首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The attaching and effacing Escherichia coli (AEEC) are characterized by the presence of a type III secretion system encoded by the locus of enterocyte effacement (LEE). Enterohemorrhagic E. coli (EHEC) are often identified as isolates that are LEE+ and carry the Shiga toxin (stx)-encoding phage, which are labeled Shiga toxin-producing E. coli; whereas enteropathogenic E. coli (EPEC) are LEE+ and often carry the EPEC adherence factor plasmid-encoded bundle-forming pilus (bfp) genes. All other LEE+/bfp−/stx− isolates have been historically designated atypical EPEC. These groups have been defined based on the presence or absence of a limited number of virulence factors, many of which are encoded on mobile elements. This study describes the comparative analysis of the genomes of 114 LEE+ E. coli isolates. Based on a whole-genome phylogeny and analysis of type III secretion system effectors, the AEEC are divided into five distinct genomic lineages. The LEE+/stx+/bfp− genomes were primarily divided into two genomic lineages, the O157/O55 EHEC1 and non-O157 EHEC2. The LEE+/bfp+/stx− AEEC isolates sequenced in this study separated into the EPEC1, EPEC2, and EPEC4 genomic lineages. A multiplex PCR assay for identification of each of these AEEC genomic lineages was developed. Of the 114 AEEC genomes analyzed, 31 LEE+ isolates were not in any of the known AEEC lineages and thus represent unclassified AEEC that in most cases are more similar to other E. coli pathovars than to text modification AEEC. Our findings demonstrate evolutionary relationships among diverse AEEC pathogens and the utility of phylogenomics for lineage-specific identification of AEEC clinical isolates.The attaching and effacing Escherichia coli (AEEC) are a significant, yet diverse group of pathogenic organisms that cause human disease (1). The AEEC pathogens include isolates defined by the presence of the locus of enterocyte effacement (LEE), encoding a type III secretion system (T3SS), responsible for the injection of effectors that result in the formation of attaching and effacing lesions (13). Within this group of pathogens are the subgroups or pathovars known as enterohemorrhagic E. coli (EHEC) and the enteropathogenic E. coli (EPEC). Both EHEC and EPEC have been associated with severe disease and high mortality rates (4). The EHEC are defined on the molecular level as LEE-positive, Shiga toxin-encoding E. coli based on the presence of the Shiga toxin genes (stxAB). As such, EHEC are a subset of Shiga toxin-producing E. coli (STEC) strains, which are defined solely by the presence of stxAB without regard to LEE status. Genome sequencing of AEEC pathogens has largely focused on the O157:H7 EHEC (59), which are a significant cause of severe gastrointestinal illness and hemolytic uremic syndrome (HUS) in the United States (10, 11). The O157:H7 EHEC [LEE+/stx+/bundle-forming pilus-negative (bfp−) AEEC] are hypothesized to have evolved from LEE+/stx−/bfp− O55:H7 by the stepwise acquisition of virulence factors (1216). To date, only a few non-O157 EHEC/STEC genomes have been sequenced (17, 18). One noticeable exception is the rapid sequencing and analysis of the O104:H4 E. coli outbreak isolates from the 2011 European outbreak (1921). Although the bacterium implicated in the outbreak contained more genomic similarity to enteroaggregative E. coli (EAEC) isolates than EHEC isolates, the presence of the Shiga toxin-encoding genes and the clinical presentation of HUS led to confusion related to how to accurately classify this organism (1922). These studies demonstrated the utility of whole-genome sequencing in outbreak situations, as well as the requirement for proper reference genomes for comparison.The AEEC subgroup known as EPEC is a significant cause of persistent watery diarrhea among children worldwide (23). EPEC isolates belonging to a limited number of O:H serotypes (24) contain the LEE region and may contain the EPEC adherence factor (EAF) plasmid-encoding genes encoding the bundle-forming pilus (bfpA-bfpL) (1, 2, 25, 26). The LEE+/stx−/bfp+ AEEC isolates are classified as typical EPEC (tEPEC), whereas the LEE+/stx−/bfp− AEEC isolates are termed atypical EPEC (aEPEC). The LEE+/stx−/bfp− AEEC isolates have been characterized as highly heterogenous, and likely include isolates that were once stx+ EHEC or bfp+ tEPEC isolates, but have lost those features during culture or passage (27, 28). Indeed, stx− isolates cultured from HUS patients have been thought to have lost the Shiga toxin phage during the course of the infection or isolation (29, 30). Meanwhile, the loss of the EAF plasmid from tEPEC has been observed following the passage of EPEC through adults in clinical trials (31, 32). This level of heterogeneity is often observed when the lack of certain virulence factors or genomic features is used as an identifying characteristic, especially when mobile genetic elements such as bacteriophages or plasmids encode