首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
1. It is known that the α4‐subunit is likely to occur in the brain predominantly in α4β3δ receptors at extrasynaptic sites. Recent studies have revealed that the α1‐, α4‐, γ2‐ and δ‐subunits may colocalize extrasynaptically in dentate granule cells of the hippocampus. In the present study, we characterized a series of recombinant GABAA receptors containing human (H) and rat (R) α14‐, β23‐ and γ2S/δ‐subunits in Xenopus oocytes using the two‐electrode voltage‐clamp technique. 2. Both Hα1β3δ and Hα4β3γ2S receptors were sensitive to activation by GABA and pentobarbital. Contrary to earlier findings that the α4β3δ combination was more sensitive to agonist action than the α4β3γ2S receptor, we observed extremely small GABA‐ and pentobarbital‐activated currents at the wild‐type Hα4β3δ receptor. However, GABA and pentobarbital activated the wild‐type Rα4β3δ receptor with high potency (EC50 = 0.5 ± 0.7 and 294 ± 5 μmol/L, respectively). 3. Substituting the Hα4 subunit with Rα4 conferred a significant increase in activation on the GABA and pentobarbital site in terms of reduced EC50 and increased Imax. When the Hα4 subunit was combined with the Rβ3 and Rδ subunit in a heteropentameric form, the amplitude of GABA‐ and pentobarbital‐activated currents increased significantly compared with the wild‐type Hα4β3δ receptor. 4. Thus, the results indicate that the Rα4β3δ, Hα1β3δ and Hα4β3γ2S combinations may contribute to functions of extrasynaptic GABAA receptors. The presence of the Rα4 subunit at recombinant GABAA receptors containing the δ‐subunit is a strong determinant of agonist action. The recombinant Hα4β3δ receptor is a less sensitive subunit composition in terms of agonist activation.  相似文献   

2.
3.
Alzheimer's disease is most common neurodegenerative disorder and is characterized by increased production of soluble amyloid‐β oligomers, the main toxic species predominantly formed from aggregation of monomeric amyloid‐β (Aβ). Increased production of Aβ invokes a cascade of oxidative damages to neurons and eventually leads to neuronal death. This study was aimed to investigate the neuroprotective effects of a β‐sheet breaker α/β‐hybrid peptide (BSBHp) and the underlying mechanisms against Aβ40‐induced neurotoxicity in human neuroblastoma SH‐SY5Y cells. Cells were pretreated with the peptide Aβ40 to induce neurotoxicity. Assays for cell viability, cell membrane damage, cellular apoptosis, generation of reactive oxygen species (ROS), intracellular free Ca2+, and key apoptotic protein levels were performed in vitro. Our results showed that pretreatment with BSBHp significantly attenuates Aβ40‐induced toxicity by retaining cell viability, suppressing generation of ROS, Ca2+ levels, and effectively protects neuronal apoptosis by suppressing pro‐apoptotic protein Bax and up‐regulating antiapoptotic protein Bcl‐2. These results suggest that α/β‐hybrid peptide has neuroprotective effects against Aβ40‐induced oxidative stress, which might be a potential therapeutic agent for treating or preventing neurodegenerative diseases.  相似文献   

4.
5.
1. G‐Protein‐coupled receptors (GPCR) and electrical field stimulation (EFS) regulate cardiac function and pathological remodelling, including cardiac hypertrophy. Cardiac Ca2+/calmodulin‐dependent protein kinase (CaMK) IIδ expression and activity are altered in cardiac hypertrophy and heart failure. The aim of the present study was to determine the effects of CaMKIIδ isoforms on neonatal rat cardiomyocyte hypertrophy induced by GPCR and EFS. 2. Cardiac hypertrophy was induced by angiotensin II, phenylephrine or EFS and was confirmed by increases in cell volume, [3H]‐leucine incorporation, sarcomere assembly and mRNA expression of atrial natriuretic factor and β‐myosin heavy chain. The effects of the CaMKII inhibitors KN93 and autocamtide 2‐related inhibitory peptide (AIP) on cardiomyocyte hypertrophy were investigated, as was the effect of overexpression of dominate negative CaMKIIδ. 3. Cardiomyocyte hypertrophy was inhibited by the CaMKII inhibitors KN93 and AIP and by overexpression of dominate negative CaMKIIδ, but was potentiated by overexpression of wild‐type CaMKIIδB or CaMKIIδC. Activation of CaMKII by GPCR agonists or EFS was inhibited by the CaMKII inhibitors. 4. The GPCR agonists and EFS synergistically activated CaMKII and upregulated CaMKIIδB and CaMKIIδC mRNA expression and protein synthesis. All these effects were abolished by the CaMKII inhibitors. 5. The findings of the present study indicate that CaMKII orchestrates additive prohypertrophic factors between GPCR agonists and EFS. Thus, CaMKII may be a useful target in the clinical treatment of hypertrophy and cardiac remodelling.  相似文献   

