首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diarylpiperazine delta-opioid agonist SNC80 [(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N,N-diethylbenzamide] produces convulsions, antidepressant-like effects, and locomotor stimulation in rats. The present study compared the behavioral effects in Sprague-Dawley rats of SNC80 with its two derivatives, SNC86 [(+)-4-[alpha(R)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-hydroxyphenyl)methyl]-N,N-diethylbenzamide] and SNC162 [(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-phenyl)methyl]-N,N-diethylbenzamide], which differ by one functional group located in the 3-position of the benzylic ring. In behavioral measures, these three compounds demonstrated a rank order of potency and efficacy; SNC86 was the most potent and efficacious followed by SNC80 and then SNC162. In vitro, these compounds stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding in the caudate putamen of coronal brain slices from drug-naive rats as measured by in vitro autoradiography. In [(35)S]GTPgammaS binding studies, SNC86 seemed to be a full agonist at the delta-opioid receptor; however, SNC162 demonstrated reduced stimulation compared with SNC86, consistent with partial agonist activity. Although SNC80 was not fully efficacious in [(35)S]GTPgammaS autoradiography studies, it produced behavioral effects similar to those observed with SNC86, suggesting that the behavioral effects of SNC80 may be produced by its 3-hydroxy metabolite.  相似文献   

2.
Nonpeptidic delta-opioid agonists produce a number of behaviors, such as antidepressant-like effects, locomotor stimulation, antinociception, and convulsions. To consider this class of compounds as potential therapeutics for humans, the effects of delta-opioid agonists after repeated administration must be evaluated. Therefore, the present study investigated the effects of repeated delta-opioid agonist, SNC80 ([(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)-methyl]-N,N-diethylbenzamide), administration on its antidepressant-like effects in the forced swim test, locomotor activity, and convulsions in male Sprague-Dawley rats. Tolerance developed rapidly to the convulsive and locomotor-stimulating effects of SNC80 but not to the antidepressant-like effects. In addition, tolerance was evaluated at the level of the receptor-G protein interaction by measuring 5'-O-(3-[35S]thio)triphosphate binding in brains from rats that were pretreated with SNC80. With various exposure durations to SNC80, some brain regions demonstrated tolerance at different times, suggesting that adaptations in the delta-opioid system may occur during agonist exposure. Overall, the lack of observable tolerance to the antidepressant-like effects of SNC80 indicates that this class of compounds has potential as a novel antidepressant therapy.  相似文献   

3.
The nonpeptidic delta-opioid agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] produces many stimulant-like behavioral effects in rodents and monkeys, such as locomotor stimulation, generalization to cocaine in discrimination procedures, and antiparkinsonian effects. Tolerance to the locomotor-stimulating effects of SNC80 develops after a single administration of SNC80 in rats; it is not known whether cross-tolerance develops to the effects of other stimulant compounds. In the initial studies to determine whether SNC80 produced cross-tolerance to other stimulant compounds, it was discovered that amphetamine-stimulated locomotor activity was greatly enhanced in SNC80-pretreated rats. This study evaluated acute cross-tolerance between delta-opioid agonists and other locomotor-stimulating drugs. Locomotor activity was measured in male Sprague-Dawley rats implanted with radiotransmitters, and activity levels were recorded in the home cage environment. Three-hour SNC80 pretreatment produced tolerance to further delta-opioid receptor stimulation but also augmented greatly amphetamine-stimulated locomotor activity in a dose-dependent manner. Pretreatments with other delta-opioid agonists, (+)BW373U86 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-3-hydroxybenzyl]-N,N-diethylbenzamide] and oxymorphindole (17-methyl-6,7-dehydro-4,5-epoxy-3,14-dihydroxy-6,7,2',3'-indolomorphinan), also modified amphetamine-induced activity levels. SNC80 pretreatment enhanced the stimulatory effects of the dopamine/norepinephrine transporter ligands cocaine and nomifensine (1,2,3,4-tetrahydro-2-methyl-4-phenyl-8-isoquinolinanmine maleate salt), but not the direct dopamine receptor agonists SKF81297 [R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide] and quinpirole [trans-(-)-(4alphaR)-4,4a, 5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo[3,4-g] quinoline monohydrochloride]. In conclusion, SNC80 enhanced the locomotor-stimulating effects of monoamine transporter ligands suggesting that delta-opioid receptor activation might alter the functional activity of monoamine transporters or presynaptic monoamine terminals.  相似文献   

