首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tau microtubule-associated proteins are believed to play a role in regulation of the growth of neuronal processes. In order to study the function of tau protein in vivo, we examined the inhibition of tau expression in PC12 cells by exposing the cells to tau antisense oligodeoxynucleotides. A specific retraction of neurites was observed after 3-4 days of incubation with nerve growth factor (NGF) and the antisense oligodeoxynucleotides. This is different from the previously described retraction of neurites at the initiation step following exposure to tubulin antisense oligodeoxynucleotides, indicating that tau proteins are involved at later stages of neurite outgrowth. Analysis of tau protein isoforms in NGF-induced PC12 cells showed a transition from immature to mature tau isoforms, thus relating the appearance of the latter with the stabilization step of neurite outgrowth. Use of an RNase-protection assay demonstrated a similar switch from immature to mature tau mRNA species. The transition to stable microtubules was verified by the appearance of microtubule bundles and their stability to colchicine treatment. Both phenomena occurred between 2 and 4 days of NGF induction. These results indicate that in vivo only mature tau isoforms are involved in the transition from unstable to stable neurites, which is a key step in neuronal development.  相似文献   

2.
Neuritin is a small, highly conserved GPI-anchored protein involved in neurite outgrowth. We have analyzed the involvement of neuritin in NGF-induced differentiation of PC12 cells by investigating the time-course of neuritin expression, the effects of its overexpression or silencing, and the possible mechanisms of its regulation and action. Real-time PCR analysis has shown that neuritin gene is upregulated by NGF in PC12 cells hours before neurite outgrowth becomes appreciable. PC12 cells transfected with a plasmid expressing neuritin display a significant increase in the response to NGF: 1) in the levels of SMI312 positive phosphorylated neurofilament proteins (markers for axonal processes) and tyrosine hydroxylase; 2) in the percentage of cells bearing neurites; as well as 3) in the average length of neurites when compared to control cells. On the contrary, neuritin silencing significantly reduces neurite outgrowth. These data suggest that neuritin is a modulator of NGF-induced neurite extension in PC12 cells. We also showed that neuritin potentiated the NGF-induced differentiation of PC12 cells without affecting TrkA or EGF receptor mRNAs expression. Moreover, the S-methylisothiourea (MIU), a potent inhibitor of inducible nitric oxide synthases, partially counteracts the NGF-mediated neuritin induction. These data suggest that NGF regulates neuritin expression in PC12 cells via the signaling pathway triggered by NO. This study reports the first evidence that neuritin plays a role in modulating neurite outgrowth during the progression of NGF-induced differentiation of PC12 cells. PC12 cells could be considered a valuable model to unravel the mechanism of action of neuritin on neurite outgrowth. (c) 2007 Wiley-Liss, Inc.  相似文献   

3.
4.
5.
The neuronal intermediate filaments include not only the neurofilament triplet proteins but also peripherin and alpha-internexin. To determine whether neurite outgrowth is enhanced by alpha-internexin, the cDNA of rat alpha-internexin tagged with enhanced green fluorescent protein (EGFP) was transfected into a rat adrenal pheochromocytoma cell line PC12 that responds to nerve growth factor (NGF) by induction of the neuronal phenotype. Selected stable clones were induced by NGF and examined for expression patterns of neuronal intermediate filaments by Western blot and immunocytochemistry. Differentiating neurons were also collected after NGF induction for RT-PCR analysis. Overexpressed alpha-internexin-EGFPs were found mainly in cell bodies and the proximal part of neurites. It was also found that overexpression of alpha-internexin-EGFPs enhanced the neurite outgrowth of PC12 cells at the early stages of NGF induction. Meantime, NF-L and NF-M were upregulated by the overexpression of alpha-internexin-EGFPs. Interestingly, alpha-internexin-EGFP-transfected cells obviously detached from culture plates at the later stages of NGF induction. Massive IF accumulations, swelling mitochondria, and degenerating neurites with numerous electron-dense granules were observed ultrastructurally in the alpha-internexin-EGFP-transfected cells. In addition, neuronal death was also characterized positively by the TUNEL assay. These observations may imply that cell death was occurring in alpha-internexin-EGFP-transfected cells. From this study, it could be suggested that alpha-internexin plays an important role in neurite outgrowth and regulates the expression of other neurofilaments during neuronal development. Apoptosis-like cell death could also be induced by the overexpression of alpha-internexin-EGFP in PC12 cells after NGF induction.  相似文献   

