首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ganglioside AGF2 attenuated both the cognitive impairments and the cholinergic hypofunction induced by ethylcholine aziridinium ion (AF64A). Adult male rats were initially trained to perform a standard radial arm maze (RAM) task. Following training, they were injected intraperitoneally with 10 mg/kg AGF2 (AF/AGF2, CSF/AGF2) or the saline vehicle (AF/SAL, CSF/SAL) for 3 days prior to and for 14 days following bilateral injection of AF64A (3 nmol/side) or artificial CSF into the lateral ventricles. AF64A (AF/SAL) impaired performance of the standard RAM task and a working memory version of the task in which various delays were imposed between the fourth and fifth arm choices. In contrast, animals that received AGF2 and AF64A (AF/AGF2) were initially impaired on the standard RAM task but rapidly recovered and were performing as well as the control groups (CSF/SAL, CSF/AGF2) by the end of training. The AF/AGF2 group, however, exhibited persistent deficits on the working memory version of the RAM task. These data demonstrate that AGF2 promotes behavioral recovery in a task-dependent manner in this model system. Neurochemical analysis revealed that AF64A produced a significant 37% decrease in hippocampal ChAT activity that was significantly attenuated, but not prevented, by prior treatment with AGF2. Thus the behavioral recovery afforded by AGF2 might be related to increased cholinergic activity in the hippocampus that is sufficient for the performance of tasks which either lack or have a minimal working memory component. An analysis of the temporal profile of AGF2-induced neurochemical recovery revealed that ChAT activity was enhanced at 20, but not 2 or 11, weeks following AF64A. Since AGF2 did not attenuate the cholinergic cell loss (35%) induced by AF64A in the medial septum these data indicate that AGF2 might have (1) enhanced sprouting of cholinergic terminals following the initial insult, (2) directly increased ChAT activity in surviving neurons, or (3) induced behavioral and neurochemical recovery through a combination of these or other mechanisms.  相似文献   

2.
The present study examined whether intraventricular administration of the potent high affinity choline transport (HAChT) inhibitor hemicholinium-3 (HC-3) would attenuate the memory impairments and the neurochemical deficits induced by i.c.v. ethylcholine aziridinium ion (AF64A). Male Sprague-Dawley rats were trained to perform a delayed-non-match to sample radial arm maze (RAM) task in which a 1-h delay was imposed between the fourth and fifth arm selections. Following 30 acquisition trials, animals were bilaterally injected with AF64A (3 nmol/side) or AF64A preceded by HC-3 (20 micrograms/side) into the lateral ventricles and allowed 7 days to recover before behavioral testing resumed. Control animals received either artificial cerebrospinal fluid or HC-3. AF64A-treated rats were significantly impaired in their performance of the RAM task as evidenced by fewer correct choices following the delay and more total errors to complete the task. This behavioral deficit was associated with a significant (32%) decrease in HAChT in the hippocampus. In contrast, animals pretreated with HC-3 exhibited no significant decreases in HAChT or decrements in RAM performance. These findings indicate that the memory deficits resulting from intraventricular administration of AF64A are a consequence of the compound's cholinotoxic properties and in particular its interaction with the HAChT carrier. Furthermore they demonstrate that a select alteration of septohippocampal cholinergic activity is sufficient to disrupt working memory processes.  相似文献   