6.
It is well‐accepted that inflammation plays an important role in the development of cardiac remodelling and that therapeutic approaches targeting inflammation can inhibit cardiac remodelling. Although a large amount of evidence indicates that activation of α7 nicotinic acetylcholine receptor (α7nAChR) causes an anti‐inflammatory effect, the role of α7nAChR in cardiac remodelling and the underlying mechanism have not been established. To investigate the effect of the specific α7nAChR agonist, PNU282987, on cardiac remodelling induced by isoproterenol (ISO 60 mg/kg per day) in mice, the cardiomyocyte cross‐sectional area (CSA) and collagen volume fraction were evaluated by hematoxylin and eosin (HE) and Masson staining, respectively. Cardiac function and ventricular wall thickness were measured by echocardiography. The protein expressions of collagen I, matrix metalloproteinase 9 (MMP‐9), transforming growth factor β1 (TGF‐β1), and Smad3 were analyzed by Western blot. ISO‐induced cardiac hypertrophy, characterized by an increase in the heart weight/body weight ratio, CSA and ventricular wall thickness. Moreover, cardiac fibrosis indices, such as collagen volume fraction, MMP‐9 and collagen I protein expression, were also increased by ISO. PNU282987 not only attenuated cardiac hypertrophy but also decreased the cardiac fibrosis induced by ISO. Furthermore, PNU282987 suppressed TGF‐β1 protein expression and the phosphorylation of Smad3 induced by ISO. In conclusion, PNU282987 ameliorated the cardiac remodelling induced by ISO, which may be related to the TGF‐β1/Smad3 pathway. These data imply that the α7nAChR may represent a novel therapeutic target for cardiac remodelling in many cardiovascular diseases.  相似文献   

7.
Activated protein kinase Cδ (PKCδ) associated with cardiac hypertrophy moves from the cytoplasm to the mitochondria and subsequently triggers the apoptotic signalling pathway. The underlying mechanisms remain unknown. The aim of the present study was to investigate whether mitochondrial translocation of PKCδ phosphorylates multiple sites of Bcl‐2, resulting in an imbalance between Bcl‐2 and Bak or Bax, thus enhancing the susceptibility of hypertrophic cardiomyocytes to angiotensin II (AngII)‐induced apoptosis. Chronic pressure overload was induced by transverse aortic constriction (TAC) in rats. The apoptotic rate increased in hypertrophied cardiomyocytes. In AngII‐treated hearts (10 nmol/L, 60 min), there was an increase in the number of TERMINAL deoxyribonucleotidyl transferase‐mediated dUTP–digoxigenin nick end‐labelling (TUNEL)‐positive cells; PKCδ inhibition with 500 nmol/L δV1‐1 for 60 min prevented the AngII‐induced increase in apoptosis. In the hypertrophied myocardium, PKCδ expression increased, whereas that of Bcl‐2 decreased compared with the synchronous control. Treatment of hearts with 10 nmol/L AngII for 60 min activated PKCδ and induced translocation of PKCδ to the mitochondria, where activated PKCδ facilitated the phosphorylation of Bcl‐2 at serine‐87 and serine‐70 sites. The multisite phosphorylated Bcl‐2 was released from the mitochondria, and exhibited reduced affinity for Bak and Bax. The imbalance between Bcl‐2 and Bak/Bax induced the release of mitochondrial cytochrome c and then activated the caspase 3 apoptotic pathway during AngII stimulation (10 nmol/L, 60 min) of hypertrophied cardiomyocytes. Inhibition of PKCδ reduced these effects of AngII. The results suggest that PKCδ can counteract the anti‐apoptotic effect of Bcl‐2 and may promote cardiomyocyte apoptosis through multisite phosphorylation of Bcl‐2 in hypertrophied cardiomyocytes.  相似文献   

