrane (PM). For the many signals that evoke formation of inositol 1,4,5-trisphosphate (IP3), IP3 receptors coordinate the contributions of these two Ca2+ sources by mediating Ca2+ release from the endoplasmic reticulum (ER). Loss of Ca2+ from the ER then activates store-operated Ca2+ entry (SOCE) by causing dimers of STIM1 to cluster and unfurl cytosolic domains that interact with the PM Ca2+ channel, Orai1, causing its pore to open. The relative concentrations of STIM1 and Orai1 are important, but most analyses of their interactions use overexpressed proteins that perturb the stoichiometry. We tagged endogenous STIM1 with EGFP using CRISPR/Cas9. SOCE evoked by loss of ER Ca2+ was unaffected by the tag. Step-photobleaching analysis of cells with empty Ca2+ stores revealed an average of 14.5 STIM1 molecules within each sub-PM punctum. The fluorescence intensity distributions of immunostained Orai1 puncta were minimally affected by store depletion, and similar for Orai1 colocalized with STIM1 puncta or remote from them. We conclude that each native SOCE complex is likely to include only a few STIM1 dimers associated with a single Orai1 channel. Our results, demonstrating that STIM1 does not assemble clusters of interacting Orai channels, suggest mechanisms for digital regulation of SOCE by local depletion of the ER.

