首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a strong lung carcinogen in all species tested. To elicit its tumorigenic effects NNK requires metabolic activation which is supposed to take place via α-hydroxylation, whereas N-oxidation is suggested to be a detoxification pathway. The differences in the organ specific metabolism of NNK may be crucial for the organotropy in NNK-induced carcinogenesis. Therefore, metabolism of NNK was investigated in the target organ lung and in liver of Fischer 344 (F344) rats using the model of isolated perfused organs. High activity to metabolize 35 nM [5-3H]NNK was observed in both perfused organs. NNK was eliminated by liver substantially faster (clearance 6.9 ± 1.6 ml/min, half-life 14.6 ± 1.2 min) than by lung (clearance 2.1 ± 0.5 ml/min, half-life 47.9 ± 7.4 min). When the clearance is calculated for a gram of organ or for metabolically active cell forms, the risk with respect to carcinogenic mechanisms was higher in lung than in liver. The metabolism of NNK in liver yielded the two products of NNK α-hydroxylation, the 4-oxo-4-(3-pyridyl)-butyric acid (keto acid) and 4-hydroxy-4-(3-pyridyl)-butyric acid (hydroxy acid). In lung, the major metabolite of NNK was 4-(methylnitrosamino)-1-(3-pyridyl-N-oxide)-1-butanone (NNK-N-oxide). Substantial amounts of metabolites formed from methyl hydroxylation of NNK, which is one of the two possible pathways of α-hydroxylation, were detected in lung but not in liver perfusion. Formation of these metabolites (4-oxo-4-(3-pyridyl)-butanol (keto alcohol), and 4-hydroxy-4-(3-pyridyl)-butanol (diol) can give rise to pyridyloxobutylating of DNA. When isolated rat livers were perfused with 150 μM NNK, equal to a dosage which is sufficient to induce liver tumors in rat, glucuronidation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) was increased when compared to the concentration of 35 nM NNK. Nevertheless, the main part of NNK was also transformed via α-hydroxylation for this high concentration of NNK. Received: 13 March 1997 / Accepted: 21 November 1997  相似文献   

2.
In order to estimate the effect of vitamin E on DNA injury and K-ras point mutation at an early stage of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone(NNK)-induced lung tumorigenesis in mice, the present study was carried out. Presupplement with vitamin E about 15 times more than control for a week significantly inhibited NNK-induced O6-methylguanine formation in the lungs of mice at 4 and 168 h after the injection. At 30 days after the NNK injection, the activation of K-ras oncogene with a 12th codon GC→AT transition was detected in 56% of lung samples tested by mutant-allele-specific amplification. Vitamin E supplement reduced the frequency of the mutation to 30%. These results suggest that vitamin E suppresses NNK-induced DNA injury and subsequent fixation of the injury during the initiation and post-initiation phases of the lung tumorigenesis in mice. Received: 26 January 1998 / Accepted: 20 April 1998  相似文献   

3.
Metabolism and disposition of the tobacco-specific N-nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent rodent lung carcinogen, were studied in rhesus monkeys. In three males receiving a single i.v. dose of [5-3H]NNK (0.72 mCi; 4.6-9.8 microg/kg), urine was collected for 10 days. Within the first 24 h, 86.0 +/- 0.7% of the dose was excreted. NNK-derived radioactivity was still detectable in urine 10 days after dosing (total excretion, 92.7 +/- 0.7%). Decay of urinary radioactivity was biexponential with half-lives of 1.7 and 42 h. Metabolite patterns in urine from the first 6 h closely resembled those reported previously for patas monkeys; end products of metabolic NNK activation represented more than 50% of total radioactivity. At later time points, the pattern shifted in favor of NNK detoxification products (60-70% of total radioactivity in urine), mainly 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its O-glucuronide conjugates. One female rhesus monkey received a single i.v. dose of [5-3H]NNK (1.72 mCi; 28.4 microg/kg) under isoflurane anesthesia; biliary excretion over 6 h (0.6% of the dose) was 10 times less than predicted by our previously reported rat model. No preferential excretion of NNAL glucuronide was observed in monkey bile. Collectively, these results suggest that the rhesus monkey could be a useful model for NNK metabolism and disposition in humans.  相似文献   

