共查询到20条相似文献,搜索用时 15 毫秒
1.
The regeneration of the olfactory neuroepithelium following olfactory bulbectomy or peripheral deafferentation was studied with mRNA probes and antibodies for B-50/GAP43 and for olfactory marker protein (OMP). Two stages in the regeneration of the olfactory epithelium could be discerned with these reagents. The first stage occurs following either peripheral deafferentation of the olfactory epithelium with Triton X-100 (TX-100) or after bulbectomy and is characterized by the formation of a large population of immature olfactory receptor neurons. These newly formed neurons express B-50/GAP43, a phosphoprotein related to neuronal growth and plasticity. During the second stage of the regeneration process the newly formed olfactory neurons mature, as evidenced by a decrease in their expression of B-50/GAP43 and an increase in the expression of OMP. This stage is only manifested if the developing neurons have access to the target olfactory bulb. Formation of a full complement of OMP-expressing neurons occurs only after peripheral lesion with TX-100. In contrast, following bulbectomy the reconstituted olfactory epithelium lacks its normal target and is compromised in its ability to recover from nerve damage, as evidenced by the presence of a large number of B-50/GAP43-expressing neurons up to 3 months after the lesion and its failure to establish a full complement of OMP-expressing neurons. These results demonstrate that the olfactory epithelium is capable of replacing its sensory neurons independently of the presence of its target, the olfactory bulb. However, the differential patterns of expression of B-50/GAP43 and OMP at long times after peripheral lesion with TX-100 or bulbectomy illustrate the profound effect the olfactory bulb has on neuronal maturation in reconstituted olfactory neuroepithelium. 相似文献
2.
Total unilateral bulbectomy induces degeneration of the mature olfactory neurons and disappearance of the olfactory marker protein from the primary sensory pathway. Owing to the presence of a neurogenetic matrix in the neuroepithelium, reconstitution of a new population of neuronal elements occurs. In this experiment, connections of the regrown olfactory axons with the spared forebrain are barred by the formation of scar tissue. In spite of the absence of a target, new neurons differentiate and produce olfactory marker protein. 相似文献
3.
Olfactory marker protein (OMP) expression is highly restricted to mature olfactory neurons (ON). Less than 0.3 kb of upstream 5′ flanking sequence of the OMP gene directs lacZ expression preferentially to ON in several independently derived lines of transgenic mice. A larger transgene with 0.8 kb of upstream flanking sequence also gave lacZ expression in ON and in a few ectopic sites in the central nervous system (CNS). In addition to the main olfactory epithelium, endogenous OMP is also expressed in chemosensory neurons of the vomeronasal and septal organs, and lacZ expression was detected in neurons of these sites as well. This confirmed the presence of regulatory sequences in the proximal portion of the OMP gene. Endogenous OMP expression in ON was normal in all transgenic lines. Strikingly, in several transgenic lines lacZ expression was restricted to subsets of ON. In one such line, ON axons were intensely stained for lacZ and projected to a subset of olfactory bulb glomeruli. Although identifiable subsets of ON and their termination fields have been described previously, this is the first demonstration of this phenomenon in transgenic mice. These lines of transgenic mice thus provide in vivo models for characterization of genetic elements regulating developmental and functional organization of the olfactory neuroepithelium. © 1996 Wiley-Liss, Inc. 相似文献
4.
Partial, unilateral olfactory nerve section was performed in mice, and the behavior of the olfactory marker protein (OMP) studied, after this experimental manipulation, with the peroxidase-antiperoxidase method. The protein, which in normal mice is present only in mature olfactory sensory neurons, after unilateral lesion of the fila olfactoria was observed in mitral and tufted cells of both olfactory bulbs. Positive elements, present at 5 days postperative, increased in number up to 30 days and some could still be detected at 60 days. The functional implications of this finding are briefly discussed. 相似文献
5.