6.
Expression of the growth associated protein GAP-43 (B-50, F1, neuromodulin) increases with the onset of neuronal development as seen by the growth of axons. To investigate the relationship of the signaling events leading to GAP-43 expression and neurite outgrowth, we examined PC12 clones with different phenotypes. Three clones, PC12-NO9, PC12-N15, and PC12-N21, responded to NGF with increased expression of GAP-43, but only two clones, PC12-N15 and PC12-N21, responded with growth of neurites. Similar increases in expression of GAP-43 were obtained when these clones were exposed to the phorbol ester PMA. Thus, NGF and PMA induced GAP-43 expression in PC12-NO9 cells in the absence of neurite outgrowth. In contrast, all three clones, were able to respond to forskolin (FOR) by initiation of long neurites which had synaptophysin in the growth cones, but showed only low levels of GAP-43. Combined stimualtion of PC12-NO9 cells with FOR and PMA both initiated neurites and increased expression of GAP-43 as seen in normal PC12 clones were also able to respond to FOR with increased neurite outgrowth in the presence of low levels of GAP-43. The dissociation of GAP-43 expression and growth of neurites observed in PC12-NO9 cells suggests that signaling mechanisms can independently regulate GAP-43 expression and neurite outgrowth during neuronal differentiation. © 1993 Wiley-Liss, Inc.  相似文献   

7.
T Koike 《Brain research》1983,289(1-2):293-303
Dependence of neurite outgrowth on extracellular Mg2+ and Ca2+ was studied in nerve growth factor-responsive pheochromocytoma PC 12 cells under assay conditions in which neurite formation was independent of both RNA synthesis and protein synthesis. NGF-induced neurite formation occurred maximally in the presence of extracellular Mg2+ at concentrations greater than 1.0 mM. However, extracellular Ca2+ alone did not stimulate the neurite formation, and inhibited this process at higher concentrations (greater than 10 mM). These data are consistent with the fact that NGF-mediated neurite extension occurred in assay medium containing either 1.0 mM EGTA or 0.5 mM LaCl3. Other divalent cations so far tested proved to be negative, suggesting that this phenomenon appears to be specific to Mg2+. Moreover, quantitative analysis revealed that the length and thickness of neurites formed were controlled by the presence of extracellular Ca2+. Thus, neurites formed at lower concentrations of Ca2+ in the presence of 1.0 mM Mg2+ and NGF were found to be thinner and longer than those formed at higher concentrations of Ca2+, suggesting that Ca2+ and Mg2+ have separate regulatory functions in the formation of neurites of PC 12 cells.  相似文献   

8.
W Ziegler  K Unsicker 《Brain research》1981,227(4):622-627
The extension of neurites from adrenal medullary chromaffin cells and PC 12 cells upon addition of nerve growth factor (NGF) has been proposed to be mediated by cyclic AMP. It is shown here that substances increasing intracellular cyclic AMP levels have a reverse effect on NGF-induced neurite outgrowth of these two related cell types. Hence, cyclic AMP is not generally involved in neurite outgrowth from NGF responsive cells. Furthermore, it is concluded that PC 12 cells cannot always be considered as a suitable model for adrenal medullary chromaffin cells.  相似文献   

9.
Alzheimer's amyloid precursor protein (APP), the precursor of beta-amyloid (Abeta), is an integral membrane protein with a receptor-like structure. We recently demonstrated that the mature APP (mAPP; N- and O-glycosylated form) is phosphorylated at Thr668 (numbering for APP695 isoform), specifically in neurons. Phosphorylation of mAPP appears to occur during, and after, neuronal differentiation. Here we report that the phosphorylation of mAPP begins 48-72 hr after treatment of PC12 cells with NGF and that this correlates with the timing of neurite outgrowth. The phosphorylated form of APP is distributed in neurites and mostly in the growth cones of differentiating PC12 cells. PC12 cells stably expressing APP with Thr668Glu substitution showed remarkably reduced neurite extension after treatment with NGF. These observations suggest that the phosphorylated form of APP may play an important role in neurite outgrowth of differentiating neurons.  相似文献   