4.
The scope of the present study was to investigate whether nicotine or cotinine will affect the metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in isolated perfused rat lungs and livers and to study the effect of starvation on pulmonary metabolism of NNK. NNK metabolism was investigated in isolated perfused liver and lung of male F344 rats perfused with 35 nM [5-3H]NNK in presence of a 1400-fold excess of the main tobacco alkaloid nicotine and its metabolite cotinine. In perfused rat livers, nicotine and cotinine inhibited NNK elimination and metabolism and led to a substantial increase of elimination half-life from 14.6 min in controls to 25.5 min after nicotine and 36.6 min after cotinine co-administration, respectively. In parallel, the pattern of NNK metabolites was changed by nicotine and cotinine. The pathway of α-hydroxylation representing the metabolic activation of NNK was decreased to 77% and 85% of control values, whereas N-oxidation of NNK and glucuronidation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) was increased 2.6- and 1.2-fold in presence of nicotine and cotinine, respectively. When isolated rat lungs were perfused with 35 nM NNK for 3 h neither the elimination nor the pattern of metabolites were substantially affected due to co-administration of 50 μM nicotine or cotinine. Cytochrome P450 2E1 is known to participate in the activation of NNK and can be induced by starvation. However, isolated rat lungs from male Sprague Dawley rats perfused with [1-14C]NNK at about 2 μM for 3 h, revealed only small differences in pulmonary elimination and pattern of NNK metabolites between fed and starved animals. These results suggest that nicotine and its main metabolite cotinine inhibit the metabolic activation of NNK predominantly in the liver whereas activation in lung, a main target organ of NNK induced carcinogenesis, remained almost unaffected. Received: 13 March 1997 / Accepted: 21 November 1997  相似文献   

5.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific lung carcinogen which may play an important role as a cause of lung cancer in smokers. NNK is extensively metabolized to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which like NNK is a potent pulmonary carcinogen. NNAL in turn is glucuronidated, and both NNAL and its glucuronides are excreted in human urine. Previous studies have clearly demonstrated the presence in human urine of 4-(methylnitrosamino)-1-(3-pyridyl)-1-(O-beta-D-glucopyranuronosyl)butane (NNAL-O-Gluc), but did not exclude the presence of 4-(methylnitrosamino)-1-(3-pyridyl-N-beta-D-glucopyranuronosyl)-1-butanolonium inner salt (NNAL-N-Gluc). In this study, we quantified NNAL, NNAL-N-Gluc, and NNAL-O-Gluc in the urine of smokers, snuff-dippers, and people who used the oral tobacco product "toombak". The presence of NNAL-N-Gluc in the urine of toombak users was confirmed by LC-ESI-MS/MS. In smokers' urine, NNAL-N-Gluc, NNAL-O-Gluc, and NNAL comprised (mean +/- SD) 26.5 +/- 6.2, 32.1 +/- 17.6, and 41.4 +/- 16.6%, respectively, of total NNAL. In snuff-dippers' urine, the corresponding figures were 13.6 +/- 5.1, 46.6 +/- 11.7, and 36.6 +/- 9.3%. NNAL-N-Gluc comprised 50 +/- 25% of total glucuronidated NNAL in smokers and 24 +/- 12% in snuff-dippers. This difference was significant (P = 0.01), suggesting that smoking induces glucuronidation of NNAL. The results of this study demonstrate that NNAL-N-Gluc contributes substantially to NNAL-glucuronides in human urine. These results are important for a clearer understanding of mechanisms of detoxification of NNK in humans.  相似文献   

6.
This study examined the chemopreventive effect of saponins that were isolated from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil saponins (CKS), against the tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), -on lung tumorigenesis in A/J mice. The mice were treated with a single NNK dose (100 mg/kg b.w., i.p.). CKS (0.5, 1,4 mg/kg body wt.) was administered orally daily for 3 days/week beginning 1 day after the NNK treatment and was maintained throughout the experiment. The administration of CKS suppressed the NNK-induced increase in the level of proliferating cell nuclear antigen, which are a marker of cell proliferation, in the lungs of the mice 4 weeks after the NNK injection. Twenty-five weeks after the NNK treatment, the mice were sacrificed and the number of surface lung tumors was measured. CKS significantly reduced the number of lung tumors induced by NNK in a dose dependent manner. These results suggest that CKS suppresses the development of lung tumors and has a chemopreventive effect against NNK-induced mouse lung tumorigenesis.  相似文献   