8.
Depression is a common mental disorder that has been linked to a decrease in the expression of serotonin and/or the serotonin transporter in the brain. Antidepressants that target the monoaminergic system are widely used in the clinical setting. Peroxisome proliferator‐activated receptor δ (PPAR δ) overexpression or activation is thought to improve depression‐like behaviours in rodents. The present study was designed to characterize the changes in PPARδ expression in the hippocampus in rats with stress‐induced depression. We used an unpredictable chronic mild stress (CMS) model in rats to study the role of PPARδ in the hippocampus. Behaviour was evaluated via a forced swim test (FST), a tail suspension test (TST), and a sucrose preference test (SPT). Then, the changes in PPARδ expression and other signals were determined using Western blots. We found that PPARδ expression in the hippocampus was markedly reduced in rats with depression. Moreover, the expression of the serotonin transporter was also significantly decreased. Treatment with a PPARδ agonist enhanced the expression of PPARδ and the serotonin transporter in the hippocampus of rats with stress‐induced depression. Additionally, treatment with a PPARδ agonist increased the expression of the serotonin transporter in cultured hippocampal (H19‐7) cells, and this action was ablated in the absence of PPARδ, which was attenuated with shRNA. Taken together, we found that PPARδ plays an important role in the regulation of serotonin transporter expression and that chronic stress may lower PPARδ expression in the brain via apoptosis and may attenuate serotonin transporter expression, thus inducing depression in rats.  相似文献   

9.
Objectives The anti‐inflammatory effects of an aqueous extract of Schizonepeta tenuifolia on lipopolysaccharide (LPS)‐induced tumour necrosis factor‐α (TNF‐α) and interleukin‐6 (IL‐6) in vivo and in vitro have been investigated. Methods C57BL/6 mice were orally administered phosphate‐buffered saline (control) or S. tenuifolia water extract (50, 200, 500 or 1000 mg/kg) for 10 days before intraperitoneal administration of LPS (1.3 mg/kg). Blood samples were obtained 1 h after LPS challenge, followed by determination of TNF‐α and IL‐6 levels. Peritoneal macrophages from thioglycollate‐injected mice were obtained and stimulated with LPS and S. tenuifolia water extract for viability assay, cytokine analysis, real‐time RT PCR and Western blotting. Key findings Oral administration of S. tenuifolia water extract to mice significantly reduced LPS‐induced serum levels of TNF‐α, but not IL‐6. When peritoneal macrophages were treated in vitro with S. tenuifolia water extract, the inhibition of LPS‐induced TNF‐α was more pronounced than that of IL‐6 at the level of secreted protein and mRNA. S. tenuifolia water extract reduced the degradation of IκBα and the nuclear relocation of p65 NF‐κB, but the phosphorylation of IκBα was not affected. Inhibition of c‐Jun N‐terminal kinase/stress‐activated protein kinase (JNK/SAPK) by S. tenuifolia water extract led secondarily to the inhibition of phospho‐c‐Jun and phospho‐ATF‐2. Conclusions These results indicated that the downregulation of TNF‐α by S. tenuifolia water extract may have involved the inhibition of both IκBα degradation and activation of c‐Jun and ATF‐2 involving suppression of JNK/SAPK.  相似文献   