4.
The aim of this study was to investigate the relative density of micro -, kappa-, and delta-opioid receptors (MOR, KOR, and DOR) and guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding stimulated by full agonists in cortical and thalamic membranes of monkeys. The binding parameters [Bmax (femtomoles per milligram)/Kd (nanomolar)] were as follows: [3H][d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) (MOR; 80/0.7), [3H]U69593 [(5alpha,7alpha,8beta)-(-)-N-methyl-N-(7-(1-pyrrolidinyl)-1-oxaspiro(4,5)dec-8-yl) benzeneacetamide] (KOR; 116/1.3), and [3H][d-Pen2,d-Pen5]-enkephalin (DPDPE) (DOR; 87/1.3) in the cortex; [3H]DAMGO (147/0.9), [3H]U69593 (75/2.5), and [3H]DPDPE (22/2.0) in the thalamus. The relative proportions of MOR, KOR, and DOR in the cortex were 28, 41, and 31% and in the thalamus were 60, 31, and 9%. Full selective opioid agonists, DAMGO (EC50 = 532-565 nM) and U69593 (EC50 = 80-109 nM) stimulated [35S]GTPgammaS binding in membranes of cortex and thalamus, whereas SNC80 [(+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethyl-benzamide] (DOR; EC50 = 68 nM) was only active in cortical membranes. The magnitudes of [35S]GTPgammaS binding stimulated by these agonists were similar in the cortex, ranging from 17 to 25% over basal binding. In the thalamus, DAMGO and U69593 increased [35S]GTPgammaS binding by 44 and 23% over basal, respectively. Opioid agonist-stimulated [35S]GTPgammaS binding was blocked selectively by antagonists for MOR, KOR, and DOR. The amount of G protein activated by agonists was highly proportional to the relative receptor densities in both regions. These results distinguish the ability of opioid agonists to activate G proteins and provide a functional correlate of ligand-binding experiments in the monkey brain. In particular, the relative densities of opioid receptor binding sites in the two brain areas reflect their functional roles in the pharmacological actions of opioids in the central nervous system of primates.  相似文献   

5.
Previous studies have demonstrated that peptidic and nonpeptidic delta-opioid receptor agonists have different effects depending on the measure. For example, nonpeptidic delta-opioid agonists, but not peptidic agonists, produce convulsions in rats, and in vitro studies suggested that peptidic and nonpeptidic delta-opioid agonists might have differential mechanisms of receptor downregulation. The present study evaluated potential differences between peptidic and nonpeptidic delta-opioid agonists in their ability to activate G proteins using guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) autoradiography experiments in rat brain slices. The peptidic agonist [d-Pen(2),d-Pen(5)]-enkephalin and the nonpeptidic agonist (+)BW373U86 [(+)-4-[alpha(R)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-hydroxyphenyl)methyl]-N,N-diethylbenzamide] demonstrated concentration-dependent increases in [(35)S]GTPgammaS binding that were attenuated by the delta-opioid antagonist naltrindole. (+)BW373U86 was more potent and efficacious than the peptidic agonist, and this difference remained consistent across brain regions where significant stimulation was observed. In addition, multiple delta-opioid compounds were evaluated for their agonist activity in this assay. These data suggested that differences between peptidic and nonpeptidic delta-opioid agonists in behavioral studies were most likely caused by differences in agonist efficacy. Finally, these data also revealed that [(35)S]GTPgammaS autoradiography could be used to compare efficacy differences among agonists across various brain regions in rat brain slices.  相似文献   