these factors (1316). There is sparse information about the genomic distribution of EPEC, with only one genomic representative of each of the two major lineages of tEPEC from humans, one rabbit-adapted EPEC (E22), and one aEPEC representative (E110019) sequenced to date (33, 34). Although these isolates are excellent starting points for functional analysis, they do not provide enough information to properly describe the genomic diversity of this pathogenic group.In the current study, we demonstrate the diversity of AEEC pathogens using genome sequencing and comparative analysis of 114 AEEC isolates as well as a diverse collection of 24 reference commensal and pathogenic E. coli and Shigella (34). The 114 AEEC genomes include 101 genome sequences that are first analyzed in this study. Among the isolates sequenced were 35 AEEC isolates of the diarrheagenic E. coli (DEC) collection, which provide a link to established reference isolates used in the community (35). The remaining AEEC isolates sequenced in this study were selected to represent a diverse set of diarrheagenic LEE+ isolates that have a wide array of serotypes, geographic locations, and isolation dates. Phylogenomic comparisons demonstrate that the AEEC can be separated into at least five distinct lineages, each with five or more isolates. A whole-genome comparative approach identified regions that are overrepresented or exclusive in subgroupings of the AEEC isolates. Molecular assays targeting these novel regions were then developed to identify each of these phylogeny-based lineages. Additional bioinformatic analysis of type III secretion effector proteins and other virulence-associated genomic islands, demonstrated that some features are lineage restricted in a pattern that is consistent with the whole-genome phylogeny. Importantly, and reminiscent of the recent German outbreak caused by a Shiga toxin-containing O104:H4 EAEC isolate (1922), our findings demonstrate that the stx-encoding phage is not restricted to specific AEEC lineages. Multiple examples of isolates that contain inconsistent virulence gene and phylogenetic markers were identified in the same phylogenomic lineage, demonstrating a greater genomic variation in these isolates than was previously appreciated. The detection of the lineage-specific markers should be used concurrently with virulence gene detection to assess not only the pathogenic potential, but also the potential evolutionary history of LEE-containing E. coli.  相似文献   

3.
4.
Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β′1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts.Although forgetting commonly has a negative connotation, it is a functional process that shapes memory and cognition (14). Recent studies, including work in relatively simple invertebrate models, have started to reveal basic biological mechanisms underlying forgetting (515). In Drosophila, single-session Pavlovian conditioning by pairing an odor (conditioned stimulus, CS) with electric shock (unconditioned stimulus, US) induces aversive memories that are short-lasting (16). The memory performance of fruit flies is observed to drop to a negligible level within 24 h, decaying rapidly early after training and slowing down thereafter (17). Memory decay or forgetting requires the activation of the small G protein Rac, a signaling protein involved in actin remodeling, in the mushroom body (MB) intrinsic neurons (6). These so-called Kenyon cells (KCs) are the neurons that integrate CS–US information (18, 19) and support aversive memory formation and retrieval (2022). In addition to Rac, forgetting also requires the DAMB dopamine receptor (7), which has highly enriched expression in the MB (23). Evidence suggests that the dopamine-mediated forgetting signal is conveyed to the MB by dopamine neurons (DANs) in the protocerebral posterior lateral 1 (PPL1) cluster (7, 24). Therefore, forgetting of olfactory aversive memory in Drosophila depends on a particular set of intracellular molecular pathways within KCs, involving Rac, DAMB, and possibly others (25), and also receives modulation from extrinsic neurons. Although important cellular evidence supporting the hypothesis that memory traces are erased under these circumstances is still lacking, these findings lend support to the notion that forgetting is an active, biologically regulated process (17, 26).Although existing studies point to the MB circuit as essential for forgetting, several questions remain to be answered. First, whereas the molecular pathways for learning and forgetting of olfactory aversive memory are distinct and separable (6, 7), the neural circuits seem to overlap. Rac-mediated forgetting has been localized to a large population of KCs (6), including the γ-subset, which is also critical for initial memory formation (21, 27). The site of action of DAMB for forgetting has yet to be established; however, the subgroups of PPL1-DANs implicated in forgetting are the same as those that signal aversive