10.
In our previous experiments, we found β‐catenin was highly expressed in the tumor area with high invasive ability and poor prognosis. In this study, we have examined the mechanism by which ERα regulates β‐catenin expression as well as the metastasis ability of hepatocellular cancer HA22T cells. To identify whether the anticancer effect of estrogen and ERα is mediated through suppression of β‐catenin expression, we co‐transfected pCMV‐β‐catenin and ERα into HA22T cells, and determined the cell motility by wound healing, invasion, and migration assays. Results showed that estrogen and/or ERα inhibited β‐catenin gene expression and repressed HA22T cell motility demonstrated that similar data was observed in cells expressing the ERα stable clone. Moreover, we examined the protein‐protein interaction between ERα and β‐catenin by immunostain, co‐immunoprecipitation, and Western blotting. E2 enhanced the binding of ERα with β‐catenin and then triggered β‐catenin to bind with E3 ligase (βTrCP) to promote β‐catenin degradation. Finally by employing systematic ChIP studies, we showed ERα can interact directly with the β‐catenin promoter region following E2 treatment. All our results reveal that estrogen and ERα blocked metastatic function of HA22T cells by modulating GSK3β and βTrCP expression and further enhanced β‐catenin degradation and suppressed its downstream target genes. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 519–529, 2017.  相似文献   

11.
Accumulating evidence has suggested that the ataxia telangiectasia group D complementing (ATDC) gene is an emerging cancer‐related gene in multiple human cancer types. However, little is known about the role of ATDC in hepatocellular carcinoma (HCC). In this study, we aimed to investigate the expression level, biological function and underlying mechanism of ATDC in HCC. The expression of ATDC in HCC cells was detected by quantitative real‐time polymerase chain reaction and western blot analysis. Cell growth was determined by cell counting kit‐8 assay and colony formation assay. Cell invasion was assessed by Transwell invasion assay. The activation status of Wnt/β‐catenin signalling was evaluated by the luciferase reporter assay. Functional experiments showed that the silencing of ATDC expression significantly suppressed the growth and invasion of HCC cells, whereas the overexpression of ATDC promoted the growth and invasion of HCC cells in vitro. Moreover, we showed that ATDC overexpression promoted the phosphorylation of glycogen synthase kinase (GSK)‐3β and resulted in the activation of Wnt/β‐catenin signalling. Notably, the inhibition of GSK‐3β activity significantly abrogated the tumour suppressive effect of ATDC silencing, while the silencing of β‐catenin partially reversed the oncogenic effect of ATDC overexpression. Taken together, these findings reveal an oncogenic role of ATDC in HCC and show that the suppression of ATDC impedes the growth and invasion of HCC cells associated with the inactivation of Wnt/β‐catenin signalling. Our study suggests that ATDC may serve as a potential therapeutic target for HCC.  相似文献   

12.
Females are born with a finite number of oocyte‐containing follicles and ovary damage results in reduced fertility. Cadmium accumulates in the reproductive system, damaging it, and the cigarette smoke is a potential exposure route. Natural therapies are relevant to health benefits and disease prevention. This study verified the effect of cadmium exposure on the ovaries of mice and the blueberry extract as a potential therapy. Blueberry therapy was effective in restoring reactive species levels and δ‐aminolevulinate dehydratase activity, and partially improved the viability of cadmium‐disrupted follicles. This therapy was not able to restore the 17 β‐hydroxysteroid dehydrogenase activity. Extract HPLC evaluation indicated the presence of quercetin, quercitrin, isoquercetin, and ascorbic acid. Ascorbic acid was the major substance and its concentration was 620.24 µg/mL. Thus, cadmium accumulates in the ovaries of mice after subchronic exposure, inducing cellular damage, and the blueberry extract possesses antioxidant properties that could protect, at least in part, the ovarian tissue from cadmium toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 188–196, 2017.  相似文献   