6.
In this study, we explored the relationship between ligand-induced regulation of surface delta opioid receptors and G protein activation. G protein activation was assessed with [(35)S]guanosine-5'-O-(3-thio)triphosphate (GTP gamma S) binding assays conducted at both 37 and 0 degrees C. Ligand-independent (constitutive) activity of the delta-receptor was readily observed when the [(35)S]GTP gamma S binding assay was performed at 37 degrees C. We identified a new class of alkaloid inverse agonists (RTI-5989-1, RTI-5989-23, RTI-5989-25), which are more potent than the previously described peptide inverse agonist ICI-174864 (N,N-diallyl-Tyr-Aib-Aib-Phe-Leu). Treatment with these inverse agonists for 18 h caused up-regulation of surface receptors. Eighteen-hour treatment with etorphine resulted in approximately 90% loss of surface receptor, whereas fentanyl, diprenorphine, and morphine caused between 20 and 50% loss. The abilities of ligands to modulate [(35)S]GTP gamma S binding at 37 degrees C showed a strong correlation with their abilities to regulate surface receptor number (r(2) = 0.86). Interestingly, the ability of fentanyl to activate G proteins was markedly temperature sensitive. Fentanyl showed no stimulation of [(35)S]GTP gamma S binding at 0 degrees C but was as efficacious as etorphine, morphine, and diprenorphine at 37 degrees C. Neither the ligand-induced receptor increases nor decreases were perturbed by pertussis toxin pretreatment, suggesting that functional G proteins are not required for ligand-regulated delta-opioid receptor trafficking.  相似文献   

7.
This study investigated three possible mechanisms by which the antinociceptive effects of the mu-opioid receptor (MOR) agonist [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and the delta-opioid receptor (DOR) agonist [d-Ala(2),Glu(4)]-deltorphin (deltorphin II) (DELT), microinjected into the rostral ventromedial medulla (RVM), are enhanced in rats with persistent inflammatory injury. Radioligand binding determined that neither the B(max) nor the K(d) values of [(3)H]DAMGO differed in RVM membranes from rats that received an intraplantar injection of saline or complete Freund's adjuvant (CFA) in one hindpaw 4 h, 4 days, or 2 weeks earlier. Likewise, neither the EC(50) nor the E(max) value for DAMGO-induced stimulation of guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding differed in the RVM of saline- or CFA-treated rats at any time point. Microinjection of fixed dose combinations of DAMGO and DELT in the RVM of naive rats indicated that these agonists interact synergistically to produce antinociception when DAMGO is present in equal or greater amounts than DELT and, additively, when DELT is the predominant component. Thus, unlike the periphery or spinal cord, potentiation of MOR-mediated antinociception does not entail an increase in MOR number, affinity, or coupling. Rather, the data are concordant with our proposal that potentiation results from a synergistic interaction of exogenous MOR agonist with DOR-preferring enkephalins whose levels are increased in CFA-treated rats (J Neurosci 21:2536-2545, 2001). Virtually no specific [(3)H]DELT binding nor stimulation of [(35)S]GTPgammaS binding by DELT was obtained in RVM membranes from CFA- or saline-treated rats at any time point. The mechanisms responsible for the potentiation of DELT-mediated antinociception remain to be elucidated.  相似文献   

8.
Previous studies have shown that chronic ethanol influences the density of central mu-opioid receptors and serotonin(1A) (5-hydroxytryptamine(1A)) receptors. To determine whether the functional coupling of these two receptors to G proteins in the rat brain, particularly in mesocorticolimbic regions, is affected by ethanol, receptor-mediated [(35)S]guanosine-5'-O-(3-thio)-triphosphate ([(35)S]GTPgammaS) binding stimulated by [D-Ala(2),N-MePhe(4),Gly-ol(5)]-enkephalin (DAMGO) or L694,247 was used. By quantitative autoradiography, receptor-mediated [(35)S]GTPgammaS binding activated by the two agonists was mapped throughout brain sections at the level of the nucleus accumbens and hippocampus from groups of alcohol-preferring Fawn-Hooded (FH) rats after different ethanol consumption paradigms. Significant DAMGO (mu-opioid receptor agonist)-stimulated binding of [(35)S]GTPgammaS was obtained in the striatum, nucleus accumbens, and lateral septum, whereas L694,247 (5-hydroxytryptamine(1A/1B/1D) receptor agonist)-stimulated binding of [(35)S]GTPgammaS was observed in the lateral septum, amygdala, and cingulate cortex. Chronic ethanol self-administration significantly reduced DAMGO-stimulated [(35)S]GTPgammaS binding in the nucleus accumbens (-19%), lateral septum (-15%), and striatum (-23%), which recovered toward control levels after ethanol withdrawal. However, chronic ethanol, as well as ethanol withdrawal, failed to produce any significant alteration in L694,247-stimulated [(35)S]GTPgammaS binding in all tested brain regions. The region-specific and receptor-specific alteration of agonist-stimulated [(35)S]GTPgammaS binding suggests that the change of functional coupling of mu-opioid receptors to G proteins induced by chronic ethanol drinking may have a pathophysiological role in the consequences of ethanol consumption.  相似文献   