10.
Adult dorsal root ganglion (DRG) cells are capable of neurite outgrowth in vivo and in vitro after axotomy. We have investigated, in cultured adult rat DRG cells, the relative influence of nerve growth factor (NGF) or a prior peripheral nerve lesion on the capacity of these neurons to produce neurites. Since there is evidence suggesting that the growth-associated protein GAP-43 may play a crucial role in axon elongation during development and regeneration, we have also compared the effect of these treatments on GAP-43 mRNA expression. NGF increased the early neurite outgrowth in a subpopulation of DRG cells. This effect was substantially less, however, than that resulting from preaxotomy, which initiated an early and profuse neurite outgrowth in almost all cells. No difference in the expression of GAP-43 mRNA was found between neurons grown in the presence or absence of NGF over 1 week of culture, in spite of the increased growth produced by NGF. In contrast, cultures of neurons that had been preaxotomized showed substantial increase in GAP-43 mRNA and NGF had, as expected, a significant effect on substance P mRNA levels. Two forms of growth may be present in adult DRG neurons: an NGF-independent, peripheral nerve injury-provoked growth associated with substantial GAP-43 upregulation, and an NGF-dependent growth that may underlie branching or sprouting of NGF-sensitive neurons, but which is not associated with increased levels of GAP-43 mRNA. © 1994 Wiley-Liss, Inc.  相似文献   

11.
Second-generation antipsychotic drugs, olanzapine, quetiapine, and clozapine, were found to enhance neurite outgrowth induced by nerve growth factor (NGF) in PC12 cells. These drugs increased the number of cells bearing neurites, the length of primary neurites, and the size of the cell body of NGF-differentiated PC12 cells. In addition, the drugs induced sprouting of neurite-like processes in PC12 cells in the absence of NGF. Olanzapine, quetiapine, and clozapine enhanced the phosphorylation of Akt and ERK in combination with NGF, and specific inhibitors of these pathways attenuated these effects. Pretreatment of cells overnight with pertussis toxin had no effect on NGF-induced differentiation but significantly decreased the effects of the antipsychotic drugs on neurite outgrowth, suggesting that Gi/Go-coupled receptors are involved in the response to drug. A better understanding of the mechanisms underlying the effects of the second-generation drugs might suggest new therapeutic targets for enhancement of neurite outgrowth.  相似文献   

12.
Second-generation antipsychotic drugs, olanzapine, quetiapine, and clozapine, were found to enhance neurite outgrowth induced by nerve growth factor (NGF) in PC12 cells. These drugs increased the number of cells bearing neurites, the length of primary neurites, and the size of the cell body of NGF-differentiated PC12 cells. In addition, the drugs induced sprouting of neurite-like processes in PC12 cells in the absence of NGF. Olanzapine, quetiapine, and clozapine enhanced the phosphorylation of Akt and ERK in combination with NGF, and specific inhibitors of these pathways attenuated these effects. Pretreatment of cells overnight with pertussis toxin had no effect on NGF-induced differentiation but significantly decreased the effects of the antipsychotic drugs on neurite outgrowth, suggesting that Gi/Go-coupled receptors are involved in the response to drug. A better understanding of the mechanisms underlying the effects of the second-generation drugs might suggest new therapeutic targets for enhancement of neurite outgrowth.  相似文献   

13.
Dental pulp stem cells (DPSCs) secrete neurotrophic factors which may play an important therapeutic role in neural development, maintenance and repair. To test this hypothesis, DPSCs-conditioned medium (DPSCs-CM) was collected from 72 hours serum-free DPSCs cultures. The impact of DPSCs-derived factors on PC12 survival, growth, migration and differentiation was investigated. PC12 cells were treated with nerve growth factor (NGF), DPSCs-CM or co-cultured with DPSCs using Transwell inserts for 8 days. The number of surviving cells with neurite outgrowths and the length of neurites were measured by image analysis. Immunocytochemical staining was used to evaluate the expression of neuronal markers NeuN, microtubule associated protein 2 (MAP-2) and cytoskeletal marker βIII-tubulin. Gene expression levels of axonal growth-associated protein 43 and synaptic protein Synapsin-I, NeuN, MAP-2 and βIII-tubulin were analysed by quantitative polymerase chain reaction (qRT-PCR). DPSCs-CM was analysed for the neurotrophic factors (NGF, brain-derived neurotrophic factor [BDNF], neurotrophin-3, and glial cell-derived neurotrophic factor [GDNF]) by specific ELISAs. Specific neutralizing antibodies against the detected neurotrophic factors were used to study their exact role on PC12 neuronal survival and neurite outgrowth extension. DPSCs-CM significantly promoted cell survival and induced the neurite outgrowth confirmed by NeuN, MAP-2 and βIII-tubulin immunostaining. Furthermore, DPSCs-CM was significantly more effective in stimulating PC12 neurite outgrowths than live DPSCs/PC12 co-cultures over the time studied. The morphology of induced PC12 cells in DPSCs-CM was similar to NGF positive controls; however, DPSCs-CM stimulation of cell survival was significantly higher than what was seen in NGF-treated cultures. The number of surviving PC12 cells treated with DPSCs-CM was markedly reduced by the addition of anti-GDNF, whilst PC12 neurite outgrowth was significantly attenuated by anti-NGF, anti-GDNF and anti-BDNF antibodies. These findings demonstrated that DPSCs were able to promote PC12 survival and differentiation. DPSCs-derived NGF, BDNF and GDNF were involved in the stimulatory action on neurite outgrowth, whereas GDNF also had a significant role in promoting PC12 survival. DPSCs-derived factors may be harnessed as a cell-free therapy for peripheral nerve repair. All experiments were conducted on dead animals that were not sacrificed for the purpose of the study. All the methods were carried out in accordance with Birmingham University guidelines and regulations and the ethical approval is not needed.