3.
To develop an animal model for testing muscarinic agonists, we examined the effects of cholinergic lesions with the ethylcholine aziridinium ion (AF64A) on two types of memory tasks. The tasks provided a distinction between representational and dispositional memory that could be measured in a single paradigm. Young, male Long-Evans rats were trained in a modified T-maze to learn both a discrimination task and a paired-run alternation task. Once animals learned the tasks, they were administered either saline or AF64A (5 nmol into each hippocampus) via stereotaxic technique. One week following surgery, saline-treated animals exhibited comparable performances (P greater than 0.2) on both the discrimination task (90.0 +/- 2.6% correct) and the alternation task (79.5 +/- 5.7%). In contrast, animals treated with AF64A showed a significant impairment of performance (P less than 0.005) on the alternation task (56.1 +/- 1.7%) as compared to the discrimination task (81.6 +/- 5.0%). Performance of the alternation task was significantly lower for AF64A-treated animals than for controls (P less than 0.02). AF64A-treated animals subsequently injected with pilocarpine (1.0 mg/kg, i.p.) showed moderate improvements in performance on the alternation task, while performance on the discrimination task remained unaffected. Immunocytochemical studies of choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH) immunoreactivity indicated a loss of ChAT-positive cells in the septal region in AF64A-injected animals while TH-positive cells in the ventral tegmental area were unaffected by the treatment. The data suggest that AF64A can be used to produce selective lesions of the septohippocampal cholinergic system, which plays a greater role in representational memory than in dispositional memory.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The present experiments examined whether transplanted fetal cholinergic neurons would attenuate the behavioral and neurochemical deficits induced by the cholinotoxin AF64A (ethylcholine aziridinium ion). Bilateral injections of AF64A (3 nmol) into the lateral ventricles produced significant learning and memory impairments together with decreases in hippocampal high-affinity choline uptake (HAChU). AF64A-treated rats were impaired on both a standard radial arm maze (RAM) task and a working memory version in which a one-hour delay was imposed between the fourth and fifth arm choices. Transplantation of embryonic day E-17 septal/diagonal band tissue into the hippocampus (HPC) promoted recovery of performance on the standard version of the RAM task. However, this recovery was not observed when the animals were tested on the more difficult delay version of the task. Neurochemical analysis indicated that AF64A produced a significant (31%) decrease in hippocampal HAChU that was attenuated (14%) by transplantation of fetal cholinergic neurons. Histological analysis revealed that the transplants survived and innervated the HPC. There was no apparent relationship between fiber ingrowth into the HPC and behavioral recovery. These data indicate that transplant-induced behavioral recovery may be related to and limited by the cognitive demands of the testing situation. Generalized increases in cholinergic activity, transplant-mediated release of trophic factors, or a combination of both may underlie the behavioral recovery observed in the present studies.  相似文献   

5.
Recent studies have demonstrated that intrahippocampal cholinergic septal grafts can ameliorate deficits in spatial memory function and hippocampal cholinergic neurochemical activity in animals with disruptions of the septohippocampal system. However, no study has determined if the restoration of spatial memory function is correlated to the restoration of cholinergic activity, as measured by high-affinity choline uptake (HACU). The present study was designed to determine if such a correlation between behavioral and neurochemical restoration exists. Male Sprague-Dawley rats received either sham lesions (SHAM), bilateral lesions of the septohippocampal pathway (LES), or bilateral lesions along with intrahippocampal septal grafts (SG). After 8 months, rats were tested for their ability to perform spatial reference, spatial navigation and working memory tasks. Upon completion of the behavioral testing, neurochemical activity of the hippocampus was measured by HACU. The results indicate that animals in the SG group had significantly higher behavioral scores and hippocampal HACU rates than animals in the LES group. Regression analysis indicates that a significant correlation exists between performance on each behavioral task and HACU rates. These results demonstrate that hippocampal cholinergic activity, as measured by HACU, correlates significantly with performance on tests of spatial memory function.  相似文献   