9.
10.
Adenylyl cyclase (AC) superactivation is thought to play an important role in opioid tolerance, dependence, and withdrawal. In the present study, we investigated the involvement of protein kinases in chronic delta-opioid agonist-mediated AC superactivation in Chinese hamster ovary (CHO) cells stably expressing the human delta-opioid receptor (hDOR/CHO). Maximal forskolin-stimulated cAMP formation in hDOR/CHO cells increased by 472 +/- 91, 399 +/- 2, and 433 +/- 73% after chronic treatment with the delta-opioid agonists (+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxy-benzyl]-N,N-diethyl benzamide (SNC 80), [d-Pen2,d-Pen5]-enkephalin, and deltorphin II, respectively. Concurrently, chronic SNC 80 (1 micro M, 4-h) treatment augmented 32P incorporation into a 200-kDa protein immunoreactive with the ACV/VI antibody by 300 +/- 60% in hDOR/CHO cell lysates. The calmodulin antagonist calmidazolium significantly attenuated chronic deltorphin II-mediated AC superactivation. Tyrosine kinase (genistein) and protein kinase C (chelerythrine) inhibitors individually had minimal effect on chronic delta-opioid agonist-mediated AC superactivation. Conversely, simultaneous treatment with both genistein and chelerythrine significantly attenuated AC superactivation. Because we showed previously that the Raf-1 inhibitor 3-(3,5-dibromo-4-hydroxybenzylidene-5-iodo-1,3-dihydro-indol-2-one (GW5074) attenuates AC superactivation, we hypothesize that parallel calmidazolium-, chelerythrine-, and genistein-sensitive pathways converge at Raf-1 to mediate AC superactivation by phosphorylating AC VI in hDOR/CHO cells.  相似文献   

11.
delta-Opioid agonists produce convulsions and antidepressant-like effects in rats. It has been suggested that the antidepressant-like effects are produced through a convulsant mechanism of action either through overt convulsions or nonconvulsive seizures. This study evaluated the convulsive and seizurogenic effects of nonpeptidic delta-opioid agonists at doses that previously were reported to produce antidepressant-like effects. In addition, delta-opioid agonist-induced electroencephalographic (EEG) and behavioral changes were compared with those produced by the chemical convulsant pentylenetetrazol (PTZ). For these studies, EEG changes were recorded using a telemetry system before and after injections of the delta-opioid agonists [(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N,N-diethylbenz (SNC80) and [(+)-4-[alpha(R)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-hydroxyphenyl)methyl]-N,N-diethylbenzamide [(+)-BW373U86]. Acute administration of nonpeptidic delta-opioid agonists produced bilateral ictal and paroxysmal spike and/or sharp wave discharges. delta-Opioid agonists produced brief changes in EEG recordings, and tolerance rapidly developed to these effects; however, PTZ produced longer-lasting EEG changes that were exacerbated after repeated administration. Studies with antiepileptic drugs demonstrated that compounds used to treat absence epilepsy blocked the convulsive effects of nonpeptidic delta-opioid agonists. Overall, these data suggest that delta-opioid agonist-induced EEG changes are not required for the antidepressant-like effects of these compounds and that neural circuitry involved in absence epilepsy may be related to delta-opioid agonist-induced convulsions. In terms of therapeutic development, these data suggest that it may be possible to develop delta-opioid agonists devoid of convulsive properties.  相似文献   