In generating the cytosolic Ca2+ signals that regulate cellular activities, cells call upon two sources of Ca2+: the extracellular space, accessed through Ca2+ channels in the plasma membrane (PM), and Ca2+ sequestered within intracellular stores, primarily within the endoplasmic reticulum (ER). In animal cells, the many receptors that stimulate formation of inositol 1,4,5-trisphosphate (IP3) provide coordinated access to both Ca2+ sources (1). IP3 stimulates the opening of IP3 receptors (IP3R), which are large Ca2+-permeable channels expressed mostly within ER membranes. IP3 thereby triggers Ca2+ release from the ER (2, 3). The link to extracellular Ca2+ is provided by store-operated Ca2+ entry (SOCE), which is activated by loss of Ca2+ from the ER. The reduction in ER free-Ca2+ concentration causes Ca2+ to dissociate from the luminal Ca2+-binding sites of stromal interaction molecule 1 (STIM1), a dimeric protein embedded in ER membranes. This loss of Ca2+ causes STIM1 to unfurl cytosolic domains that interact with the PM Ca2+ channel, Orai1, causing its pore to open and Ca2+ to flow into the cell through the SOCE pathway (Fig. 1A) (4, 5). Available evidence suggests that STIM1 must bind to the C-terminal tail of each of the six subunits of an Orai1 channel for optimal activity, with lesser occupancies reducing activity and modifying channel properties (610). The interactions between STIM1 and Orai1 occur at membrane contact sites (MCS), where the two membranes are organized to provide a gap of about 10–30 nm, across which the two proteins directly interact (1113). Orai channels are unusual in having no structural semblance to other ion channels and in having their opening controlled by direct interactions between proteins in different membranes (Fig. 1A). Competing models suggest that dimeric STIM1 binds either to a pair of C-terminal tails within a single channel (6 STIM1 molecules per hexameric Orai1 channel) (Fig. 1 B, a), or that each dimer interacts with only a single C-terminal tail leaving the remaining STIM1 subunit free to cross-link with a different Orai1 channel (12 STIM1 molecules around a single Orai1 channel) (Fig. 1 B, b) (see references in ref. 14). The latter arrangement has been proposed to allow assembly of close-packed Orai1 clusters (Fig. 1 B, c) and to explain the variable stoichiometry of Orai1 to STIM1 at MCS (14).Open in a separate windowFig. 1.SOCE is unaffected by tagging of endogenous STIM1. (A) SOCE is activated when loss of Ca2+ from the ER, usually mediated by IP3Rs, causes Ca2+ to dissociate from the EF hands of dimeric STIM1. This causes STIM1 to unfurl its cytosolic domain, unmasking the C-terminal polybasic tail (PBT) and CRAC (Ca2+-release-activated channel)-activation domain (CAD) Association of the PBT with PM phosphoinositides causes STIM1 to accumulate at MCS, where the CAD captures the C-terminal tail of Orai1. Binding of STIM1 to each of the six subunits of Orai1 opens the Ca2+ channel, allowing SOCE to occur (9). (B) Orai1 is a hexamer, comprising three pairs of dimers (33). Dimeric STIM1 may activate Orai1 by binding as three dimers (B, a), or as six dimers (B, b) with the residual STIM1 subunit free to interact with another Orai1 channel (B, c) (14). (C) Structure of the edited STIM1-EGFP. (D) TIRF images of STIM1-EGFP HeLa cells treated with STIM1 or nonsilencing (NS) shRNA before emptying of Ca2+ stores. (Scale bar, 10 µm.) (E) Summary results (individual values, mean ± SD, n = 3 independent experiments, each with ∼30 cells analyzed) show whole-cell fluorescence intensities from TIRF images of STIM1-EGFP HeLa cells treated with the indicated shRNA. Results from WT cells are also shown (n = 4). ****P < 0.0001, ANOVA with Bonferroni test, relative to WT cells. (F) In-gel fluorescence of lysates from WT or STIM1-EGFP HeLa cells (protein loadings in μg). The STIM1-EGFP band (arrow) and molecular mass markers (kDa) are shown. Similar results were obtained in four independent analyses. (G) WB for STIM1 and β-actin for WT and STIM1-EGFP HeLa cells. Protein loadings (μg) and molecular mass markers (kDa) are shown. Arrows show positions of native and EGFP-tagged STIM1. (H) Summary results (individual values, mean ± SD, n = 9) show expression of STIM1-EGFP relative to all STIM1 in STIM1-EGFP HeLa cells (red), and total STIM1 expression in WT and edited cells (black). (I) Effects of histamine in Ca2+-free HBS on the peak increase in [Ca2+]c (Δ[Ca2+]c) in populations of WT and STIM1-EGFP HeLa cells. Mean ± SEM from four experiments, each with six determinations. (J) Effects of CPA in Ca2+-free HBS on the peak increase in [Ca2+]c (Δ[Ca2+]c) in populations of WT and STIM1-EGFP HeLa cells. Mean ± SEM from four experiments, each with six determinations. (K) Populations of cells were treated (5 min) with CPA in Ca2+-free HBS to evoke graded depletion of ER Ca2+ stores before addition of extracellular Ca2+ (final free [Ca2+] ∼10 mM). Results (mean ± SEM, n = 6, each with six determinations) show the amplitude of the SOCE in WT and STIM1-EGFP HeLa cells. See also SI Appendix, Figs. S1 and S2.Opening of most ion channels is regulated by changes in membrane potential or by binding of soluble stimuli, where the relationship between stimulus intensity and response is readily amenable to experimental analysis. The unusual behavior of SOCE, where direct interactions between proteins embedded in different membranes control channel opening (Fig. 1A), makes it more difficult to define stimulus–response relationships and highlights the need to understand the amounts of STIM1 and Orai1 within the MCS where the interactions occur. When STIM1 or Orai1 are overexpressed their behaviors are perturbed, yet most analyses of their interactions have involved overexpression of the proteins. These difficulties motivated the present study, which was designed to determine the number of native STIM1 molecules associated with each SOCE signaling complex.  相似文献   

4.
5.
Calcium (Ca) is an important structural component of plant cell walls and an intracellular messenger in plants and animals. Therefore, plants tightly control the balance of Ca by regulating Ca uptake and its transfer from cell to cell and organ to organ. Here, we propose that Brassica juncea PCR1 (PCR1), a member of the plant cadmium resistance (PCR) protein family in Indian mustard, is a Ca(2+) efflux transporter that is required for the efficient radial transfer of Ca(2+) in the root and is implicated in the translocation of Ca to the shoot. Knock-down lines of BjPCR1 were greatly stunted and translocated less Ca to the shoot than did the corresponding WT. The localization of BjPCR1 to the plasma membrane and the preferential expression of BjPCR1 in the root epidermal cells of WT plants suggest that BjPCR1 antisense plants could not efficiently transfer Ca(2+) from the root epidermis to the cells located inside the root. Protoplasts isolated from BjPCR1 antisense lines had lower Ca(2+) efflux activity than did those of the WT, and membrane vesicles isolated from BjPCR1-expressing yeast exhibited increased Ca(2+) transport activity. Inhibitor studies, together with theoretical considerations, indicate that BjPCR1 exports one Ca(2+) in exchange for three protons. Root hair-specific expression of BjPCR1 in Arabidopsis results in plants that exhibit increased Ca(2+) resistance and translocation. In conclusion, our data support the hypothesis that BjPCR1 is an exporter required for the translocation of Ca(2+) from the root epidermis to the inner cells, and ultimately to the shoot.  相似文献   