7.
Abstract

This article reviews recent advances in the biochemistry and molecular biology of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific pulmonary carcinogen believed to be involved in the induction of lung cancer in smokers. Several aspects of NNK bioactivation are addressed, including identification of its metabolites in laboratory animals and humans, cytochrome P450 enzyme involvement in its metabolic activation, DNA and protein adduct formation, biological significance of the major DNA adducts formed, and mutations in oncogenes from tumors induced by NNK. Collectively, the presently available data provide a reasonably clear picture of NNK bioactivation in rodents, although there are still important gaps in our mechanistic understanding of NNK-induced tumorigenesis. The studies in rodents and primates have facilitated development of methods to assess NNK bioactivation in humans, which will be applicable to studies of lung cancer susceptibility and prevention.  相似文献   

8.
Richter E  Tricker AR 《Toxicology》2002,179(1-2):95-103
The effect of nicotine, cotinine and phenethyl isothiocyanate (PEITC) on metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) was studied in the Syrian golden hamster. Urinary metabolite profiles were determined in 24 h urine after a single subcutaneous (s.c.) administration of [5-(3)H]NNK (80 nmol/kg, s.c.). Co-administration of either a 500-fold higher dose of nicotine (40 micromol/kg, s.c.) or a 5000-fold higher dose of cotinine (400 micromol/kg, s.c.) significantly (P<0.001) reduced metabolic activation of NNK by alpha-hydroxylation to 85 and 71% of control, respectively. Co-administration of a 300-fold higher dose of PEITC (1 micromol/g diet) slightly reduced alpha-hydroxylation of NNK (94% of control). Metabolism of NNK by reduction to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) was increased by nicotine (155%), and significantly increased by cotinine (670%, P<0.001) and PEITC (219%, P<0.01). Detoxification of NNAL by glucuronidation was also increased by all three test agents. Detoxification of NNK and NNAL by N-oxidation was marginally increased by nicotine, reduced by PEITC, and significantly reduced by cotinine. The urinary metabolite profiles suggest that nicotine, which occurs in concentrations up to 30000-fold higher than NNK in mainstream cigarette smoke, and cotinine, its proximal metabolite, may have a significant protective effect against in vivo metabolic activation of NNK.  相似文献   

9.
Both cytochrome P450 2A6 (CYP2A6) and cytochrome P450 2A13 (CYP2A13) are involved in metabolic activation of tobacco-specific nitrosamines and may play important roles in cigarette smoking-induced lung cancer. Unlike CYP2A6, effects of CYP2A13 on the tobacco-specific nitrosamine-induced mutagenesis in lung cells remain unclear. This study uses a supF mutagenesis assay to examine the relative effects of CYP2A6 and CYP2A13 on metabolic activation of a tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and its resulting mutagenesis in human lung cells. A recombinant adenovirus-mediated CYP2A6/CYP2A13 expression system was established to specifically address the relative effects of these two CYPs. Mutagenesis results revealed that both CYP2A6 and CYP2A13 significantly enhanced the NNK-induced supF mutation and that the mutagenic effect of CYP2A13 was markedly higher than that of CYP2A6. Analysis of NNK metabolism indicated that ≥ 70% of NNK was detoxified to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), either with or without CYP2A6/CYP2A13 expression. Both CYP2A6 and CYP2A13 significantly enhanced the α-hydroxylation of NNK; and the α-hydroxylation activity of CYP2A13 was significantly higher than that of CYP2A6. Analysis of the NNK-related DNA adduct formation indicated that, in the presence of CYP2A13, NNK treatments caused marked increases in O6-methylguanine (O6-MeG). The present results provide the first direct in vitro evidence demonstrating the predominant roles of CYP2A13 in NNK-induced mutagenesis, possibly via metabolic activation of NNK α-hydroxylation.  相似文献   