12.
A high-affinity thromboxane (TX)A2/prostaglandin (PG) H2 receptor antagonist, I-SAP [7-[(1R,2S,3S,5R)-6,6-dimethyl-3-(4- iodobenzenesulfonylamino)bicyclo[3.1.1]hept-2-yl]-5(Z)-heptenoic acid] and its radiolabeled analog [125I]SAP (Mais et al., 1991) are characterized in the present study. I-SAP antagonized I-BOP ([1S-(1 alpha, 2 beta(5Z),3 alpha(1E,3R*),4 alpha)]-7-[3-(3-hydroxy-4- (4'-iodophenoxy)-1-butenyl)-7-oxabicyclo-[2.2.1]heptan-2y l]-5'heptenoic acid) and U46619 [15S-hydroxy-11 alpha,9 alpha-(epoxymethano)-prosta-5Z,13E-dienoic acid)], two different TXA2/PGH2 mimetics, induced aggregation of washed human platelets in a similar manner (pA2 of 8.11 +/- 0.09, Kd = 7.8 nM, n = 3; pA2 = 8.01 +/- 0.05, Kd = 9.7 nM, n = 8, respectively). I-SAP also had agonistic activity, producing platelet shape change (EC50 = 9.7 nM +/- 0.6 nM at pH 7.4, n = 3) which was blocked by pretreatment of platelets with SQ29548 ([1S-(1 alpha,2 beta(5Z),3 beta,4 alpha)]-7-[3-[[2- [(phenylamino)carbonyl]hydrazino]methyl]-7-oxabicyclo[2.2.1]hept- 2-yl]-5-heptenoic acid), a TXA2/PGH2 receptor antagonist. Radioligand binding studies were performed with [125I]SAP using washed human platelets. Competition of three agonists and four antagonists for binding with [125I]SAP was determined. The compounds showed the appropriate rank order potencies, including stereoselective competition by a pair of stereoisomeric antagonists. In washed human platelets, the Kd for I-SAP was 468 +/- 49 pM and the maximum binding (Bmax) was 2057 +/- 156 sites/platelet at pH 7.4 (n = 6). The Bmax was significantly increased 49% to 3072 +/- 205 sites/platelet at pH 6.5 (P less than .01 but the Kd was unchanged (490 +/- 18 pM, n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Opioid agonists acting at their receptors alter intracellular events by initiating activation of various types of Gi/Go proteins. This can be measured by the binding of the stable GTP analog [(35)S]guanosine-5'-O-(3-thio)triphosphate ([(35)S]GTPgammaS). In this study agonist efficacy is defined by the degree to which an opioid stimulates the binding of [(35)S]GTPgammaS. This allows for a definition of full and partial agonists; a full agonist causing a greater stimulation of [(35)S]GTPgammaS binding than a partial agonist. The hypothesis that the rate of agonist-stimulated [(35)S]GTPgammaS binding is dependent upon agonist efficacy was tested using membranes from C6 glioma cells expressing mu- or delta-opioid receptors. At maximal concentrations the rate of agonist-stimulated [(35)S]GTPgammaS binding followed the efficacy of mu-agonists in stimulating [(35)S]GTPgammaS binding, i.e., [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin > morphine > meperidine > butorphanol > nalbuphine. At submaximal concentrations of mu- or delta-full agonists the [(35)S]GTPgammaS association rate was also reduced, such that the rate of [(35)S]GTPgammaS binding correlated with the extent of [(35)S]GTPgammaS bound, whether this binding was stimulated by a full agonist or a partial agonist. Agonists also stimulated [(35)S]GTPgammaS dissociation, showing that binding of this stable nucleotide was reversible. Comparison of the delta-agonists [D-Ser(2),Leu(5)]-enkephalin-Thr and (+/-)-4-((alpha-R*)-alpha-((2S*,5R*)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxylbenzyl)-N,N-diethylbenzamide, a compound with slow dissociation kinetics, showed the measured rate of G protein activation was not influenced by the agonist switching between receptors. The results are consistent with the idea that the active state(s) of the receptor induced by full or partial agonists is the same, but the number of activated receptors determines the rate of G protein activation.  相似文献   