6.
A cholinergically disrupted laboratory animal has been produced by administration of the cholinotoxin ethylcholine aziridinium mustard (AF64A), which produced a dysfunction in the cholinergic forebrain system. After AF64A treatment, a reduction of choline acetyl transferase (ChAT) activity was measured in the hippocampal regions. ChAT activity was preferentially reduced in tissue samples of the dorsal with respect to the ventral hippocampus, and concomitantly with this reduction, a compensatory increase in ChAT activity in the medial septum was found. Tissue gamma‐aminobutyric acid (GABA) content in the hippocampal and septal brain areas was not affected by AF64A, indicating a specific effect on the cholinergic septohippocampal projection. The rate of GABA accumulation induced by aminooxyacetic acid administration was higher in the dorsal hippocampus and medial septum of AF64A‐treated animals, but not in their ventral hippocampus and lateral septum, where significant changes occurred in ChAT activity. Concomitantly with the changes in GABA metabolism, a significant Bmax increase and Kd reduction of 3H‐flunitrazepam binding in the hippocampus of AF64A‐treated animals were associated with changes in the ChAT activity. This finding suggests an increase of GABA input on the cholinergic somas of the medial septum and an uncompensated GABAergic interneuron activity in the hippocampus. In this study, we present an adaptive mechanism of homotypic compensatory metabolism by cholinergic somas, and a heterotypic response of the GABAergic septohippocampal projection system, which was elicited by AF64A administration. J. Neurosci. Res. 55:178–186, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
A human neural stem cell (NSC) line over-expressing human choline acetyltransferase (ChAT) gene was generated and these F3.ChAT NSCs were transplanted into the brain of rat Alzheimer disease (AD) model which was induced by application of ethylcholine mustard aziridinium ion (AF64A) that specifically denatures cholinergic nerves and thereby leads to memory deficit as a salient feature of AD. Transplantation of F3.ChAT human NSCs fully recovered the learning and memory function of AF64A animals, and induced elevated levels of acetylcholine (ACh) in cerebrospinal fluid (CSF). Transplanted F3.ChAT human NSCs were found to migrate to various brain regions including cerebral cortex, hippocampus, striatum and septum, and differentiated into neurons and astrocytes. The present study demonstrates that brain transplantation of human NSCs over-expressing ChAT ameliorates complex learning and memory deficits in AF64A-cholinotoxin-induced AD rat model.  相似文献   

8.
The behavioral and biochemical effects of AF64A, a presynaptic cholinergic neurotoxin, were investigated. Bilateral administration of this compound into the lateral cerebral ventricles produced transient and dose-related effects on sensorimotor function and long-term impairments of cognitive behavior. Male Fischer-F344 rats dosed with either 15 or 30 nmol of AF64A reacted 29–62% faster than CSF-injected controls in a hot-plate test 14 (but not 1, 7, 21 or 28) days following dosing. The group administered 15 nmol of AF64A was also significantly more active (41%) than controls 28 days following dosing. The activity level of this group was comparable to that of controls at other times and hyperactivity was never observed in the 30 nmol group. Retention of a step-through passive avoidance task, assessed 35 days after dosing, was impaired in both 15 and the 30 nmol groups. Their step-through latencies were significatlly shorter than the control latencies, and they exhibited more partial entries during the 24-h retention test. Radial-arm maze performance, measured 60–80 days following treatment, was markedly impaired in the treated groups. Animals treated with AF64A made fewer correct responses in their first 8 choices, required more total selections to complete the task, and had an altered pattern of spatial responding in the maze. The neurochemical changes produced by AF64A, determined 120 days after dosing, were specific to the cholinergic system and consisted of decreases of ACh in both the hippocampus (15 and 30 nmol groups) and the frontal cortex (30 nmol group). The concentrations of catecholamines, indoleamines, their metabolites and choline in various brain regions were not affected by AF64A. Furthermore, histological analysis revealed that the doses of AF64A used in the present study did not damage the hippocampus, the fimbria-fornix, the septum or the caudate nucleus. These data support the contention that cholinergic processes in the hippocampus, nd/or frontal cortex play an important role in learning and memory processes. Furthermore, based upon the behavioral and biochemical data presented, it is suggested that AF64A could be a useful pharmacological tool for examining the neurobiological substrates of putative cholinergic disorder such as senile dementia of the Alzheimer's type.  相似文献   