The localization of vesicular glutamate transporter 2 (VGLUT2) was examined by immunohistochemistry and in situ hybridization histochemistry in the developing rat olfactory region with special relation to the spatiotemporal location of NCAM, a neural cell adhesion molecule expressed in differentiated neurons, and the calcium-binding protein calbindin D-28k, a marker of neurons migrating from the vomeronasal organ anlage (Y. Toba et al. (2001) J. Neuroendocrinol., 13, 683-694). Both VGLUT2 and NCAM immunoreactivities were first detected at embryonic day 11.5 (E11.5) in the neuronal cell mass beneath the telencephalic vesicle. After E12.5, VGLUT2-immunoreactive cells were detected in the migratory pathways from both medial and lateral olfactory pits, anlagen of the vomeronasal organ and olfactory epithelium. Between E15.5 and E19.5, moderate to intense VGLUT2 immunoreactivity was observed in cell clusters situated along NCAM-bearing vomeronasal nerves, and frequently colocalized with calbindin D-28k immunoreactivity. Using in situ hybridization histochemistry, VGLUT2 mRNA signals were detected in the clustered cells as well as in cells of the vomeronasal and olfactory epithelium. After E20.5, migrating cells gradually decreased in number and VGLUT2 immunoreactivity attenuated in the clustered cells, although calbindin D-28k immunoreactivity in these residual cells was still intense. The presence of intense VGLUT2 immunoreactivity in neurons actively migrating from the olfactory placode suggests that this transporter is involved in the migratory process of these neurons. 相似文献
6.
The cellular localization of mRNAs for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT3), in the rat central olfactory system was evaluated with in situ hybridization of 35S-labeled cRNA probes. In the main olfactory bulb, low levels of NGF and BDNF mRNA expression were detected. NGF mRNA was restricted to the glomerular region while BDNF mRNA was predominantly localized to the granule cell layer. No cellular hybridization to NT3 cRNA was seen. The accessory olfactory bulb did not express detectable levels of mRNA for any of the three related neurotrophic factors. Areas which receive olfactory bulb afferents expressed comparatively high levels of both NGF and BDNF mRNA. Cell labeling with cRNAs for NGF and BDNF occurred throughout the cellular layers of the anterior olfactory nucleus and in layers 2 and 3 of rostral piriform cortex. BDNF mRNA expression in these areas appeared more robust than that of NGF mRNA, while NT3 mRNA was not detectable. In contrast, tenia tecta exhibited dense labeling with the cRNAs for all three neurotrophic factors. The localization of NGF mRNA to primary target neurons of the olfactory nerve in the periglomerular region of the main olfactory bulb suggests that bulb cells may influence the ingrowth and continual turnover of olfactory sensory afferents. However, as there is a strong correlation between the distribution of neurotrophic factor mRNAs within rostral olfactory structures and the distribution of centrifugal cholinergic afferents, it is more likely that bulb-derived NGF, and possibly BDNF, act on the cholinergic neurons of the basal forebrain. 相似文献
7.
Physiological studies of odor-elicited responses from the olfactory epithelium and bulb in the tiger salamander, Ambystoma tigrinum, have elucidated a number of features of olfactory coding that appear to be conserved across several vertebrate species. This animal model has provided an accessible in vivo system for observing individual and ensemble olfactory responses to odorant stimulation using biochemical, neurophysiological, and behavioral assays. In this paper we have complemented these studies by characterizing 35 candidate odorant receptor genes. These receptor sequences are similar to those of the large families of olfactory receptors found in mammals and fish. In situ hybridization, using RNA probes to 20 of these sequences, demonstrates differential distributions of labeled cells across the extent and within the depth of the olfactory epithelium. The distributions of cells labeled with probes to different receptors show spatially restricted patterns that are generally localized to different degrees in medial-lateral and anterior-posterior directions. The patterns of receptor expression in the ventral olfactory epithelium (OE) are mirrored in the dorsal OE. We present a hypothesis as to how the sensory neuron populations expressing different receptor types responding to a particular odorant may relate to the distribution patterns of epithelial and bulbar responses previously characterized using single-unit and voltage-sensitive dye recording methods. 相似文献
8.