6.
The two-pore channels (TPC1 and TPC2) belong to an ancient family of intracellular ion channels expressed in the endolysosomal system. Little is known about how regulatory inputs converge to modulate TPC activity, and proposed activation mechanisms are controversial. Here, we compiled a proteomic characterization of the human TPC interactome, which revealed that TPCs complex with many proteins involved in Ca2+ homeostasis, trafficking, and membrane organization. Among these interactors, TPCs were resolved to scaffold Rab GTPases and regulate endomembrane dynamics in an isoform-specific manner. TPC2, but not TPC1, caused a proliferation of endolysosomal structures, dysregulating intracellular trafficking, and cellular pigmentation. These outcomes required both TPC2 and Rab activity, as well as their interactivity, because TPC2 mutants that were inactive, or rerouted away from their endogenous expression locale, or deficient in Rab binding, failed to replicate these outcomes. Nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca2+ release was also impaired using either a Rab binding-defective TPC2 mutant or a Rab inhibitor. These data suggest a fundamental role for the ancient TPC complex in trafficking that holds relevance for lysosomal proliferative scenarios observed in disease.Two-pore channels (TPCs) are an ancient family of intracellular ion channels and a likely ancestral stepping stone in the evolution of voltage-gated Ca2+ and Na+ channels (1). Architecturally, TPCs resemble a halved voltage-gated Ca2+/Na+ channel with cytosolic NH2 and COOH termini, comprising two repeats of six transmembrane spanning helices with a putative pore-forming domain between the fifth and sixth membrane-spanning regions. Since their discovery in vertebrate systems, many studies have investigated the properties of these channels (27) that may support such a lengthy evolutionary pedigree.In this context, demonstration that (i) the two human TPC isoforms (TPC1 and TPC2) are uniquely distributed within the endolysosomal system (2, 3) and that (ii) TPC channel activity is activated by the Ca2+ mobilizing molecule nicotinic acid adenine dinucleotide phosphate (NAADP) (46) generated considerable excitement that TPCs function as effectors of this mercurial second messenger long known to trigger Ca2+ release from “acidic stores.” The spectrum of physiological activities that have been linked to NAADP signaling over the last 25 years (8, 9) may therefore be realized through regulation of TPC activity. However, recent studies have questioned the idea that TPCs are NAADP targets (10, 11), demonstrating instead that TPCs act as Na+ channels regulated by the endolysosomal phosphoinositide PI(3,5)P2. Such controversy (12, 13) underscores how little we know about TPC regulatory inputs and the dynamic composition of TPC complexes within cells.Here, to generate unbiased insight into the cell biology of the TPC complex, we report a proteomic analysis of human TPCs. The TPC interactome establishes a useful community resource as a “rosetta stone” for interrogating the cell biology of TPCs and their regulation. The dataset reveals a predomination of links between TPCs and effectors controlling membrane organization and trafficking, relevant for disease states involving lysosomal proliferation where TPC functionality may be altered (14).  相似文献   

7.
Local Ca2+ signaling occurring within nanometers of voltage-gated Ca2+ (Cav) channels is crucial for CNS function, yet the molecular composition of Cav channel nano-environments is largely unresolved. Here, we used a proteomic strategy combining knockout-controlled multiepitope affinity purifications with high-resolution quantitative MS for comprehensive analysis of the molecular nano-environments of the Cav2 channel family in the whole rodent brain. The analysis shows that Cav2 channels, composed of pore-forming α1 and auxiliary β subunits, are embedded into protein networks that may be assembled from a pool of ∼200 proteins with distinct abundance, stability of assembly, and preference for the three Cav2 subtypes. The majority of these proteins have not previously been linked to Cav channels; about two-thirds are dedicated to the control of intracellular Ca2+ concentration, including G protein-coupled receptor-mediated signaling, to activity-dependent cytoskeleton remodeling or Ca2+-dependent effector systems that comprise a high portion of the priming and release machinery of synaptic vesicles. The identified protein networks reflect the cellular processes that can be initiated by Cav2 channel activity and define the molecular framework for organization and operation of local Ca2+ signaling by Cav2 channels in the brain.  相似文献   