13.
Recently, we proposed that inhibition of protein kinase (PK) Cδ may be a useful target for protection against methamphetamine (MA)‐induced dopaminergic toxicity. We demonstrated that treatment with MA resulted in a significant decrease in phosphorylation of tyrosine hydroxylase (TH) at Ser40 in the striatum, but not in the phosphorylation of TH at Ser31. In the present study, treatment with rottlerin (1.5 or 3.0 μg, i.c.v, once a day for 5 days), a PKCδ inhibitor, or a PKCδ antisense oligonucleotide (ASO; 2.5 μg/μl, i.c.v., 3 times) significantly attenuated MA‐induced reductions in the phosphorylation of TH at Ser40 and in the expression of PKA in the striatum of mice. This attenuation was significantly counteracted by H89 (10 or 30 ng, i.c.v., 1 h after the last MA administration), a PKA inhibitor. Treatment with rottlerin or ASO significantly attenuated the MA‐induced increase in protein phosphatase (PP) 2A activity. FTY720 (1 or 5 mg/kg, i.p., 1 h after the last MA administration), a PP2A activator, significantly reversed the recovery in TH phosphorylation mediated by inhibition of PKCδ after MA treatment. Both H89 and FTY720 counteracted the recovery of MA‐induced behavioural impairments induced by PKCδ inhibition. The effects, mediated by rottlerin or ASO in MA‐treated wild‐type mice were comparable with those in MA‐treated PKCδ?/? mice. However, neither inhibition of the mitogen‐activated protein kinase subfamily (extracellular signal‐regulated kinase, c‐Jun N‐terminal kinase, p38) nor inhibition of calcium calmodulin kinase II significantly altered PKCδ inhibition‐mediated attenuation of MA‐induced impairment of TH phosphorylation. The results suggest that genetic or pharmacological inhibition of PKCδ requires modulation of PKA expression and/or PP2A activity to attenuate the impairment of TH phosphorylation at Ser40 and behavioural activity induced by MA.  相似文献   

14.
Nicotinic acetylcholine receptors are widely distributed throughout the human brain and are believed to play a role in several neurological and psychiatric disorders. In order to identify an effective PET radioligand for in vivo assessment of the α4β2 subtype of nicotinic receptor, we synthesized [18F]3‐[1‐(3‐fluoropropyl)‐(S)‐pyrrolidin‐2‐ylmethoxy]pyridine (NicFP). The in vitro KD of NicFP was determined to be 1.1 nM, and the log P value obtained by HPLC analysis of the unlabelled standard was found to be 2.2. The radiosynthesis of [18F]NicFP was carried out by a nucleophilic substitution reaction of anhydrous [18F]fluoride and the corresponding mesylate precursor. After purification by HPLC, the radiochemical yield was determined to be 11.3±2.1% and the specific activity was 0.47±0.18 Ci/μmol (EOS, n = 3). The time of synthesis and purification was 99±2 min. The final product was prepared as a sterile saline solution suitable for in vivo use. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Novel pyrimidin‐4‐one derivatives have been synthesized using EDC coupling and evaluated as glycogen synthase kinase‐3β (GSK‐3β) inhibitors. Among all the synthesized compounds, compound 5 (3‐methyl‐6‐phenyl‐2‐(piperazin‐1‐yl)‐3,4‐dihydropyrimidin‐4‐one) exhibited the most potent inhibitory activity against GSK‐3β with IC50 value of 74 nm . The molecular docking studies were performed to elucidate the binding modes of the compounds with the target, and a crucial interaction involving hydrogen bond formation with Val‐135 to the active site of GSK‐3β was observed. Furthermore, the synthesized compounds were subjected to in vivo evaluation of their antidepressant activity, and compound 5 showing highest inhibition of GSK‐3β was also found to significantly reduce the duration of immobility at 50 mg/kg, when compared with fluoxetine, a known antidepressant drug. The results of our study suggest that compound 5 may serve as a valuable template for the design and development of inhibitors of GSK‐3β with antidepressant activity.  相似文献   

16.
17.
Cardiac fibrosis is a pathological feature commonly found in hearts exposed to haemodynamic orneurohormonal stress. Elevated levels of arginine vasopressin (AVP) are closely associated with the progression of heart failure and could be an underlying cause of cardiac fibrosis. The aim of this study is to characterize the effect of AVP on neonatal rat cardiac fibroblasts (NRCFs) and to illustrate its signalling mechanism. The proliferative effect of AVP was assessed by methylthiazolyldiphenyl‐tetrazolium assay and 5‐bromo‐2′‐deoxyuridine (BrdU) incorporation assay, and the amounts of cellular signalling proteins α‐smooth muscle actin (α‐SMA), matrix metalloproteinase (MMP) 2, MMP9, and phosphorylated ERK1/2 were determined by western blotting. AVP, in a time‐ and concentration‐dependent manner, promoted NRCF proliferation and the expression of MMP2 and MMP9. Inhibition of G protein‐coupled receptor kinase2 (GRK2) by the inhibitory peptide GRK2‐Ct or knock‐down of GRK2 suppressed AVP‐induced BrdU incorporation and the expression of MMP2 and α‐SMA in NRCFs. Moreover, shRNA‐mediated silencing of β‐arrestin1 or β‐arrestin 2 abolished AVP‐induced BrdU incorporation and MMP2 expression. AVP‐induced NRCF proliferation depended on the phosphorylation of ERK1/2, and inhibition of GRK2 or silencing of β‐arrestins blocked AVP‐induced ERK1/2 phosphorylation. The effects of AVP on NRCF proliferation and α‐SMA expression were blocked by SR45059, a vasopressin receptor type1A (V1AR) selective antagonist. In conclusion, AVP promotes NRCF proliferation through V1AR‐mediated GRK2/β‐arrestin/ERK1/2 signalling.  相似文献   