The anatomy of the mammalian thalamus is characterized by nuclei, which can be readily identified in postnatal animals. However, the molecular mechanisms that guide specification and differentiation of neurons in specific thalamic nuclei are still largely unknown, and few molecular markers are available for most of these thalamic subregions at early stages of development. We therefore searched for patterned gene expression restricted to specific mouse thalamic regions by in situ hybridization during the onset of thalamic neurogenesis (embryonic [E] days E10.5-E12.5). To obtain correct regional information, we used Shh as a landmark and compared spatial relationships with the zona limitans intrathalamica (Zli), the border of the p2 and p3 compartments of the diencephalon. We identified genes that are expressed specifically in the ventricular zone of the thalamic neuroepithelium and also identified a number of genes that already exhibited regional identity at E12.5. Although many genes expressed in the mantle regions of the thalamus at E12.5 showed regionally restricted patterns, none of these clearly corresponded to individual thalamic nuclei. We next examined gene expression at E15.5, when thalamocortical axons (TCAs) project from distinct regions of the thalamus and reach their targets in the cerebral cortex. Regionally restricted patterns of gene expression were again seen for many genes, but some regionally bounded expression patterns in the early postnatal thalamus had shifted substantially by E15.5. These findings reveal that nucleogenesis in the developing thalamus is associated with selective and complex changes in gene expression and provide a list of genes that may actively regulate the development of thalamic nuclei. 相似文献
10.
Previous studies in the developing mouse thalamus have demonstrated that regional identity is established during early stages of development (Suzuki-Hirano et al. J. Comp. Neurol. 2011;519:528-543). However, the developing thalamus often shows little resemblance to the anatomical organization of the postnatal thalamus, making it difficult to identify genes that might mediate the organization of thalamic nuclei. We therefore analyzed the expression pattern of genes that we have identified as showing regional expression in embryonic thalamus on postnatal days (P) 6-8 by using in situ hybridization. We also identified several genes expressed only in the postnatal thalamus with restricted expression in specific nuclei. We first demonstrated the selective expression of neurotransmitter-related genes (vGlut2, vGAT, D2R, and HTR2C), identifying the neurotransmitter subtypes of cells in this region, and we also demonstrated selective expression of additional genes in the thalamus (Steel, Slitrk6, and AI852580). In addition, we demonstrated expression of genes specific to somatosensory thalamic nuclei, the ventrobasal posterior nuclei (VP); a visual thalamic nucleus, the dorsal lateral geniculate nucleus (dLGN); and an auditory thalamic nucleus, the medial geniculate body (MGB) (p57Kip, Nr1d1, and GFRα1). We also identified genes that are selectively expressed in multiple different nuclei (Foxp2, Chst2, and EphA8). Finally, we demonstrated that several bone morphogenetic proteins (BMPs) and their inhibitors are expressed in the postnatal thalamus in a nucleus-specific fashion, suggesting that BMPs play roles in the postnatal thalamus unrelated to their known role in developmental patterning. Our findings provide important information for understanding the mechanisms of nuclear specification and connectivity during development, as well as their maintenance in adult thalamus. 相似文献
11.
Olfactory marker protein (OMP), previously thought to be expressed only by olfactory receptor neurons and their processes, was localized anatomically with immunocytochemical techniques to a number of brain regions in three rodent species, the mouse, rat, and hamster. In addition, the amount of antigen was quantified by radioimmunoassay (RIA) and characterized by an immunoblot procedure. In all three species the antigen could be detected immunocytochemically in the preoptic region and hypothalamus. The rat did not exhibit immunostaining in any other brain region. However, in the mouse neuronal labelling was observed throughout the neural axis, including cellular labelling in the bed nucleus of the anterior commissure, the median preoptic nucleus, the bed nucleus of the stria terminalis, the periventricular region, the anterior parvicellular subnucleus of the paraventricular nucleus, around the dorsomedial hypothalamic nucleus (pars compacta), the subincertal region, the arcuate nucleus, the anterior cortical nucleus of the amygdala, the suprageniculate nucleus, the lateral lemniscal nuclei, the lateraldorsal and lateralventral central gray, the posterior aspects of the commissural and marginal nuclei of the inferior colliculus, the paragenule nucleus, the A-5 region, the area postrema, the ventromedial nucleus of the solitary tract, area X, the spinal trigeminal nucleus (pars zonale), and superficial laminae of the spinal cord. The hamster displayed a different pattern of labelling including cells in the periventricular gray, the pontine reticular tegmental nucleus, the A-5 region, the medial vestibular complex, the prepositus hypoglossal nucleus, the parvicellular reticular nucleus, the lateral paragigantocellular nucleus, the raphe obscuras, the lateral reticular nucleus, and the lateral nucleus of the cerebellum. Immunostaining was seen in fibers within the red nucleus and within mossy fibers of the cerebellum. OMP levels could only be quantified by radioimmunoassay in the olfactory bulb of the three species and in the hamster cerebellum where they were 1/1,000 of those determined in the olfactory bulb. The authenticity of OMP measured in the RIA and detected immunocytochemically was verified by a double-antibody immunoisolation/immunodetection procedure, which confirmed that the antigen being visualized had the molecular properties expected for OMP. In summary, these experiments demonstrate that authentic OMP exists in small groups of neurons in many areas of the central nervous system. 相似文献
12.