9.
Chronic alcohol (20% v/v in drinking water for 28 weeks) impaired acquisition of radial maze spatial and associative tasks by increasing both within-trial working and long-term reference memory errors; animals with high (above the median of 100 mg/100 ml) blood alcohol concentrations (BACs) during treatment were significantly more impaired than those with BACs below the median. Alcohol-treated rats showed improvements in radial maze performance after treatment with cholinergic agonists (arecoline and nicotine) and disruption with antagonists (scopolamine and mecamylamine) at low doses which did not affect controls. These effects were more pronounced for working than reference memory, and not manifest with the peripherally acting antagonists hexamethonium and N-methylscopolamine. Transplants into cortex and hippocampus of cholinergic-rich basal forebrain (BF) and ventral mesencephalon (VM) foetal neural tissue improved radial maze performance of alcohol-treated rats to control level over a period of 9-12 weeks after grafting. Cholinergic-poor foetal hippocampal (HC) grafts were without effect. BF and VM, but not HC, grafts showed dense acetylcholinesterase (AChE) staining, tyrosine-hydroxylase staining was most pronounced in VM sections and dopamine-beta-hydroxylase staining was minimal in all grafts. Choline acetyltransferase (ChAT) activity was significantly reduced in cortex and hippocampus of alcohol-treated rats, except those given cholinergic-rich transplants. Alcohol treatment also significantly reduced AChE-positive cell counts in the nucleus basalis, medial septal and diagonal band brain areas, at the sources of the forebrain cholinergic projection system (FCPS). Cortical levels of noradrenaline were significantly reduced in all alcohol-treated rats, regardless of transplant, whereas cortical dopamine content was significantly elevated in all rats receiving transplants, regardless of behavioural effect, but not in alcohol-treated controls. Forebrain serotonin levels were not significantly altered by grafting or alcohol treatment. These results suggest that damage to the FCPS, as shown by reduced ChAT activity in target areas, and reduced AChE cell counts in projection areas, played an important part in the radial maze deficits displayed by alcohol-treated rats, since these animals were sensitive to cholinergic drug challenge, and cholinergic-rich transplants from two different sites in foetal brain elevated ChAT activity and restored cognitive function. In contrast alcohol- or graft-induced alterations in other transmitter systems did not correlate with the pattern of behavioural deficit and recovery.  相似文献   

10.
In the present study new-born rats were treated with corticosterone (CORT) between postnatal days 1 and 12. At the age of 16-20 weeks, these animals were tested for spatial learning capacity using an eight-arm radial maze. After behavioral testing, density of cholinergic fibers and sizes of the mossy fiber terminal fields in the hippocampus and number of cholinergic and GABAergic neurons in the septal area were quantified. In the radial arm maze CORT-treated animals initially showed better working memory performance than controls. However, control animals showed a significant improvement of spatial working memory in the last trials and reached similar working memory scores as compared to treated animals. At neither day of training differences in reference memory errors were found between groups. In the diagonal band of Broca, both numbers of cholinergic and GABAergic neurons were increased after corticosterone treatment. The fiber systems in hippocampus showed no significant differences between groups. In conclusion, early postnatal stress induced by CORT administration in neonatal rats results in mild, yet significant morphological and behavioral changes in later life.  相似文献   

11.
We hypothesized that estradiol (E2) serves as a neurotrophomodulatory substance for basal forebrain cholinergic neurons thought to be involved in learning and memory. Learning/memory was assessed using the two-way active avoidance paradigm and the Morris water task. Female Sprague-Dawley rats were either ovariectomized (OVX) or OVX for 3 weeks, followed by s.c. implantation of a Silastic pellet containing 17-ß E2 (E2 pellet), resulting in a replacement of E2 to physiological levels. Ovary-intact (INTACT) animals served as our positive control. Active avoidance behavior and choline acetyltransferase (ChAT) activity in the frontal cortex and hippocampus were assessed at 5 and 28 weeks postovariectomy while performance on the Morris water task and high-affinity choline uptake (HACU) were measured only at the 5-week time point. At the 5-week time point, E2 replacement caused a significant elevation in the level of active avoidance performance relative to OVX animals. At the 28-week time point, OVX animals demonstrated a significantly lower number of avoidances relative to controls (61%) whereas E2-pellet animals not only demonstrated superior performance relative to OVX animals but also showed an accelerated rate of learning. Morris water task performance, on the other hand, was not significantly affected by estrogenic milieu despite a trend towards better performance in the E2-pellet group. Neurochemical analyses revealed that 5 weeks of ovariectomy was sufficient to reduce HACU in both the frontal cortex and hippocampus by 24 and 34%, respectively, while E2 replacement was successful in elevating HACU relative to OVX animals in both regions. ChAT activity was decreased in the hippocampus but not the frontal cortex of 5-week OVX animals. E2 replacement resulted in a reversal of this effect. At the 28-week time period, an unexpected decrease in ChAT activity was observed across all treatment groups. Interestingly, E2-pellet animals demonstrated the least severe decline in ChAT. This phenomenon was most evident in the frontal cortex where ChAT decreased by 61 and 56% in INTACT and OVX animals, respectively, whereas the decline in E2-pellet animals was only 16% over the same time period, suggesting a previously unreported cytoprotective effect of E2. Taken together, these findings demonstrate important effects of estrogens on cholinergic neurons and support the potential use of estrogen therapy in treatment of dementias in postmenopausal women.  相似文献   