14.
The dermorphin-derived peptide [Dmt1]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt, 2',6'-dimethyltyrosine) labels mu-opioid receptors with high affinity and selectivity in receptor binding assays. In previous studies, [Dmt1]DALDA displayed a mechanism of action distinct from that of morphine, as evidenced by its insensitivity to antisense probes reducing morphine analgesia and incomplete cross tolerance to morphine. In an effort to further elucidate the unusual mechanism of action, [3H][Dmt1]DALDA has been synthesized and its binding profile studied. [3H][Dmt1]DALDA binding was high affinity (KD = 0.22 nM) and showed a regional distribution consistent with mu-receptors with highest levels in calf striatal membranes. [3H][Dmt1]DALDA binding was far less sensitive than [3H][d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) to the effects of divalent and sodium cations and guanine nucleotides, although NaCl and guanosine 5'-(beta,gamma-imido)triphosphate together reduced specific [3H][Dmt1]DALDA binding levels by almost 75%. Competition studies confirmed the mu-selectivity of the binding, with Ki values that were not appreciably different from those seen against [3H]DAMGO. In guanosine 5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS) binding assays in brain and spinal cord membranes, [Dmt1]DALDA was more potent than DAMGO, but showed plateaus suggestive of a partial agonist. [Dmt1]DALDA bound to mu-opioid receptor clone 1 (MOR-1) and its splice variants with high affinity. Unlike [3H]DAMGO, [3H][Dmt1]DALDA seemed to label both agonist and antagonist conformations of MOR-1 expressed in Chinese hamster ovary cells. In [35S]GTPgammaS assays [Dmt1]DALDA showed high efficacy with all the MOR-1 variants, but its potency (EC50) varied markedly among some of the splice variants despite similar affinities in receptor binding assays. Although [3H][Dmt1]DALDA is a very potent mu-selective analgesic, its binding characteristics and its ability to stimulate GTPgammaS binding differed from that of the classical mu-opioid peptide DAMGO.  相似文献   

15.
Narcotic analgesics cause addiction by poorly understood mechanisms, involving mu opoid receptor (MOR). Previous cell culture studies have demonstrated significant basal, spontaneous MOR signaling activity, but its relevance to narcotic addiction remained unclear. In this study, we tested basal MOR-signaling activity in brain tissue from untreated and morphine-pretreated mice, in comparison to antagonist-induced withdrawal in morphine-dependent mice. Using guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTP gamma S) binding and adenylyl cyclase activity assay in brain homogenates, we demonstrated that morphine pretreatment of mice enhanced basal MOR signaling in mouse brain homogenates and, moreover, caused persistent changes in the effects of naloxone and naltrexone, antagonists that elicit severe withdrawal in dependent subjects. Naloxone and naltrexone suppressed basal [(35)S]GTP gamma S binding (acting as "inverse agonists") only after morphine pretreatment, but not in drug-naive animals. Moreover, naloxone and naltrexone stimulated adenylyl cyclase activity in striatum homogenates only after morphine pretreatment, by reversing the inhibitory effects of basal MOR activity. After cessation of morphine treatment, the time course of inverse naloxone effects on basal MOR signaling was similar to the time course of naltrexone-stimulated narcotic withdrawal over several days. The neutral antagonist 6 beta-naltrexol blocked MOR activation without affecting basal signaling (G protein coupling and adenylyl cyclase regulation) and also elicited substantially less severe withdrawal. These results demonstrate long-lasting regulation of basal MOR signaling as a potential factor in narcotic dependence.  相似文献   