10.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its urinary metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), are the most investigated carcinogenic biomarkers of tobacco-specific nitrosamines. Here, we report the development of a sensitive and selective assay based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) to simultaneously measure urinary NNK and NNAL. With the use of isotope internal standards and online solid-phase extraction, urine samples were directly analyzed without prior sample purification. The detection limits of this method were 0.13 and 0.19 pg on column for NNK and NNAL, respectively. Inter- and intra-day imprecision was <10 %. Mean recovery of NNK and NNAL in urine was 99–100 %. This method was applied to measure urinary NNK and NNAL in 101 smokers and 40 nonsmokers to assess tobacco exposure. Urinary nicotine, cotinine, N3-methyladenine (N3-MeA), and N7-methylguanine (N7-MeG) were also measured by isotope-dilution LC–MS/MS methods. The results showed that urinary NNK was not observed in all smokers. Urinary free NNAL (0.10 ± 0.09 ng/mg creatinine) and total NNAL (0.17 ± 0.14 ng/mg creatinine) were detected in all smokers. Urinary concentrations of NNAL were significantly correlated with nicotine, cotinine, N3-MeA, and N7-MeG in smokers (P < 0.001). This method enables the direct and simultaneous measurement of NNK and NNAL in urine using only 50 μL of urine. This study first demonstrated in human that urinary tobacco-specific nitrosamines metabolite (NNAL) are highly correlated with their resulting methylated DNA lesions in urine, which may help to substantiate an increased cancer risk associated with tobacco smoke exposure.  相似文献   

11.
The pharmacokinetics of in vitro metabolism of the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK; concentration range 0.03-250 microM) and its proximal metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL; 0.04-250 microM), were determined in Syrian golden hamster liver, lung, and kidney tissue slices in organ culture under identical experimental conditions. In the lung, a target organ for NNK animal carcinogenesis, total NNK metabolism was relatively low (maximum 23%) and oxidative metabolism by alpha-hydroxylation to DNA-reactive intermediates accounted for 13-31% of metabolism. The liver, a non-target organ for NNK carcinogenesis, showed the highest capacity to metabolise NNK (total metabolism 80%), and alpha-hydroxylation accounted for 12-25% of metabolism. The kidney, another non-target organ, also showed a low capacity for NNK metabolism (maximum 32%) and alpha-hydroxylation accounted for <3% of metabolism. Detoxification of NNK by pyridyl N-oxidation was similar in lung (5-22%) and liver (5-23%), and negligible in kidney (<2%), while carbonyl reduction of NNK to NNAL was greatest in the kidney (95-100%), followed by liver (59-79%) and lung (47-81%). NNAL is devoid of biological activity in the hamster and total metabolism was about tenfold lower than that of NNK in all tissues (<13% liver; <4% lung and kidney). In the liver, alpha-hydroxylation was the predominant pathway of NNAL metabolism at almost all concentrations (31-68% of total metabolism), whereas N-oxidation prevailed in the kidney (47-68%). In the lung, a concentration dependent decrease in the relative amount of alpha-hydroxylation (23-72%) with increasing NNAL concentrations occurred at the expense of N-oxidation (25-72%). Little or no metabolism of NNAL back to NNK was evident in any tissue.  相似文献   

12.
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its carbonyl-reduction product, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), are potent lung carcinogens in rats and are presumed human lung carcinogens. NNK and NNAL are bioactivated to DNA-binding intermediates via hydroxylation of the carbon atoms adjacent to the nitroso moiety (i.e., alpha-hydroxylation) by cytochrome p450s (p450s). Therefore, it is important to delineate which p450s are efficient catalysts of this metabolic transformation. In this study, the kinetic parameters for NNK and NNAL metabolism were determined for two extrahepatic p450s that are expressed in the lung: rat p450 2A3 and human p450 2A13. p450s 2A3 and 2A13 exhibited Vmax values for NNK 4-hydroxylation of 10.8 +/- 0.4 and 13.8 +/- 0.8 pmol min-1 pmol P450-1, respectively; the corresponding Km values were 4.6 +/- 0.5 and 3.6 +/- 0.7 microM. The respective Vmax values for p450 2A3- and 2A13-mediated N-methyl hydroxylation of NNK were 8.2 +/- 0.3 and 4.6 +/- 0.2 pmol min-1 pmol p450-1. These data indicate that p450s 2A3 and 2A13 are both efficient catalysts of the metabolic activation of NNK and are, along with mouse p450 2A5, the best catalysts of this reaction currently known. Both enzymes also catalyzed the alpha-hydroxylation and N-oxidation of NNAL, and its oxidation to NNK. In general, Vmax/Km values for NNAL metabolism were 1 to 2 orders of magnitude lower than those for NNK metabolism, and p450 2A3 was a slightly better catalyst of NNAL metabolism than was p450 2A13. Given the exquisite sensitivity of the rat lung to NNK-induced carcinogenesis, the efficient bioactivation of NNK by rat p450 2A3, and the similar catalytic efficiency of p450s 2A3 and 2A13, p450 2A13 may be an important contributor to NNK bioactivation in the human lung.  相似文献   