Chinese Library Classification No. R459.9; R364; R622  相似文献   

14.
15.
PC12 cells have been used as a model of sympathetic neurons. Nerve growth factor (NGF), basic fibroblast growth factor (bFGF), and cAMP induce neurite outgrowth from PC12 cells. cAMP induced a greater number of neurites than did NGF. In particular, we attempted to elucidate whether PC12 cell neurites, induced by several factors including NGF, bFGF, and cAMP, form synapses, and whether each neurite has presynaptic and postsynaptic properties. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), we observed that neurites are connected to each other. The connected regions presented dense core vesicles and a clathrin‐coated membrane invagination. In addition, typical maker proteins for axon and dendrite were identified by an immuno‐staining method. Tau‐1, an axonal marker in neurons, was localized at a high concentration in the terminal tips of neurites from PC12 cells, which were connected to neurite processes containing MAP‐2, a dendritic marker in neurons. Furthermore, neurites containing SV2 and synaptotagmin, markers of synaptic vesicles, were in contact with neurites harboring drebrin, a marker of the postsynaptic membrane, suggesting that neurites from PC12 cells induced by NGF, bFGF, and cAMP may form synapse‐like structures. Tat‐C3 toxin, a Rho inhibitor, augmented neurite outgrowth induced by NGF, bFGF, and cAMP. Tat‐C3 toxin together with neurotrophins also exhibited synapse‐like structures between neurites. However, it remains to be studied whether RhoA inhibition plays a role in the formation of synapse‐like structures in PC12 cells. Synapse 64:765–772, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Initiation and elongation of neurites in PC12 cells has been shown to be stimulated by nerve growth factor (NGF). Initiation of NGF-stimulated neurites in a PC12 subclone (PC12-N09) is rapid, giving rise to short neurites that do not elongate after 1 day. To determine whether increasing activation of p21(ras) could restore neurite elongation in these cells and whether it would affect the phosphorylation of signaling proteins, the subclone PC12-N09 was transfected with constitutively active p21(ras61L) (PC12-N09ras61L) and neurite outgrowth with or without NGF was determined. Overexpression of wild-type p21(ras) (PC12-N09rasWT) did not lead to spontaneous neurite initiation but restored the ability of NGF to stimulate continuous neurite elongation. However, NGF-stimulated phosphorylation of ERK, p38, and Akt in PC12-N09rasWT cells is similar in duration to that in PC12-N09 cells, indicating that the p21(ras) signaling through ERK, p38, and Akt was not involved in the restoration of normal neurite elongation in PC12-N09 cells. These results show that p21(ras)-activated pathways other than ERK, p38, and Akt are necessary for appropriate NGF-stimulated neurite elongation in PC12 cells.  相似文献   