8.
BK-type K(+) channels are activated by voltage and intracellular Ca(2+), which is important in modulating muscle contraction, neural transmission, and circadian pacemaker output. Previous studies suggest that the cytosolic domain of BK channels contains two different Ca(2+) binding sites, but the molecular composition of one of the sites is not completely known. Here we report, by systematic mutagenesis studies, the identification of E535 as part of this Ca(2+) binding site. This site is specific for binding to Ca(2+) but not Cd(2+). Experimental results and molecular modeling based on the X-ray crystallographic structures of the BK channel cytosolic domain suggest that the binding of Ca(2+) by the side chains of E535 and the previously identified D367 changes the conformation around the binding site and turns the side chain of M513 into a hydrophobic core, providing a basis to understand how Ca(2+) binding at this site opens the activation gate of the channel that is remotely located in the membrane.  相似文献   

9.
10.
Advanced age in rats is accompanied by reduced expression of the sarcoplasmic reticulum (SR) Ca2+ pump (SERCA-2). The amplitudes of intracellular Ca2+ (Ca2+(i)) transients and contractions in ventricular myocytes isolated from old (23-24-months) rats (OR), however, are similar to those of young (4-6-months) rat myocytes (YR). OR myocytes also manifest slowed inactivation of L-type Ca2+ current (I(CaL)) and marked prolongation of action potential (AP) duration. To determine whether and how age-associated AP prolongation preserves the Ca2+(i) transient amplitude in OR myocytes, we employed an AP-clamp technique with simultaneous measurements of I(CaL) (with Na+ current, K+ currents and Ca2+ influx via sarcolemmal Na+-Ca2+ exchanger blocked) and Ca2+(i) transients in OR rat ventricular myocytes dialyzed with the fluorescent Ca2+ probe, indo-1. Myocytes were stimulated with AP-shaped voltage clamp waveforms approximating the configuration of prolonged, i.e. the native, AP of OR cells (AP-L), or with short AP waveforms (AP-S), typical of YR myocytes. Changes in SR Ca2+ load were assessed by rapid, complete SR Ca2+ depletions with caffeine. As expected, during stimulation with AP-S vs AP-L, peak I(CaL) increased, by 21+/-4%, while the I(CaL) integral decreased, by 19+/-3% (P<0.01 for each). Compared to AP-L, stimulation of OR myocytes with AP-S reduced the amplitudes of the Ca2+(i) transient by 31+/-6%, its maximal rate of rise (+dCa2+(i)/dt(max); a sensitive index of SR Ca2+ release flux) by 37+/-4%, and decreased the SR Ca2+ load by 29+/-4% (P<0.01 for each). Intriguingly, AP-S also reduced the maximal rate of the Ca2+(i) transient relaxation and prolonged its time to 50% decline, by 35+/-5% and 33+/-7%, respectively (P<0.01 for each). During stimulation with AP-S, the gain of Ca2+-induced Ca2+ release (CICR), indexed by +dCa2+(i)/dt(max)/I(CaL), was reduced by 46+/-4% vs AP-L (P<0.01). We conclude that the effects of an application of a shorter AP to OR myocytes to reduce +dCa2+(i)/dt(max) and the Ca2+ transient amplitude are attributable to a reduction in SR Ca2+ load, presumably due to a reduced I(CaL) integral and likely also to an increased Ca2+ extrusion via sarcolemmal Na+-Ca2+ exchanger. The decrease in the Ca2+(i) transient relaxation rate in OR cells stimulated with shorter APs may reflect a reduction of Ca2+/calmodulin-kinase II-regulated modulation of Ca2+ uptake via SERCA-2, consequent to a reduced local Ca2+ release in the vicinity of SERCA-2, also attributable to reduced SR Ca2+ load. Thus, the reduction of CICR gain during stimulation with AP-S is the net result of both a diminished SR Ca2+ release and an increased peak I(CaL). These results suggest that ventricular myocytes of old rats utilize AP prolongation to preserve an optimal SR Ca2+ loading, CICR gain and relaxation of Ca2+(i) transients.  相似文献   