13.
《Inhalation toxicology》2013,25(5):255-269
Introduction: Research on the deposition of mainstream smoke particulate in the respiratory tract of smokers is needed to understand how exposure may vary based on cigarette menthol content.

Methods: We conducted a nine-participant crossover study in which smokers were randomly assigned to cigarettes differing primarily in menthol content. Participants smoked the test cigarettes ad libitum for one week, provided spot urine samples, and then smoked four test cigarettes in a laboratory session; this was repeated for the other test cigarette in week two. Fine and ultrafine particulate matter in exhaled breath were characterized, and smoking behavior was monitored. Participant-specific mainstream smoke, generated using each participant’s topography data, was characterized. During home smoking, participants collected their spent test cigarette butts for estimates of mouth-level exposures (MLE) to mainstream nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK).

Results: Participant-specific mainstream smoke NNK was higher (39%) and daily MLE to NNK was also higher (52%) when participants smoked the menthol cigarette. Nicotine was not significantly different. Participants retained more ultrafine particulate (43%) and fine particulate benzo(a)pyrene (43%) when smoking the menthol cigarette. There were no significant differences in the levels of urinary biomarkers for nicotine, NNK, or pyrene.

Conclusion: This study demonstrates the use of noninvasive real-time techniques to measure exposure differences between cigarettes differing primarily in menthol content. Differences between NNK exposure, ultrafine particle and benzo(a)pyrene deposition, and smoking behavior were observed. Additional research using these techniques with cigarettes that differ only in menthol content is required to unequivocally attribute the exposure differences to presence or absence of menthol.  相似文献   

14.
15.
1.?Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a lung carcinogen in a variety of animal models and a putative human lung carcinogen. Its tumorigenic potential is unmasked via cytochrome P450 (CYP)-mediated hydroxylation of the carbon atoms adjacent to the nitroso moiety (i.e.?α-hydroxylation). Therefore, elucidation of enzyme–substrate interactions that facilitate?α-hydroxylation is important to gain insight into the tumorigenic mechanism of NNK and to develop potent inhibitors of this detrimental reaction.

2.?Molecular models of CYP2A enzymes from mice, rats and humans that are catalysts of NNK bioactivation were constructed and used, in conjunction with docking experiments, to identify active-site residues that make important substrate contacts.

3.?Docking studies revealed that hydrophobic residues at positions 117, 209, 365 and 481, among others, play critical roles in orienting NNK in the active site to effect?α-hydroxylation. These molecular models were then used to rationalize the stereo- and regioselectivity, as well as the efficiency, of CYP2A-mediated NNK metabolism.  相似文献   

16.
Recent research has demonstrated that mucocutaneous epithelial cells express functional nicotinic acetylcholine receptors (nAChRs) and that tobacco-derived carcinogenic nitrosamines, such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and SLURP (secreted mammalian Ly-6/urokinase plasminogen activator receptor-related protein)-1 and -2 can act as non-canonical ligands of these receptors. It was found that recombinant SLURP-1 and -2 can lessen tumorigenic activity of nitrosamines. The immortalized esophageal keratinocytes (Het-1A cells) exhibit low SLURP-1 and -2 mRNA levels that decrease further after treatment with NNK. Based on these observations, we hypothesized that overexpression of full length SLURP proteins may protect Het-1A cells from malignant transformation by NNK. The Het-1A cells transfected with either SLURP-1 or -2 vector produced the highest amounts of respective proteins between 24 and 48 h, at which point they were exposed to 1 microM NNK for 24 h and their tumorigenic activities were subsequently evaluated by plating in soft agar and injecting subcutaneously to Nu/Nu mice. Transfection with either SLURP-1 or -2 cDNA in both cases significantly (p<0.05) diminished the number of colonies produced by NNK exposed cells. SLURP-1 was more efficient than SLURP-2 in abolishing the tumorigenic effect in nude mice. Thus, the anti-tumorigenic activities of SLURP-1 and -2 were demonstrated both in vitro and in vivo. The obtained results suggest that SLURP-like proteins may become useful for developing novel anti-cancer therapies.  相似文献   