12.
The cholinergic neurotoxin, AF64A-picrylsulfonate, was unilaterally infused into the dorsal hippocampus of Wistar rats (2 nmol/2 μl/4 min; A 6.2, Ls 1.5, H 6.5, Paxinos and Watson). After 19 days the animals' brains were processed for immunohistochemical staining of choline acetyltransferase (ChAT). Morphometry and counting of ChAT-immunoreactive profiles revealed shrinkage and disappearance of cholinergic neurons in the medial septum and diagonal band of Broca at the lesioned brain side. These data indicate a retrograde degeneration of cholinergic neurons following injection of AF64-A-picrylsulfonate into the dorsal hippocampus of the rat.  相似文献   

13.
Recent studies have demonstrated that intrahippocampal cholinergic septal grafts can ameliorate deficits in spatial memory function and hippocampal cholinergic neurochemical activity in animals with disruptions of the septohippocampal pathway. Further studies have revealed that hippocampal cholinergic activity, as measured by high affinity choline uptake, correlates significantly with performance on tests of spatial memory function. The present study was designed to examine the effect of holinergic septal grafts on reversing deficits in hippocampal choline acetyltransferase activity and on normalizing muscarinic receptor binding in animals with lesions of the septohippocampal system, and to examine the correlations between these cholinergic parameters and performance of spatial memory tasks. The results of this study indicated that in animals with lesions plus septal grafts, hippocampal ChAT activity was restored significantly and muscarinic receptor binding was normalized to a level not different from the control animals. Regression analyses indicated that ChAT activity was significantly correlated with performance on spatial reference memory, spatial navigation and spatial working memory, while muscarinic receptor binding correlated significantly with spatial reference memor performance.  相似文献   

14.
We previously showed that the initial acquisition session of a spatial discrimination (mixed reference/working memory) test in an 8-arm radial maze induced differential activations in the ascending cholinergic septo-hippocampal and nBM-cortical pathways in mice. This data showed that the duration of post-test cholinergic activation was longer in the nBM-cortical pathway than in the septo-hippocampal projection. Moreover, the post-test durations but not the immediate post-test amplitudes of activation in each pathway decreased progressively as a function of repeated daily acquisition sessions. In the present study we have thus tested the hypotheses that the time-courses of post-test cholinergic activation in the septo-hippocampal and nBM-cortical pathways may vary both as a function of the type of memory used (working vs. reference) and according to the duration of repeated daily testing. Cholinergic activity in vivo in the hippocampus or frontal cortex of mice was quantified using measures of sodium-dependent high-affinity choline uptake at two different times (30 s and 15 min) following specific spatial working or reference memory testing in an 8-arm radial maze. The memory tests were administered daily over a 13-day period to attain high levels of performance in each type of task. In comparison to control groups both types of memory testing induced significant post-test cholinergic activations in each brain region on Day 15. However, cholinergic activity remained elevated in frontal cortex at 15 min post-test following reference memory testing, whereas significantly shorter durations of cortical and hippocampal cholinergic activation were observed following working memory testing using short (1 min) retention intervals. The possible significance of these differential modifications to the time-course of the post-test activations in these cholinergic pathways in working and reference memory processes and the putative transsynaptic mechanisms involved are discussed.  相似文献   