16.
Receptor binding studies of 5,14-O-dimethyloxymorphone (14-methoxymetopon) in brain membranes have established its high affinity for mu-binding sites, but its analgesic potency far exceeds the modest increase in binding affinity relative to other opioids. The current study has established the selectivity of [(3)H]14-methoxymetopon for mu sites in calf striatal membranes and for a number of full-length splice variants of the cloned murine mu-opioid receptor 1 (mMOR-1) in transfected cell lines. The binding affinity of [(3)H]14-methoxymetopon for the variants expressed in Chinese hamster ovary cells was quite high, with K(D) values around 0.2 nM for all of the variants with the exception of mMOR-1F (K(D) of 1.2 nM). The affinity for most of the expressed variants was greater than that seen in the brain membranes (K(D) of 0.99 nM). Functionally, in guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding assays with the MOR-1 variants, 14-methoxymetopon and the mu-opioid peptide [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) showed similar efficacies, as determined by maximal stimulation, but 14-methoxymetopon was up to 65-fold more potent than DAMGO. The greatest difference was seen with mMOR-1E and the least with mMOR-1C, which displayed only a 10-fold difference. These potency differences in the stimulation of [(35)S]GTPgammaS binding far exceeded the differences in binding affinity. The differences between 14-methoxymetopon and DAMGO remained after normalizing the potency shifts based upon receptor binding affinities and varied from 1.2-fold with mMOR-1C to 21-fold for mMOR-1 and 42-fold with mMOR-1F. Thus, 14-methoxymetopon is a potent agonist against all of the mMOR-1 splice variants, but its potency ranged widely despite similar binding affinities for most of the variants and may give insight into its unusual pharmacological profile.  相似文献   

17.
We previously reported that apicularen A [2,4-heptadienamide, N-[(1E)-3-[(3S,5R,7R,9S)-3,4,5,6,7,8,9,10-octahydro-7,14 dihydroxy-1-oxo-5,9-epoxy-1H-2-benzoxacyclododecin-3-yl]-1 propenyl]-, (2Z,4Z)-(9CI)], a highly cytostatic macrolide isolated from the myxobacterial genus Chondromyces, induces apoptosis in the mouse leukemic monocyte cell line RAW 264.7. To analyze the action mechanism of apicularen A for the induction of apoptosis, effects of apicularen A on nitric oxide (NO) production in RAW 264.7 cells were examined. It was demonstrated that apicularen A at 10 and 100 nM induced nitrite production, whereas apicularen B [2,4-heptadienamide, N-[(1E)-3-[(3S,5R,7R,9S)-7-[[2-(acetylamino)-2-deoxy-beta-d-glucopyranosyl]oxy]-3,4,5,6,7,8,9,10-octahydro-14-hydroxy-1-oxo-5,9-epoxy-1H-2-benzoxacyclododecin-3-yl]-1 propenyl]-, (2Z,4Z)-(9CI)], an N-acetyl-glucosamine glycoside of apicularen A, had no effect at 100 nM. The apicularen A-induced nitrite production was accompanied by an increase in the level of inducible nitric-oxide synthase (iNOS) and its mRNA and was suppressed by the NOS inhibitor N(G)-monomethyl-l-arginine acetate (l-NMMA). In addition, apicularen A activated nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) and decreased the level of IkappaB-alpha and increased that of phosphorylated c-Jun N-terminal kinase (JNK). Furthermore, the apicularen A-induced nitrite production was suppressed by the NF-kappaB inhibitor Bay 11-7082 [(E)-3-(4-methylphenylsulfonyl)-2-propenenitrile] and the JNK inhibitor SP600125 [anthra[1,9-cd]pyrazol-6(2H)-one]. These findings suggested that apicularen A activates NF-kappaB and AP-1, thus triggering the expression of iNOS mRNA and iNOS protein and induces NO production. Finally, apicularen A decreased cell growth and survival and cell viability and disrupted the mitochondrial membrane potential. The addition of l-NMMA partially recovered the apicularen A-induced decrease in cell growth and survival and cell viability and the disruption of mitochondrial membrane potential. These findings suggested that NO produced by apicularen A treatment participate partially in the apicularen A-induced apoptosis in RAW 264.7 cells.  相似文献   