17.
The cytochrome P450-mediated alpha-hydroxylation of the carcinogenic nitrosamines N-nitrosodimethylamine (NDMA, 1), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 6a), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, 6b) produces diazonium ions and formaldehyde. The DNA-binding properties of the diazonium ions have been thoroughly characterized, and there is no doubt that they are critical in cancer induction by these nitrosamines. However, the possibility of additional DNA damage via released formaldehyde has not been reported. In this study, we used acetoxymethylmethylnitrosamine (5), 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (10a), and 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanol (10b) as stable precursors to the alpha-hydroxymethylnitrosamines that would be formed in the metabolism of NDMA, NNK, and NNAL. These alpha-acetates were incubated with calf thymus DNA in the presence of esterase at pH 7.0 and 37 degrees C. The DNA was isolated and enzymatically hydrolyzed to deoxyribonucleosides, and the hydrolysates were analyzed by liquid chromatography-electrospray ionization-mass spectrometry-selected ion monitoring for formaldehyde DNA adducts. Convincing evidence for the formation of the formaldehyde adducts N6-hydroxymethyl-dAdo (11), N4-hydroxymethyl-dCyd (12), N2-hydroxymethyl-dGuo (13), and the cross-links di-(N6-deoxyadenosyl)methane (14), (N6-deoxyadenosyl- N2-deoxyguanosyl)methane (15), and di-(N2-deoxyguanosyl)methane (16) was obtained in these reactions. These results demonstrate that NDMA, NNK, and NNAL have the potential to be bident carcinogens, damaging DNA through the metabolic formation of both diazonium ions and formaldehyde.  相似文献   

18.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) is a metabolite of the tobacco specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). NNAL is present in the blood and urine of people exposed to tobacco products and has carcinogenic activity in rodents similar to that of NNK. DNA adducts specific to NNAL have not been previously identified. Metabolic activation of NNAL by alpha-methyl hydroxylation, a pathway known to occur in rodent and human microsomes, would produce pyridylhydroxybutylating agents that could react with DNA. We investigated this possibility in the present study by allowing 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNALCH(2)OAc) to react with dGuo and DNA. Products were identified by HPLC with UV detection, liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS) and LC/ESI-tandem mass spectrometry (LC/ESI-MS/MS). In the dGuo reactions, selected ion monitoring for m/z 417, corresponding to pyridylhydroxybutylated dGuo, showed several peaks. One adduct was identified as 7-[1-hydroxy-1-(3-pyridyl)but-4-yl]dGuo (21) by neutral thermal hydrolysis, which converted it to 7-[1-hydroxy-1-(3-pyridyl)but-4-yl]Gua (22) and 4-hydroxy-1-(3-pyridyl)-1-butanol (16). Adduct 22 was identified by comparison of its LC/ESI-MS and LC/ESI-MS/MS properties to those of standard 22. Two other adducts, O(6)-[1-hydroxy-1-(3-pyridyl)but-4-yl]dGuo (17) and N(2)-[1-hydroxy-1-(3-pyridyl)but-4-yl]dGuo (19), were identified by comparison of their LC/ESI-MS and LC/ESI-MS/MS properties to those of standard 17 and 19. Further evidence for the identity of 17 and 19 was obtained by mild acid hydrolysis, which converted them to the corresponding Gua bases 18 and 20, identified by comparison to synthetic standards. Neutral thermal hydrolysis of DNA that had been reacted with NNALCH(2)OAc produced 22, identified by comparison to a standard. Adducts 17 and 19 were identified in enzyme hydrolysates of this DNA by comparison to standards. Thus, DNA that had been allowed to react with NNALCH(2)OAc contained adducts 17, 19, and 21. The results of this study provide markers for investigating the role of specific NNAL-DNA adducts in carcinogenesis by NNAL and NNK.  相似文献   