15.
Ethylcholine mustard aziridinium ion (AF64A), an irreversible inhibitor of high-affinity choline uptake on cholinergic nerve terminals, appears to selectively decrease presynaptic cholinergic markers after intracerebral injection. To restrict AF64A's action to cholinergic terminals within the frontoparietal (FP) cortex, the present study utilized multiple-site cortical infusions of the agent. Following an extensive histological analysis, a dose of 1 nmol AF64A/1 microliter was selected for determining AF64A's effects on acetylcholinesterase (AChE) staining, cortical cholinergic/non-cholinergic markers, and passive avoidance behavior. Adult rats given two infusions of AF64A into the right FP cortex had reduced AChE staining throughout 75% of the ipsilateral FP cortex at 10 days following infusion, thus suggesting an extensive cortical diffusion of the agent; minimal non-specific damage was seen (totalling only 4% of the ipsilateral FP cortex for both infusion sites) and no effects on AChE staining were observed in the striatum or hippocampus. Three weeks after bilateral AF64A infusions into the FP cortex (two injections on each side), significant frontal cortex deficits were observed in high-affinity choline uptake, acetylcholine synthesis, acetylcholine release, and hemicholinium-3 binding compared to vehicle-infused controls. However, choline acetyltransferase activity within the anterior cortex did not appear to be consistently affected by AF64A infusion. Cortical glutamic acid decarboxylase activity, as well as cortical monoaminergic markers, and neuropeptide levels were also unaffected. Moreover, animals that received bilateral AF64A infusions and were tested two weeks afterwards showed marked memory retention deficits during both the 24-h and 48-h postshock trials of passive avoidance testing. These results indicate that cortical AF64A infusion induces a specific, long-term cholinergic hypofunction of presynaptic markers within the cortex, resulting in a significant long-term memory impairment. Since the primary cholinergic innervation to the FP cortex, originating in the nucleus basalis of Meynert, appears to become dysfunctional (but not totally degenerative) in Alzheimer's disease, cortical AF64A infusions may closely reflect this cholinergic dysfunction by 'functionally' eliminating cortical cholinergic terminals.  相似文献   

16.
Ganglioside AGF2 prevented the cognitive and locomotor alterations induced by intraventricular colchicine. Adult male rats were initially trained to perform a standard radial arm maze (RAM) task. Following training, they were injected intraperitoneally with 10 mg/kg AGF2 (COL/AGF2), cerebrospinal fluid (CSF/AGF2) or the saline vehicle (COL/SAL, CSF/SAL) for 3 days prior to and for 14 days following the bilateral injection of colchicine (7 micrograms/0.5 microliters) or artificial CSF into the lateral ventricles. Colchicine (COL/SAL) impaired performance of the standard RAM task as well as a working memory version of the task in which various delays were imposed between the fourth and fifth arm choices. Colchicine also produced a transient hyperactivity which subsided within 10 weeks following surgery. In contrast, AGF2 (COL/AGF2) prevented the impairments in RAM performance and the alterations in locomotor behavior. Colchicine also produced significant decreases in hippocampal ChAT activity and high affinity choline uptake that were prevented by prior treatment with AGF2. Finally, colchicine produced a 35% decrease in the number of acetylcholinesterase-positive (cholinergic) neurons in the medial septum and vertical limb of the diagonal band (MS/VLDB) which was also prevented by AGF2. Thus, the behavioral and neurochemical protection afforded by AGF2 was paralleled by a prevention of the loss of hippocampal cholinergic parameters and cholinergic neurons in the MS/VLDB.  相似文献   

17.
Summary The effects of nefiracetam [DM-9384; N-(2,6-dimethyl-phenyl)-2-(2-oxo-pyrrolidinyl)acetamide] and of phosphatidylcholine on a step-up active avoidance response, locomotor activities and regional brain cholinergic and monoaminergic neurotransmitters in AF64A-treated mice were investigated. Intracerebroventricular (i.c.v.) injection of AF64A (ethylcholine mustard aziridinium ion; 8 nmol/ventricle) impaired acquisition and retention of the avoidance task, and increased vertical and horizontal locomotor activities. Regional levels of acetylcholine, noradrenaline, 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were significantly decreased and homovanillic acid (HVA) levels were increased in the hippocampus but not in the septum, cerebral cortex or striatum of AF64A-treated animals. Administration of nefiracetam (3 mg/kg, p.o.) twice daily for 9 days to AF64A-treated animals ameliorated the deficit in active avoidance response in addition to attenuating the increase in locomotor activities. In parallel with these behavioural effects, nefiracetam reversed AF64A-induced alterations in the hippocampal profiles of cholinergic and monoaminergic neurotransmitters and their metabolites. In contrast, administration of phosphatidylcholine (30 mg/kg, p.o.) twice daily for 9 days had no significant effect on the deficit in active avoidance response, despite significantly reversing the decrease in acetylcholine levels in the hippocampus. These results indicate that the effects of nefiracetam on AF64A-induced behavioural deficits are probably due to its ability to facilitate both cholinergic and monoaminergic neurotransmitter systems.  相似文献   