18.
The guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding assay for the determination of relative opioid efficacy has been adapted to measure G protein activation in digitonin-permeabilized C6 rat glioma cells expressing a cloned mu-opioid receptor. The mu-agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) caused a 3-fold increase in [35S]GTPgammaS binding over basal in a naloxone-sensitive manner. Relative mu-agonist efficacy was DAMGO > fentanyl > or = morphine > buprenorphine. Nalbuphine showed no efficacy. G protein activation by receptors has been predicted to occur by random encounter. In this model a reduction in the number of receptors will decrease the rate of G protein activation but not the maximum number of G proteins activated. To test this model C6 mu cells were treated with the irreversible mu-antagonist beta-funaltrexamine (10 nM) prior to permeabilization. This reduced the number of mu-opioid receptors determined with [3H]diprenorphine to 23 +/- 3% of control with no change in affinity. A commensurate reduction (to 29 +/- 10% of control) in the level of [35S]GTPgammaS binding stimulated by DAMGO was observed, but the t(1/2) for [35S]GTPgammaS binding remained unchanged. Thus, random encounters of receptor and G protein failed to occur in this permeabilized cell preparation. A model that assumes an organized association of G proteins with receptors better describes the activation of G proteins by opioid mu-receptors.  相似文献   

19.
The in vitro pharmacological properties of N-(1-Acetyl-2,3-dihydro-1H-indol-6-yl)-3-(3-cyano-phenyl)-N-[1-(2-cyclopentyl-ethyl)-piperidin-4yl]-acrylamide (JNJ-5207787), a novel neuropeptide Y Y(2) receptor (Y(2)) antagonist, were evaluated. JNJ-5207787 inhibited the binding of peptide YY (PYY) to human Y(2) receptor in KAN-Ts cells (pIC(50) = 7.00 +/- 0.10) and to rat Y(2) receptors in rat hippocampus (pIC(50) = 7.10 +/- 0.20). The compound was >100-fold selective versus human Y(1),Y(4), and Y(5) receptors as evaluated by radioligand binding. In vitro receptor autoradiography data in rat brain tissue sections confirmed the selectivity of JNJ-5207787. [(125)I]PYY binding sites sensitive to JNJ-5207787 were found in rat brain regions known to express Y(2) receptor (septum, hypothalamus, hippocampus, substantia nigra, and cerebellum), whereas insensitive binding sites were observed in regions known to express Y(1) receptor (cortex and thalamus). JNJ-5207787 was demonstrated to be an antagonist via inhibition of PYY-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate binding ([(35)S]GTPgammaS) in KAN-Ts cells (pIC(50) corrected = 7.20 +/- 0.12). This was confirmed auto-radiographically in rat brain sections where PYY-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate binding was inhibited by JNJ-5207787 (10 microM) in hypothalamus, hippocampus, and substantia nigra. After intraperitoneal administration in rats (30 mg/kg), JNJ-5207787 penetrated into the brain (C(max) = 1351 +/- 153 ng/ml at 30 min) and occupied Y(2) receptor binding sites as revealed by ex vivo receptor autoradiography. Hence, JNJ-5207787 is a potent and selective pharmacological tool available to establish the potential role of central and peripheral Y(2) receptors in vivo.  相似文献   

20.
Among the different mechanisms underlying opioid tolerance, receptor desensitization would represent a major cellular adaptation process in which the role of receptor internalization is still a matter of debate. In the present study, we examined desensitization of the human delta-opioid receptor (hDOR) produced by endogenous opioid peptides Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu) and Met-enkephalin (Tyr-Gly-Gly-Phe-Met), and the contribution of internalization in this process. Results obtained with natural peptides were compared with those produced by a synthetic opioid agonist, SNC-80 [(+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide). After a 30-min treatment, we observed a different regulation of hDOR between agonists. SNC-80 produced a stronger and faster desensitization and was associated with a loss of opioid binding sites by 50%. SNC-80 also caused a marked hDOR down-regulation by 30% as observed by Western blot. Immunocytochemistry revealed that SNC-80 induced a complete redistribution of hDOR from cell surface into intracellular compartments, whereas a partial internalization was visualized upon enkephalin exposure. In contrast, a stronger hDOR recycling and resensitization were measured after enkephalin treatment compared with SNC-80. These data strongly suggested a differential sorting of the internalized receptors caused by enkephalins and SNC-80 that was further confirmed by chloroquine as a lysosomal degradation blocker and monensin as a recycling endosome inhibitor. Finally, by preventing hDOR internalization with 0.5 M sucrose, we demonstrated that hDOR internalization contributes partially to desensitization. In conclusion, hDOR desensitization depends both on its internalization and its sorting either to the recycling pathway or to lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号