These studies investigated the response of olfactory bulb juxtaglomerular dopamine neurons to the loss of mitral cells in 6-7-month-old Purkinje cell degeneration (PCD) mice. Previous studies in normal mice, with tyrosine hydroxylase (TH) enzyme as a marker, demonstrated that following peripheral olfactory afferent denervation the juxtaglomerular dopamine neurons exhibited a large reduction in TH activity and immunoreactivity. These intrinsic dopamine neurons also receive afferent input via dendrodendritic contacts with mitral cells. In contrast to the deficits produced by peripheral denervation, following mitral cell degeneration in homozygous recessive PCD mice, TH activity and immunoreactivity were unaltered as compared to normal heterozygous littermates. Moreover, TH activity in the substantia nigra also was unchanged, thus suggesting that the dopamine phenotype is resistant to the influences of the pcd gene. Despite the absence of a well-defined effect of the pcd gene on neurons bearing the TH phenotype, the expression of this mutation within the olfactory system is not limited to mitral cell degeneration. The current studies also demonstrate the absence of the anterior commissure, especially pars anterior, in homozygous recessive PCD mice at 6-7 months postnatal. Whether or not the loss of the anterior commissure is a primary effect or one that is secondary to mitral cell degeneration, this structural alteration provides evidence that the pcd gene exerts more widespread effects within the olfactory system that previously appreciated. The neuronal specificity of those effects remains apparent as indicated by the lack of change in TH expression. 相似文献
13.
The time interval between the incorporation of [ 3H]thymidine and the appearaance of olfactory marker protien (OMP) in autoradiographically labeled neurons which have differentiated from stem cells, has been determined by autoradiographic and immunohistochemical techniques. The first [ 3H]thymidine-labeled, OMP-containing elements have been observed 7 days after administration of the radioactive thymidine. This result allows some speculation on the potential function of the olfactory marker protein. 相似文献
14.
The intermediate filament protein nestin has been widely used as a marker for proliferating neural progenitor cells in the nervous system. The mammalian olfactory neuroepithelium is a region of the nervous system that robustly supports ongoing neurogenesis, yet where nestin has not been reported to mark proliferating progenitors. Using immunohistochemistry, we examined nestin expression in the mature olfactory neuroepithelium and found it to be tightly restricted to the basal compartment where the olfactory neuronal progenitor cell population resides. The pattern of nestin immunoreactivity was consistent with expression by the endfeet and inferior processes of sustentacular cells rather than basal cells. Using a bank of defined antibody markers, we confirmed nestin's pattern of distribution to be different from that of cytokeratin, vimentin, GBC-1, GAP43, and carnosine. It was highly similar to the pattern of SUS-4 immunoreactivity in the basal region of the neuroepithelium. Following surgical bulbectomy, nestin expression was up-regulated and became evident in the cell bodies of sustentacular cells situated more apically in the neuroepithelium. We have shown nestin to be present in the basal region of the adult olfactory neuroepithelium in the zone that supports ongoing neurogenesis in the adult, but its expression is restricted to the inferior parts of sustentacular cells rather than the neuronal progenitor cells. Nestin may play a potential role in the migration of recently proliferated olfactory neurons on the scaffolding of sustentacular cells in a manner analogous to its proposed role in radial glia during embryonic development of the central nervous system. 相似文献
15.