17.
Nerve growth factor (NGF) stimulation of PC12 cells activates signaling pathways leading to new protein expression and growth of neurites. In wild type PC12 cells, incubation with phorbol ester (PMA) will activate protein kinase C (PKC) leading to the expression of many proteins necessary for neurite outgrowth, but this activation of PKC alone will not stimulate growth of long neurites. Here, we show in the subline of PC12-N09, which lacks NGF-stimulated growth of long neurites, that a brief incubation with PKC activators, PMA or bryostatin 1 (bryostatin), before NGF incubation, stimulates the growth of long neurites. However, incubation in the reverse order is ineffective. A short incubation with PMA or bryostatin followed by NGF induced tyrosine phosphorylation of MAP kinase (MAPK), which is of the same duration as that induced by NGF alone. Thus, PMA preincubation did not increase the length NGF activation of MAPK. Twenty-four hr after incubation with PMA or bryostatin, PKC isoforms were downregulated but PKC isoforms δ-, and ϵ- were still present. In these cells chronically treated with either PMA or bryostatin to downregulate PKC, NGF incubation preceded by PMA preincubation still led to long neurite outgrowth. These results suggest that a PMA or bryostatin incubation followed by NGF activates PKC isoforms δ-, and ϵ-leading to outgrowth of long neurites, and that the PMA signaling is independent of the MAPK pathway. J. Neurosci. Res. 53:214–222, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
PC12 cells are a pheochromocytoma cell line that can be made to differentiate into sympatheticlike neurons by nerve growth factor (NGF). An essential component of the NGF-induced differentiation is the development of action potentials and sodium channels. Using whole-cell clamp we have confirmed that NGF produces a 5- to 6-fold increase in sodium channel density. The sodium channels induced by NGF are not different from those in cells not treated with NGF and are similar to those in other cell types. Basic fibroblast growth factor (FGF), another growth factor that causes PC12 cells to differentiate into sympathetic-like neurons, also produces a 5- to 6-fold increase in sodium current density with channels indistinguishable from those in PC12 cells treated and not treated with NGF. Basic FGF produces the same or somewhat larger increase in sodium channel density but much less neurite outgrowth. In contrast, epidermal growth factor does not produce neurite outgrowth but induces a small, reproducible increase in sodium channel density. Cyclic AMP produces spike-like processes but not neurites and results in a decrease in sodium current and sodium current density. Dexamethasone, a synthetic glucocorticoid, inhibits the increase in sodium current and sodium current density but does not antagonize the neurite outgrowth induced by NGF. Thus, although the increase in sodium channel expression induced by NGF and basic FGF parallels the changes in morphology that lead to neurite outgrowth, it clearly does not depend on them. The results show that different aspects of neuronal differentiation might be independently regulated by the microenvironment.  相似文献   

19.
Epithelial/epidermal fatty acid-binding protein (E-FABP) is induced in peripheral neurons during nerve regeneration and is found at high levels in central neurons during neuronal migration and development. Furthermore, E-FABP expression is required for normal neurite outgrowth in PC12 cells treated with nerve growth factor (NGF). The present study examined whether E-FABP plays a role in retinal ganglion cell (RGC) differentiation and axon growth. Rat retinal tissues from embryonic (E) and postnatal (P) development through adulthood were examined using immunocytochemical labeling with E-FABP and growth-associated protein 43 (GAP-43) antibodies. E-FABP colocalized with GAP-43 at E14 through P10. At E14, E-FABP immunoreactivity was confined to the somas of GAP-43-positive cells in the ganglion cell layer, but it was localized to their axons by E15. The axons in the optic nerve were GAP-43-positive and E-FABP-negative on E15, but the two proteins were colocalized by E18. Retinal cultures at E15 confirmed that E-FABP and GAP-43 colocalize in RGCs. Postnatally, labeling was present between P1 and P10 but decreased at older ages and was minimally present or absent in adult animals. Western immunoblotting revealed that at E18, P1, and P10 E-FABP levels were at least fourfold greater than those in the adult. By P15, protein levels were only twofold greater, with adult levels reached by P31. Furthermore, E-FABP could be reinduced during axon regeneration. Dissociated P15 retinal cells cultured in the presence of brain-derived neurotrophic factor, ciliary neurotrophic factor, and basic fibroblast growth factor exhibited sixfold more GAP-43 and E-FABP double-positive RGCs (cell body and axons) than controls. Moreover, all GAP-43-immunoreactive RGCs were also positive for E-FABP. Taken together, these results indicate the following: 1) E-FABP is expressed in RGCs as they reached the ganglion cell layer and 2) E-FABP plays a functional role in the elaboration of RGC axons in both development and regeneration.  相似文献   

20.
We investigated the role of the p38 mitogen-activated protein kinase (MAPK) pathway in heat-shock-induced neurite outgrowth of PC12 mutant cells in which nerve growth factor (NGF)-induced neurite outgrowth is impaired. When cultures of the PC12 mutant (PC12m3) cells were exposed to heat stress at 44 degrees C for 10 min, activity of p38 MAPK increased and neurite outgrowth was greatly enhanced. The neurite extension was inhibited by the p38 MAPK inhibitor BS203580. Longer heat treatment of PC12m3 cells provoked cell death, which was enhanced by SB203580. These findings suggest that heat-induced activation of p38 MAPK is responsible for the neurite outgrowth and survival of PC12m3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号