11.
Their sessile lifestyle means that plants have to be exquisitely sensitive to their environment, integrating many signals to appropriate developmental and physiological responses. Stimuli ranging from wounding and pathogen attack to the distribution of water and nutrients in the soil are frequently presented in a localized manner but responses are often elicited throughout the plant. Such systemic signaling is thought to operate through the redistribution of a host of chemical regulators including peptides, RNAs, ions, metabolites, and hormones. However, there are hints of a much more rapid communication network that has been proposed to involve signals ranging from action and system potentials to reactive oxygen species. We now show that plants also possess a rapid stress signaling system based on Ca2+ waves that propagate through the plant at rates of up to ∼400 µm/s. In the case of local salt stress to the Arabidopsis thaliana root, Ca2+ wave propagation is channeled through the cortex and endodermal cell layers and this movement is dependent on the vacuolar ion channel TPC1. We also provide evidence that the Ca2+ wave/TPC1 system likely elicits systemic molecular responses in target organs and may contribute to whole-plant stress tolerance. These results suggest that, although plants do not have a nervous system, they do possess a sensory network that uses ion fluxes moving through defined cell types to rapidly transmit information between distant sites within the organism.Plants are constantly tailoring their responses to current environmental conditions via a complex array of chemical regulators that integrate developmental and physiological programs across the plant body. Environmental stimuli are often highly localized in nature, but the subsequent plant response is often elicited throughout the entire organism. For example, soil is a highly heterogeneous environment and the root encounters stimuli that are presented in a patchy manner. Thus, factors including dry or waterlogged regions of the soil, variations in the osmotic environment, and stresses such as elevated levels of salt are all likely to be encountered locally by individual root tips, but the information may have to be acted on by the plant as a whole.In animals, long-range signaling to integrate activities across the organism occurs through rapid ionic/membrane potential-driven signaling through the nervous system in addition to operating via long-distance chemical signaling. Plants have also been proposed to possess a rapid, systemic communication network, potentially mediated through signals ranging from changes in membrane potential/ion fluxes (13) and levels of reactive oxygen species (ROS) (4, 5) to altered hydraulics in the vasculature (6). Even so, the molecular mechanisms behind rapid, systemic signaling in plants and whether such signals indeed carry regulatory information remains largely unknown. Suggestions that Ca2+ channels play a role in signals that occlude sieve tube elements (7), or that mediate systemic electrical signaling (2) in response to remote wounding, highlight Ca2+-dependent signaling events as a strong candidate for mediating some of these long-range responses. Similarly, cooling of roots elicits Ca2+ increases in the shoot within minutes (8), suggesting systemic signals can elicit Ca2+-dependent responses at distal sites within the plant. However, despite extensive characterization of Ca2+ signals (reviewed in ref. 9), their roles in a possible plant-wide communication network remain poorly understood. Therefore, to visualize how Ca2+ might act in local and systemic signaling, we generated Arabidopsis plants expressing the highly sensitive, GFP-based, cytoplasmic Ca2+ sensor YCNano-65 (10). We observed that a range of abiotic stresses including H2O2, touch, NaCl, and cold shock triggered Ca2+ increases at the point of application. However, NaCl also elicited a Ca2+ increase that moved away from the point of stress application. Propagation of this Ca2+ increase was associated with subsequent systemic changes in gene expression. We also report that this salt stress-induced long-distance Ca2+ wave is dependent on the activity of the ion channel protein Two Pore Channel 1 (TPC1), which also appears to contribute to whole-plant stress tolerance.  相似文献   

12.
Sarcolipin is a novel regulator of cardiac sarcoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) and is expressed abundantly in atria. In this study we investigated the physiological significance of sarcolipin in the heart by generating a mouse model deficient for sarcolipin. The sarcolipin-null mice do not show any developmental abnormalities or any cardiac pathology. The absence of sarcolipin does not modify the expression level of other Ca2+ handling proteins, in particular phospholamban, and its phosphorylation status. Calcium uptake studies revealed that, in the atria, ablation of sarcolipin resulted in an increase in the affinity of the SERCA pump for Ca2+ and the maximum velocity of Ca2+ uptake rates. An important finding is that ablation of sarcolipin resulted in an increase in atrial Ca2+ transient amplitudes, and this resulted in enhanced atrial contractility. Furthermore, atria from sarcolipin-null mice showed a blunted response to isoproterenol stimulation, implicating sarcolipin as a mediator of beta-adrenergic responses in atria. Our study documented that sarcolipin is a key regulator of SERCA2a in atria. Importantly, our data demonstrate the existence of distinct modulators for the SERCA pump in the atria and ventricles.  相似文献   