reinforcement and are required for learning (2830). It leaves open the question of whether the brain circuitry underlying forgetting and learning is dissociable, or whether forgetting and learning share the same circuit but are driven by distinct activity patterns and molecular machinery (26). Second, shock reinforcement elicits multiple memory traces through at least three dopamine pathways to different subdomains in the MB lobes (28, 29). Functional imaging studies have also revealed Ca2+-based memory traces in different KC populations (31). It is poorly understood how forgetting of these memory traces differs, and it remains unknown whether there are multiple regulatory neural pathways. Notably, when PPL1-DANs are inactivated, forgetting still occurs, albeit at a lower rate (7). This incomplete block suggests the existence of an additional pathway(s) that conveys forgetting signals to the MB. Third, other than memory decay over time, forgetting is also observed through interference (32, 33), when new learning or reversal learning is introduced after training (6, 34, 35). Time-based and interference-based forgetting shares a similar dependence on Rac and DAMB (6, 7). However, it is not known whether distinct circuits underlie forgetting in these different contexts.In the current study, we focus on the diverse set of MB extrinsic neurons (MBENs) that interconnect the MB lobes with other brain regions, which include 34 MB output neurons (MBONs) of 21 types and ∼130 dopaminergic neurons of 20 types in the PPL1 and protocerebral anterior medial (PAM) clusters (36, 37). These neurons have been intensively studied in olfactory memory formation, consolidation, and retrieval in recent years (e.g., 24, 2830, 3848); however, their roles in forgetting have not been characterized except for the aforementioned PPL1-DANs. In a functional screen, we unexpectedly found that several Gal4 driver lines of MBENs showed significantly better 3-h memory retention when the Gal4-expressing cells were inactivated. The screen has thus led us to identify two types of MBENs that are not involved in initial learning but play important and additive roles in mediating memory decay. Furthermore, neither of these MBEN types is required for reversal learning, supporting the notion that there is a diversity of neural circuits that drive different forms of forgetting.  相似文献   

5.
Prochlorococcus is an abundant marine cyanobacterium that grows rapidly in the environment and contributes significantly to global primary production. This cyanobacterium coexists with many cyanophages in the oceans, likely aided by resistance to numerous co-occurring phages. Spontaneous resistance occurs frequently in Prochlorococcus and is often accompanied by a pleiotropic fitness cost manifested as either a reduced growth rate or enhanced infection by other phages. Here, we assessed the fate of a number of phage-resistant Prochlorococcus strains, focusing on those with a high fitness cost. We found that phage-resistant strains continued evolving toward an improved growth rate and a narrower resistance range, resulting in lineages with phenotypes intermediate between those of ancestral susceptible wild-type and initial resistant substrains. Changes in growth rate and resistance range often occurred in independent events, leading to a decoupling of the selection pressures acting on these phenotypes. These changes were largely the result of additional, compensatory mutations in noncore genes located in genomic islands, although genetic reversions were also observed. Additionally, a mutator strain was identified. The similarity of the evolutionary pathway followed by multiple independent resistant cultures and clones suggests they undergo a predictable evolutionary pathway. This process serves to increase both genetic diversity and infection permutations in Prochlorococcus populations, further augmenting the complexity of the interaction network between Prochlorococcus and its phages in nature. Last, our findings provide an explanation for the apparent paradox of a multitude of resistant Prochlorococcus cells in nature that are growing close to their maximal intrinsic growth rates.Large bacterial populations are present in the oceans, playing important roles in primary production and the biogeochemical cycling of matter. These bacterial communities are highly diverse (14) yet form stable and reproducible bacterial assemblages under similar environmental conditions (57).These bacteria are present together with high abundances of viruses (phages) that have the potential to infect and kill them (811). Although studied only rarely in marine organisms (1216), this coexistence is likely to be the result of millions of years of coevolution between these antagonistic interacting partners, as has been well documented for other systems (1720). From the perspective of the bacteria, survival entails the selection of cells that are resistant to infection, preventing viral production and enabling the