共查询到17条相似文献,搜索用时 46 毫秒
1.
皮肤病灶图像分割可作为医学相关类疾病辅助诊断的重要依据。针对皮肤病灶区域结构复杂和尺度信息参差错落的特点,提出一种基于U型稠密特征融合的皮肤病灶分割方法。编码器利用稠密网络结构和空洞空间金字塔池化充分提取特征与融合,由稠密空间注意力模块与深度可分离卷积解码深层特征,防止病灶区域周围噪声干扰,同时引入融合压缩注意力模块进一步提高分割性能,通过二值交叉熵与Jaccard系数结合的损失函数优化。在ISBI 2016皮肤病灶数据集进行仿真评估,Jaccard相似度和Dice系数分别达到86.87%和92.98%,有助于提高皮肤病灶诊断效率。 相似文献
2.
医学图像危及器官自动分割是计算机辅助诊断中的重要组成部分,对辅助医生高质高效完成放射治疗有着极其重要的作用.胸腔CT图像对比度低,且各器官之间重叠交错、边界模糊,使得危及器官的精确分割具有较大的挑战性.提出一种多尺度特征感知的编码-解码网络模型(FA-Unet),实现胸腔CT图像危及器官的分割.针对胸腔中四类器官大小差... 相似文献
3.
脊柱疾病的前期主要通过计算机断层扫描技术进行筛查与初步判断。为解决脊柱CT图像目前存在的椎骨结构复杂、分割精度不足等问题,提出一种基于3D U-Net框架的脊柱CT图像改进分割网络,通过融合SE残差单元、椎骨边缘分割模型与改进混合通道-空间注意力机制,在VerSe 19、VerSe 20与CTSpine1K脊柱数据集上进行分割训练与测试。多次测试实验结果表明,本文模型在保证分割精度和分割效率有效提高的同时具有较好的泛化性与鲁棒性,在Dice相似系数、豪斯多夫距离与平均表面距离上相较于其他先进网络分割精度更高。本文模型在现有脊柱分割的网络中具有更强的分割性能,可为放射科医生提供有效临床信息。 相似文献
4.
5.
【摘要】提出一种多尺度功能脑网络融合特征的抑郁症分类方法,具体思想包括:首先通过精细化脑区,建立4种不同尺度的脑网络;然后对每种尺度的脑网络分别提取局部特征和全局特征,并将多种尺度脑网络的特征进行有效融合并降维;最后使用支持向量机对患者脑部功能磁共振影像进行分类。试验结果表明,分别提取局部特征和全局特征,并进行有效融合,可以提升识别效果;空间尺度减小会得到更多有效特征,进而能够有效提升分类结果;多尺度特征融合也可以在很大程度上对分类结果起到积极作用。与传统单一大尺度脑网络方法相比,本研究提出的方法获得了更加优秀的试验结果,识别率可达88.67%,充分验证了本研究提出方法的有效性和可行性,并为抑郁症患者的临床诊断与治疗提供生物学依据。 相似文献
6.
为提高对乳腺癌钼靶图像中病灶区域的识别精度,本研究设计了一种面向乳腺肿块和钙化区域分割的特征引导注意网络。首先,该网络通过特征提取模块学习乳腺组织的语义特征;其次,利用融合自校正注意力的解码模块,增强对病灶区域边缘信息的关注度,提高边界的清晰度;最后,采用特征引导注意模块增强通道的依赖关系,进一步还原病灶区域边缘细节,提高分割精度。实验结果表明,本研究网络在扩充后的INBreast1数据库中肿块和钙化分割的平均骰子系数(mDice)分别达到了0.971和0.888,在DDSM数据库肿块分割的mDice达到了0.911,优于其他常规的分割模型,对乳腺癌的早期诊断和治疗具有重要意义。 相似文献
7.
8.
目的:将肺部颜色特征与纹理特征融合形成一种更有效的特征,并利用改进的U-Net深度学习网络结构对肺部CT影像进行图像分割以准确提取肺实质区域。方法:使用的CT影像数据来源于LIDC-IDRI数据库,首先通过色彩空间转换、高阶邻域统计的方法分别提取颜色特征和纹理特征,然后采用加权平均直方图融合两类特征,最后将特征输入改进后的U-Net模型,进行1 000次CT扫描测试,以达到完整的肺实质输出。结果:该方法最终的骰子系数、灵敏度、特异性分别为93%、96%和97%。结论:本方法较单一特征分割方法具有较高的分割精度,有效提高肺实质的分割精度,可为后续的肺部疾病自动诊断提供可靠基础,减少临床诊断的成本并节省医生诊断时间。 相似文献
9.
由于儿童心脏大小随年龄变化显著,且儿童心率较快,超声心动图心脏边界相较成人更模糊,因此儿科超声心动图的准确分割是一项具有挑战性的任务。针对上述问题,本文提出了一种结合通道注意力和尺度注意力的双解码器网络模型。首先,利用结合深监督策略的注意力引导解码器,获取心室区域的注意力图;然后,将产生的心室注意力通过跳跃连接返回到网络的多个层,调整编码器生成的特征权重,突出左右心室区域;最后,通过尺度注意力模块和通道注意力模块强化左右心室边缘特征。实验结果表明,本文所提方法在所采集的双侧心室分割数据集中,平均戴斯系数(DSC)达到90.63%,优于医学图像分割领域一些常规和最新方法,尤其在心室边缘处分割更清晰。本文的研究可为儿科超声心动图双侧心室分割以及后续先天性心脏病辅助诊断提供新的解决方案。 相似文献
10.