13.
The voltage-sensor domain (VSD) of voltage-dependent ion channels and enzymes is critical for cellular responses to membrane potential. The VSD can also be regulated by interaction with intracellular proteins and ligands, but how this occurs is poorly understood. Here, we show that the VSD of the BK-type K(+) channel is regulated by a state-dependent interaction with its own tethered cytosolic domain that depends on both intracellular Mg(2+) and the open state of the channel pore. Mg(2+) bound to the cytosolic RCK1 domain enhances VSD activation by electrostatic interaction with Arg-213 in transmembrane segment S4. Our results demonstrate that a cytosolic domain can come close enough to the VSD to regulate its activity electrostatically, thereby elucidating a mechanism of Mg(2+)-dependent activation in BK channels and suggesting a general pathway by which intracellular factors can modulate the function of voltage-dependent proteins.  相似文献   

14.
In this study, we examined histamine-induced calcium signaling in cultured human valvular myofibroblasts (hVMFs), which are the most prominent interstitial cells in cardiac valves mediating valvular contraction, extracellular matrix secretion, and wound repair. Despite the functional importance of VMFs in cardiac valves, the cellular-signaling pathways, especially those mediated by Ca(2+), are still poorly understood. Using fluorescence imaging microscopy, we measured intracellular Ca(2+) ([Ca(2+)](i)) levels in fura-2-loaded hVMFs. Activation of H(1) receptors released Ca(2+) from one compartment of the endoplasmic reticulum (ER) of hVMFs, but did not induce Ca(2+) entry. This histamine-induced Ca(2+) release was oscillatory and dependent on Ca(2+) re-uptake into the ER by sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). Application of the reversible SERCA blocker, cyclopiazonic acid (CPA), after depletion of the histamine-sensitive Ca(2+) store revealed the presence of a second, smaller histamine-insensitive Ca(2+) store in the ER. The Ca(2+) content ratio of the histamine-sensitive and histamine-insensitive Ca(2+) stores in the ER was found to be approximately 1.15:1. Another effect of CPA in hVMFs was the activation of store-operated Ca(2+) channels, as demonstrated by maintained [Ca(2+)](i) elevation as well as accelerated Mn(2+) entry. In conclusion, this study establishes for the first time an agonist-induced Ca(2+)-signaling pathway in hVMFs.  相似文献   

15.
Calcium (Ca(2+)) release through inositol 1,4,5-trisphosphate receptors (IP(3)Rs) regulates the function of virtually every mammalian cell. Unlike ryanodine receptors, which generate local Ca(2+) events ("sparks") that transmit signals to the juxtaposed cell membrane, a similar functional architecture has not been reported for IP(3)Rs. Here, we have identified spatially fixed, local Ca(2+) release events ("pulsars") in vascular endothelial membrane domains that project through the internal elastic lamina to adjacent smooth muscle membranes. Ca(2+) pulsars are mediated by IP(3)Rs in the endothelial endoplasmic reticulum of these membrane projections. Elevation of IP(3) by the endothelium-dependent vasodilator, acetylcholine, increased the frequency of Ca(2+) pulsars, whereas blunting IP(3) production, blocking IP(3)Rs, or depleting endoplasmic reticulum Ca(2+) inhibited these events. The elementary properties of Ca(2+) pulsars were distinct from ryanodine-receptor-mediated Ca(2+) sparks in smooth muscle and from IP(3)-mediated Ca(2+) puffs in Xenopus oocytes. The intermediate conductance, Ca(2+)-sensitive potassium (K(Ca)3.1) channel also colocalized to the endothelial projections, and blockage of this channel caused an 8-mV depolarization. Inhibition of Ca(2+) pulsars also depolarized to a similar extent, and blocking K(Ca)3.1 channels was without effect in the absence of pulsars. Our results support a mechanism of IP(3) signaling in which Ca(2+) release is spatially restricted to transmit intercellular signals.  相似文献   