18.
1. Preconditioning has been proposed to protect the myocardium by inhibiting glycogen‐synthase kinase (GSK) 3β. The aim of the present study was to test whether transfection of ventricular myocytes with inactive GSK3β would mimic preconditioning and whether a constitutively active form of GSK3β would prevent protection by an opioid receptor agonist. 2. Isolated ventricular myocytes from adult rats were infected with live adenovirus containing either a wild‐type (wtGSK), constitutively active (caGSK) or dominant‐negative (dnGSK) GSK3β plasmid. Cells were loaded with tetramethylrhodamine ethyl ester (TMRE) and exposed to H2O2 (100 μmol/L) for 40 min before mitochondrial membrane potential (ΔΨm) was assessed using flow cytometric analysis. 3. Fluorescence intensity was reduced in H2O2‐treated cells compared with untreated cells, presumably because oxidant injury opened mitochondrial permeability transition pores, causing mitochondria to lose TMRE. The selective GSK3β inhibitor SB216763, as well as the δ‐opioid receptor agonist [d ‐Ala2‐d ‐Leu5]‐enkephalin (DADLE) (1 μmol/L), protected cells against peroxide‐induced loss of ΔΨm. 4. Cells transfected with dnGSK (1 μmol/L) were equally protected against peroxide stress, when given throughout the TMRE and H2O2 treatment, confirming a protective effect of GSK3β with a highly selective inhibition. Cells transfected with wtGSK did not show any difference in responses to H2O2, SB216763 or DADLE compared with untransfected cells, suggesting that adenovirus infection itself had no effect. In contrast, caGSK‐transfected myocytes could no longer be protected with DADLE, suggesting a role for GSK3β between the surface receptor and the mitochondria. 5. These experiments confirm that inhibition of GSK3β protects the myocytes, but also that the preconditioning mimetic DADLE loses its protective effect when a constitutively active GSK3β is present.  相似文献   

19.
A series of novel 3‐(furo[2,3‐b]pyridin‐3‐yl)‐4‐(1H‐indol‐3‐yl)‐maleimides were designed, synthesized, and biologically evaluated for their GSK‐3β inhibitory activities. Most compounds showed favorable inhibitory activities against GSK‐3β protein. Among them, compounds 5n , 5o , and 5p significantly reduced GSK‐3β substrate tau phosphorylation at Ser396 in primary neurons, indicating inhibition of cellular GSK‐3β activity. In the in vitro neuronal injury models, compounds 5n , 5o , and 5p prevented neuronal death against glutamate, oxygen–glucose deprivation, and nutrient serum deprivation which are closely associated with cerebral ischemic stroke. In the in vivo cerebral ischemia animal model, compound 5o reduced infarct size by 10% and improved the neurological deficit. The results may provide new insights into the development of novel GSK‐3β inhibitors with potential neuroprotective activity against brain ischemic stroke.  相似文献   

20.
5‐((1‐[11C]‐methyl‐2‐(S)‐pyrrolidinyl)methoxy)‐2‐chloro‐3‐((E)‐2‐(2‐fluoropyridin‐4‐yl)‐vinyl)pyridine ([11C]‐FPVC) was synthesized from [11C]‐methyl iodide and the corresponding normethyl precursor. The average time of synthesis, purification, and formulation was 42 min with an average non‐decay‐corrected radiochemical yield of 19%. The average specific radioactivity was 359 GBq/µmol (9691 mCi/µmole) at end of synthesis (EOS). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号