目标物体计数是计算机视觉领域的重要研究方向。针对小样本计数中存在的样本与查询图像目标物体尺寸不一致、目标物体分布不均匀的问题,该文提出了多尺度特征增强计数算法。首先,基于特征金字塔构建自上而下的特征融合网络。在各级尺度上对查询图像中和样本相似度较高的区域进行样本特征增强,随后送入上一级特征匹配。然后,将各级增强后的查询特征送入回归器中,得到各级密度图。最后,求和,生成高质量的密度图。该文在FSC-147和CARPK数据集上进行测试。实验结果表明,该文所提模型的性能优于大多数其他方法,有效改善了目标物体大小变化造成的计数精度低的问题。 相似文献
11.
首先利用全局与局部注意力对肿瘤进行定位,然后在模型中加入反注意力机制,将显著特征从原特征图中消除,并保留肿瘤的边缘轮廓信息。此外还在模型中使用深度监督,监督各个深度解码层的训练,有效抑制模型梯度消失现象,提高分割的准确性。本研究使用的是上海长征医院的胃部CT数据集,并将提出的模型与U-Net、Attention U-Net和ET-Net的实验对比。研究结果表明,相较于传统的U-Net网络模型,基于反注意力机制的U-Net模型在胃部肿瘤分割中性能得到了较大的提高,证明了该网络模型的有效性。 相似文献
12.
针对目前大多数医学图像分割方法难以对多模态图像进行特征融合进而完成精确分割任务的问题,提出一种基于编码器-解码器总体架构的多模态脑瘤图像特征融合策略。首先,编码阶段利用孪生网络对不同模态数据进行特征提取,孪生网络结构参数和权值共享的特性可有效减少网络参数量;其次,在进行特征提取的编码阶段加入级间融合,保留不同模态的共性特征的同时强调其互补特征;然后,在解码阶段引入密集跳跃连接思想,最大程度结合不同尺度特征图的低级细节和高级语义信息;最后,设计混合损失函数,在网络生成的预测图受真值图监督的同时让最高级特征融合图也受同倍下采样真值图的监督。所提方法在公开数据集BraTS2019上进行实验,并用图像分割常用的5种指标进行评估。在脑瘤及水肿区域分割任务中得到平均Dice系数为0.884,阳性预测率为0.870,灵敏度为0.898,豪斯多夫距离为3.917,平均交并比达到79.1%,与较先进的算法U-Net和PA-Net相比多项指标均有提升。实验结果说明,级间融合和层间跳跃连接的加入对多模态医学图像的分割效果有所提升,在医学上对脑肿瘤磁共振图像进行病变区域分割具有重要的应用价值和理论意义。 相似文献
13.
针对皮肤病变图像分割在医疗诊断中的作用,提出一种基于多尺度编码-解码网络的皮肤病变图像分割算法。该算法继承了SegNet网络结构的训练速度快、训练模型存储小等特点,采用多尺度输入的方式增强了网络对皮肤病变图像的充分学习。此外,在编码网络中的pool2层输出一个二进制双线性插值的中间预测特征图到解码层的最后一层卷积块进行级联输入提高最终的分割精度。实验结果表明,采用多尺度编码-解码网络对皮肤病变图像分割具有极好的效果,在其他医学图像分割方面也能进行广泛应用。 相似文献
14.
为了提高肺结节检测的精确度和效率,提出一种基于多特征融合和XGBoost的肺结节检测模型。首先采用阈值分割与形态学运算,获得候选结节区域;然后通过基于超分辨率重建的卷积神经网络进行候选结节的特征增强;其次采用快速鲁棒特征、灰度共生矩阵、灰度不变矩的提取方法获得候选结节的局部与全局的多种特征,采用词袋模型进行降维并融合;最后利用XGBoost-决策树分类模型去除假阳性结节,完成肺结节的检测。在LIDC-IDRI数据上进行的实验表明该模型能达到97.87%的准确率和97.92%的召回率。该模型可用于辅助医生进行肺结节诊断,具有一定的临床应用价值。 相似文献
15.
目的:提出一种用于T1加权像、T2加权像和流体衰减反演恢复(Flair)磁共振图像的多发性硬化症(MS)病变分割方法。方法:首先基于3D图像增强技术,将高强度MS病变区域与其他组织区域区分开来。然后利用假阳性降低方法,去除一些强度和密度不均匀的假阳性目标区域(VOI),并利用颜色分割法去除白质之外的VOI。最后利用彩色MR技术生成3个区域,以便细化分割MS病变。结果:在CHB数据集上进行测试,得到真阳率均值为0.48,Dice相似系数均值为0.52。结论:该方法能够有效去除噪声及其他无关非病变组织,并能准确识别并分割MS病变,该方法的有效性、准确性能为后续的MS分割技术分析提供依据。同时为MS病变的预防治疗、病情跟踪提供客观、方便的诊疗方法。
【关键词】多发性硬化症;病灶分割;3D体素增强;3D alpha背景分离;颜色分割技术 相似文献
16.
Yuan Gong Li Guan Zhu Jin Shixiong Chen Guangming Xiang Baoan Gao 《Journal of medical virology》2020,92(11):2551-2555
The use of corticosteroids has been controversial in viral pneumonia. In most cases, application of methylprednisolone in severe and critical viral pneumonia patients can quickly alleviate the symptoms of dyspnea and prevent disease progression. However, some scholars have confirmed that corticosteroids delayed the body's clearance of the virus. In our retrospective non-randomized study, 34 patients under 50 years old and diagnosed with coronavirus disease 2019 (COVID-19) were included. According to the given methylprednisolone treatment (n = 18) or not (n = 16), they were separated into two groups. By comparing the clinical data we concluded that corticosteroids therapy can effectively release COVID-19 symptoms such as persistent fever and difficult in breathing, improve oxygenation, and prevent disease progression. However, it can prolong the negative conversion of nucleic acids. 相似文献