16.
Sorcin is a penta-EF-hand protein that interacts with intracellular target proteins after Ca2+ binding. The sarcolemmal Na+/Ca2+ exchanger (NCX1) may be an important sorcin target in cardiac muscle. In this study, RNAi knockdown of sorcin, purified sorcin or sorcin variants was employed in parallel measurements of: (i) NCX activity in isolated rabbit cardiomyocytes using electrophysiological techniques and (ii) sorcin binding to the NCX1 calcium binding domains (CBD1 and (iii) using surface plasmon resonance and gel overlay techniques. Sorcin is activated by Ca2+ binding to the EF3 and EF2 regions, which are connected by the D helix. To investigate the importance of this region in the interaction with NCX1, three variants were examined: W105G and W99G, mutated respectively near EF3 and EF2, and E124A that does not bind Ca2+ due to a mutation at EF3. Downregulation of sorcin decreased and supplementation with wt sorcin (3 μM) increased NCX activity in isolated cardiomyocytes. The relative stimulatory effects of the sorcin variants were: W105G > wt sorcin > Sorcin Calcium Binding Domain (SCBD) > W99G > E124A. Sorcin binding to both CBD1 and 2 was observed. In the presence of 50 µM Ca2+, the interaction with CBD1 followed the order W105G > SCBD > wt sorcin > W99G > E124A. In sorcin, the interacting surface can be mapped on the C-terminal Ca2+-binding domain in the D helix region comprising W99. The fast association/dissociation rates that characterize the interaction of sorcin with CBD1 and 2 may permit complex formation/dissociation during an excitation/contraction cycle.  相似文献   

17.
Regulation of ion-transport in the Na+/Ca2+ exchanger (NCX) occurs via its cytoplasmic Ca2+-binding domains, CBD1 and CBD2. Here, we present a mechanism for NCX activation and inactivation based on data obtained using NMR, isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS). We initially determined the structure of the Ca2+-free form of CBD2-AD and the structure of CBD2-BD that represent the two major splice variant classes in NCX1. Although the apo-form of CBD2-AD displays partially disordered Ca2+-binding sites, those of CBD2-BD are entirely unstructured even in an excess of Ca2+. Striking differences in the electrostatic potential between the Ca2+-bound and -free forms strongly suggest that Ca2+-binding sites in CBD1 and CBD2 form electrostatic switches analogous to C2-domains. SAXS analysis of a construct containing CBD1 and CBD2 reveals a conformational change mediated by Ca2+-binding to CBD1. We propose that the electrostatic switch in CBD1 and the associated conformational change are necessary for exchanger activation. The response of the CBD1 switch to intracellular Ca2+ is influenced by the closely located cassette exons. We further propose that Ca2+-binding to CBD2 induces a second electrostatic switch, required to alleviate Na+-dependent inactivation of Na+/Ca2+ exchange. In contrast to CBD1, the electrostatic switch in CBD2 is isoform- and splice variant-specific and allows for tailored exchange activities.  相似文献   

18.
19.
Calcium-binding protein 1 (CaBP1) is a neuron-specific member of the calmodulin superfamily that regulates several Ca2+ channels, including inositol 1,4,5-trisphosphate receptors (InsP3Rs). CaBP1 alone does not affect InsP3R activity, but it inhibits InsP3-evoked Ca2+ release by slowing the rate of InsP3R opening. The inhibition is enhanced by Ca2+ binding to both the InsP3R and CaBP1. CaBP1 binds via its C lobe to the cytosolic N-terminal region (NT; residues 1–604) of InsP3R1. NMR paramagnetic relaxation enhancement analysis demonstrates that a cluster of hydrophobic residues (V101, L104, and V162) within the C lobe of CaBP1 that are exposed after Ca2+ binding interact with a complementary cluster of hydrophobic residues (L302, I364, and L393) in the β-domain of the InsP3-binding core. These residues are essential for CaBP1 binding to the NT and for inhibition of InsP3R activity by CaBP1. Docking analyses and paramagnetic relaxation enhancement structural restraints suggest that CaBP1 forms an extended tetrameric turret attached by the tetrameric NT to the cytosolic vestibule of the InsP3R pore. InsP3 activates InsP3Rs by initiating conformational changes that lead to disruption of an intersubunit interaction between a “hot-spot” loop in the suppressor domain (residues 1–223) and the InsP3-binding core β-domain. Targeted cross-linking of residues that contribute to this interface show that InsP3 attenuates cross-linking, whereas CaBP1 promotes it. We conclude that CaBP1 inhibits InsP3R activity by restricting the intersubunit movements that initiate gating.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号