19.
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pulmonary carcinogen in rats and is believed to be one cause of lung cancer in smokers. NNK is metabolized to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also a strong lung carcinogen in rats and has a chiral center at its 1-carbon. Previous studies have demonstrated that cytochrome P450-catalyzed alpha-hydroxylation of NNK in the lung leading to the formation of methyl and pyridyloxobutyl (POB)-DNA adducts is critical for its carcinogenicity. alpha-Hydroxylation of NNAL would similarly produce pyridylhydroxybutyl (PHB)-DNA adducts, but these have not been previously investigated in vivo. POB- and PHB-DNA adduct levels can indicate the amounts of pyridyloxobutylating and pyridylhydroxybutylating agents present in tissues of NNK- or NNAL-treated rats at any given point. Therefore, in this study, we developed a sensitive and quantitative liquid chromatography-electrospray ionization-tandem mass spectrometry-selected reaction monitoring method to determine levels of the PHB-DNA adducts O(6)-[4-(3-pyridyl)-4-hydroxybut-1-yl]-2'-deoxyguanosine (O(6)-PHB-dGuo, 10b), O(2)-[4-(3-pyridyl)-4-hydroxybut-1-yl]thymidine (O(2)-PHB-dThd, 11b), and 7-[4-(3-pyridyl)-4-hydroxybut-1-yl]-2'-deoxyguanosine (7-PHB-dGuo, 12b), the latter as the corresponding base 7-[4-(3-pyridyl)-4-hydroxybut-1-yl]-Gua (7-PHB-Gua, 14b) in DNA isolated from liver and lung of rats treated with 10 ppm NNK, (S)-NNAL, or (R)-NNAL in the drinking water for 20 weeks and sacrificed at 1, 2, 5, 10, 16, and 20 weeks. PHB-DNA adduct levels were higher in lung than in liver at each time point, consistent with previous studies of POB-DNA adducts in rats treated with NNK and NNAL in the drinking water. The results showed that NNK and (S)-NNAL behaved in a similar fashion, while (R)-NNAL was strikingly different. In the rats treated with NNK or (S)-NNAL, levels of each adduct at each time point were remarkably similar in lung, and levels of O(2)-PHB-dThd were generally greater than 7-PHB-Gua > O(6)-PHB-dGuo. The highest PHB-DNA adduct levels were found in lung and liver of rats treated with (R)-NNAL, suggesting that there are cytochrome P450s that efficiently catalyze the alpha-methyl hydroxylation of this compound. The results of this study provide further support for our hypothesis that (S)-NNAL is rapidly formed from NNK, sequestered at an unknown site in the lung, and then released and reoxidized to NNK with consequent DNA adduct formation resulting in lung carcinogenicity.  相似文献   

20.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 1) and its metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, 2) are both potent pulmonary carcinogens in rats. The metabolism of NNK to NNAL is stereoselective and reversible, with (S)-NNAL being the major enantiomer formed from NNK. In rats, (R)-NNAL undergoes facile glucuronidation and is rapidly excreted in urine, whereas (S)-NNAL is preferentially retained in tissues and converted to NNK. We hypothesized that the lung carcinogenicity of NNK in the rat is due in part to the preferential retention of (S)-NNAL in the lung, the reconversion to NNK, and then the metabolic activation of NNK to pyridyloxobutyl (POB)-DNA adducts. We tested this hypothesis by treating male F344 rats with 10 ppm of NNK, (R)-NNAL, or (S)-NNAL in drinking water. After 1, 2, 5, 10, 16, or 20 weeks of treatment, POB-DNA adducts in liver and lung DNA were quantified by HPLC-ESI-MS/MS. At each time point, total adduct levels were higher in the lung than in the liver. O2-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O2-POB-dThd, 13) was the major adduct detected. Total adduct levels in the rats treated with (S)-NNAL were 0.6-1.3 times as great as those in the NNK group in the lung and 0.7-1.4 times in the liver, and 6-14 times higher than those in the (R)-NNAL group in the lung and 11-17 times in the liver. These results suggest that (S)-NNAL is stereoselectively retained in tissues. This study demonstrates for the first time the accumulation and persistence of specific POB-DNA adducts in the rat lung and liver during chronic treatment with NNK, (R)-NNAL, and (S)-NNAL and supports the hypothesis that the preferential retention of (S)-NNAL in the lung, followed by reconversion to NNK and then the metabolic activation of NNK is critical for lung carcinogenesis by NNK and NNAL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号