Olfactory ensheathing cells (OEC) have the ability to promote regeneration in the nervous system. Hence, they hold promise for cell therapy. Most of the experimental studies have investigated the role of OECs taken from olfactory bulb (OB). However, for a clinical human application, olfactory mucosa (OM) seems to be the only acceptable source for OECs. Many studies have compared the distinct ability of OECs from OB and OM to improve functional nerve regeneration after lesion of the nervous system. Nevertheless, the two populations of OECs may differ in several points, which might affect all fate after transplantation in vivo. We report here the first study which compares gene expression profiling between these two populations of OECs. It appears that OB‐OECs and OM‐OECs display distinct gene expression pattern, which suggest that they may be implicated in different physiological processes. Notably, OM‐OECs overexpress genes characteristic of wound healing and regulation of extra cellular matrix. In contrast, OB‐OECs gene profile suggests a prominent role in nervous system development. Hence, OB‐OECs and OM‐OECs fundamentally differ in their gene expression pattern, which may represent a crucial point for future clinical application. © 2010 Wiley‐Liss, Inc. 相似文献
16.
In an effort to identify and understand the laminar disorganization that occurs in the transplanted (TX) rat olfactory bulb (OB), we examined the development of fiber systems within these TX OBs. One antibody for olfactory marker protein (OMP) was used to identify axons of mature olfactory receptor neurons (ONs) and a second antibody, for a growth-associated protein (GAP-43), provided a marker for all extending or immature fibers. Donor OBs were taken from fetuses on embryonic days 14 or 15 (sperm-positive day is zero) and TX directly into the cavity produced by removal of an OB in 1-day-old hosts of the same strain. After survival times of I and 2 weeks and at maturity, adjacent 8 pm paraffin sections from the TX material were examined for OMP and GAP-43 reactivity. Fiber bundles, reactive for OMP, were found within the TX by 1 week post-TX, indicating rapid reinnervation of the donor OB by ONs. The appearance of OMP reactivity gradually shifted from tightly packed, well-defined fiber bundles at 1 week post-TX to a diffuse reticulated pattern of individual fibers emerging from bundles at maturity. The OMP-reactive fiber bundles of the TX OB also contained GAP-43-reactive fibers, but GAP-43 reactivity also extended to other (OMP-negative) bundles and fields. Reactivity for GAP-43 in the TX OB was nearly ubiquitous at 2 weeks post-TX but, as development progressed (in both the TX and normal OB), such reactivity gradually decreased. Thus, while maturation in sensory afferent fiber systems in the TX OB may be delayed, it eventually follows a pattern similar to that in the normal OB, suggesting that factors other than the timing of fiber extension may be responsible for the laminar disorganization of the TX OB. 相似文献
17.
Corticotropin-releasing factor and arginine vasopressin (AVP) are the two major hypothalamic factors that regulate anterior pituitary adrenocorticotropin secretion during stress. We have previously reported that the expression of the corticotröpin-releasing factor gene in the hypothalamus and its regulation by glucocorticoids were not mature during the first week of life in the rat, i.e. during the stress non-responsive period. In this report, we studied the ontogeny of expression of the AVP gene in the hypothalamic paraventricular nucleus in rats using in situ hybridization. AVP mRNA was detected as early as day 20 of gestation (E20) both in the parvocellular and the magnocellular portion of the paraventricular nucleus. The levels of expression of the AVP gene increased steadily from E20 to the third day after birth (P3) and remained stable from P3 to P14. Bilateral surgical adrenalectomy induced an increase in AVP mRNA levels in the parvocellular portion of the paraventricular nucleus, but not in the magnocellular portion, in both 7-day-old and 14-day-old rats, suggesting that the glucocorticoid regulation of the AVP synthesizing neurons of the paraventricular nucleus is mature in the developing postnatal rat. 相似文献
18.