18.
Adult male Long-Evans rats were administered the potent cannabinoid 1 receptor agonist HU-210 (100 microg/kg, i.p.) for 15 days continuously and their performance on a matching-to-place version of the Morris water maze was subsequently evaluated. Overall, experimental animals performed significantly worse initially on the reference memory component of this task, but their performance improved over 5 days until it was indistinguishable from that of control animals. Animals given HU-210 did not exhibit working memory impairments at short intertrial delays (30 s); however, significant impairments were observed in learning performance with longer intertrial delays (300 s). In vivo electrophysiological analyses revealed that long-term potentiation in the CA1 region of the hippocampus was significantly impaired following the administration of HU-210 for 15 days. These results indicate that long-term cannabinoid exposure can produce marked deficits in reference and working memory performance, and also impair hippocampal synaptic plasticity in vivo.  相似文献   

19.
The residual effects of short-term chronic ethanol consumption were investigated in rats maintained on an ethanol liquid diet for 26 consecutive days (mean intake = 16.1 g/kg/day). Animals were assessed for spontaneous motor activity (12 days post-ethanol), spatial working memory (17 days post-ethanol), spatial reference memory (184 days post-ethanol), and retention of passive avoidance (201 days post-ethanol). Measurements of brain weights and cortical thickness vertices within the dorsomedial and ventrolateral cortex of eight coronal planes were determined 260 days post-ethanol. Two-dimensional cell profile densities within six coronal planes and within CA1 region of the hippocampus were also obtained, along with the total volumetric measurement of the hippocampus proper. Results indicated between group differences when subjects were assessed on working memory with ethanol-treated animals exhibiting longer escape latencies in a Morris water maze, an effect partially attributed to the perseverance of ethanol-treated animals in exhibiting thigmotaxicity. No other ethanol-related behavioral impairment was noted. Neuroanatomically, ethanol-treated rats had thinner cortical mantles (6.3% and 6.6% reductions) within the frontoparietal cortex and had lower two-dimensional cell profile densities within the most caudal cortical region studied. Interestingly, control animals with thicker cortical mantles tended to perform better on the working memory task, whereas the opposite was true for ethanol-treated subjects. These data led to the conclusion that chronic ethanol consumption of a relatively short duration produces working memory impairments, albeit mild, that are partially related to an inability to abandon ineffectual behavioral strategies, and also produces neuroanatomical alterations within the cortex.  相似文献   

20.
In the last two decades, many experiments have demonstrated that the hippocampus plays a role in the learning and processing of spatial and contextual information. Despite these demonstrations, some recent publications have indicated that the hippocampus is not the only structure involved in spatial learning and that even after hippocampal lesions, rats can perform spatial tasks. However, it is not well established whether animals with hippocampal dysfunction still have some spatial learning capacities or develop non-spatial solutions; these may require lengthier acquisition training. We now report the effects of conventional, dorsal hippocampal ablation on rats' performance on the water maze. We tested rats using a short (4 days) versus a long (16 days) acquisition period. We demonstrated that animals with dorsal hippocampal lesions have some residual capacity for learning the localization of a hidden escape platform in a pool during both a reference memory task and a working memory task. The animals with dorsal hippocampal lesions learned to escape at a fixed location, but only with extended training. It is suggested that these animals used non-spatial strategies to compensate for a spatial memory impairment. The results are discussed with respect to the experimental procedure and the strategy applied by the lesioned rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号