Gluco- and mineralocorticoid receptors (GR and MR) act via common promoter elements but may exert different effects on gene regulation in various regions of the forebrain. In order to separately analyse the role of GR and MR in the regulation of neurotrophic factor genes and their receptors, we used adrenalectomy and subsequent hormone injections in the rat as a model system. Twenty-four hours after adrenalectomy rats were injected with a single dose of corticosterone (2 and 10 mg/kg), aldosterone (0.5 mg/kg) or the synthetic glucocorticoid agonist RU 28362 (4 mg/kg). Gene expression of basic fibroblast growth factor (bFGF) and its high-affinity receptors [fibroblast growth factor receptor subtypes 1-3 (FGF-R1, FGF-R2, FGF-R3)], as well as brain-derived growth factor (BDNF) and neurotrophin-3 (NT-3) was analysed at 4 h after the hormone injection in CA1-CA4 (cornus of Ammon areas of the hippocampus) and dentate gyrus of the dorsal hippocampus and in neocortex by means of in situ hybridization. We found that bFGF is regulated in CA2, CA3 and dentate gyrus by GR and MR together, and in CA1, CA4 and neocortex by GR alone. FGF-R2 expression in the hippocampus seems to be regulated only by MR, while BDNF expression appears to depend on both receptors. FGF-R1, FGF-R3 and NT-3 were only moderately affected by the hormone activation of GR and MR acting in concert or alone in the various regions. Thus, the present findings suggest that the adrenal cortical system through GR and MR participate in the control of neurotrophic factor signalling in a highly subregion- and cellular-dependent manner. 相似文献
19.
CS mice exhibit a spontaneous splitting in the circadian rhythm of locomotor activity under constant darkness, suggesting that they contain two weakly coupled oscillators in the circadian clock system regulating locomotor activity rhythm. In order to clarify whether the two oscillators are located in the suprachiasmatic nucleus (SCN), a site of the master circadian pacemaker in mammals, circadian rhythms in mRNA of mouse Period genes (mPer1, mPer2 and mPer3) in the SCN and cerebral cortex were examined during rhythm splitting by in situ hybridization. In the SCN, mPer1 and mPer2 showed a circadian rhythm with a single peak in both split and unsplit mice. The rhythms of mPer1 and mPer2 were slightly phase delayed during rhythm splitting in reference to the activity onset, but the phase relationship between the two rhythms was not changed. In the cerebral cortex, the expression of mPer1 and mPer2 underwent the bimodal fluctuation with peaks temporally corresponding to split activity components. The unsplit mice showed the circadian rhythms with a single peak. There was no difference in the mPer3 rhythms in either the SCN or the cerebral cortex between the split and unsplit mice. These results indicate that the circadian oscillations of mPer1, mPer2 and mPer3 in the SCN are not related to the rhythm splitting of CS mice. The split rhythms of the CS mice are suggested to be caused by uncoupling of oscillators located outside the SCN from the SCN circadian pacemaker. 相似文献
20.
Gamma-aminobutyric acid (GABA)ergic neurons in the central nervous system regulate the activity of other neurons and play a crucial role in information processing. To assist an advance in the research of GABAergic neurons, here we produced two lines of glutamic acid decarboxylase-green fluorescence protein (GAD67-GFP) knock-in mouse. The distribution pattern of GFP-positive somata was the same as that of the GAD67 in situ hybridization signal in the central nervous system. We encountered neither any apparent ectopic GFP expression in GAD67-negative cells nor any apparent lack of GFP expression in GAD67-positive neurons in the two GAD67-GFP knock-in mouse lines. The timing of GFP expression also paralleled that of GAD67 expression. Hence, we constructed a map of GFP distribution in the knock-in mouse brain. Moreover, we used the knock-in mice to investigate the colocalization of GFP with NeuN, calretinin (CR), parvalbumin (PV), and somatostatin (SS) in the frontal motor cortex. The proportion of GFP-positive cells among NeuN-positive cells (neocortical neurons) was approximately 19.5%. All the CR-, PV-, and SS-positive cells appeared positive for GFP. The CR-, PV, and SS-positive cells emitted GFP fluorescence at various intensities characteristics to them. The proportions of CR-, PV-, and SS-positive cells among GFP-positive cells were 13.9%, 40.1%, and 23.4%, respectively. Thus, the three subtypes of GABAergic neurons accounted for 77.4% of the GFP-positive cells. They accounted for 6.5% in layer I. In accord with unidentified GFP-positive cells, many medium-sized spherical somata emitting intense GFP fluorescence were observed in layer I. 相似文献
|