continuation of the cell lineage. Resistance mechanisms include passively acquired spontaneous mutations in cell surface molecules that prevent phage entry into the cell and other mechanisms that actively terminate phage infection intracellularly, such as restriction–modification systems and acquired resistance by CRISPR-Cas systems (21, 22). Mutations in the phage can also occur that circumvent these host defenses and enable the phage to infect the recently emerged resistant bacterium (23).Acquisition of resistance by bacteria is often associated with a fitness cost. This cost is frequently, but not always, manifested as a reduction in growth rate (2427). Recently, an additional type of cost of resistance was identified, that of enhanced infection whereby resistance to one phage leads to greater susceptibility to other phages (14, 15, 28).Over the years, a number of models have been developed to explain coexistence in terms of the above coevolutionary processes and their costs (16, 2932). In the arms race model, repeated cycles of host mutation and virus countermutation occur, leading to increasing breadths of host resistance and viral infectivity. However, experimental evidence generally indicates that such directional arms race dynamics do not continue indefinitely (25, 33, 34). Therefore, models of negative density-dependent fluctuations due to selective trade-offs, such as kill-the-winner, are often invoked (20, 33, 35, 36). In these models, fluctuations are generally considered to occur between rapidly growing competition specialists that are susceptible to infection and more slowly growing resistant strains that are considered defense specialists. Such negative density-dependent fluctuations are also likely to occur between strains that have differences in viral susceptibility ranges, such as those that would result from enhanced infection (30).The above coevolutionary processes are considered to be among the major mechanisms that have led to and maintain diversity within bacterial communities (32, 35, 3739). These processes also influence genetic microdiversity within populations of closely related bacteria. This is especially the case for cell surface-related genes that are often localized to genomic islands (14, 40, 41), regions of high gene content, and gene sequence variability among members of a population. As such, populations in nature display an enormous degree of microdiversity in phage susceptibility regions, potentially leading to an assortment of subpopulations with different ranges of susceptibility to coexisting phages (4, 14, 30, 40).Prochlorococcus is a unicellular cyanobacterium that is the numerically dominant photosynthetic organism in vast oligotrophic expanses of the open oceans, where it contributes significantly to primary production (42, 43). Prochlorococcus consists of a number of distinct ecotypes (4446) that form stable and reproducible population structures (7). These populations coexist in the oceans with tailed double-stranded DNA phage populations that infect them (4749).Previously, we found that resistance to phage infection occurs frequently in two high-light–adapted Prochlorococcus ecotypes through spontaneous mutations in cell surface-related genes (14). These genes are primarily localized to genomic island 4 (ISL4) that displays a high degree of genetic diversity in environmental populations (14, 40). Although about a third of Prochlorococcus-resistant strains had no detectable associated cost, the others came with a cost manifested as either a slower growth rate or enhanced infection by other phages (14). In nature, Prochlorococcus seems to be growing close to its intrinsic maximal growth rate (5052). This raises the question as to the fate of emergent resistant Prochlorococcus lineages in the environment, especially when resistance is accompanied with a high growth rate fitness cost.To begin addressing this question, we investigated the phenotype of Prochlorococcus strains with time after the acquisition of resistance. We found that resistant strains evolved toward an improved growth rate and a reduced resistance range. Whole-genome sequencing and PCR screening of many of these strains revealed that these phenotypic changes were largely due to additional, compensatory mutations, leading to increased genetic diversity. These findings suggest that the oceans are populated with rapidly growing Prochlorococcus cells with varying degrees of resistance and provide an explanation for how a multitude of presumably resistant Prochlorococcus cells are growing close to their maximal known growth rate in nature.  相似文献   

6.
7.
8.
9.
Drosophila melanogaster can acquire a stable appetitive olfactory memory when the presentation of a sugar reward and an odor are paired. However, the neuronal mechanisms by which a single training induces long-term memory are poorly understood. Here we show that two distinct subsets of dopamine neurons in the fly brain signal reward for short-term (STM) and long-term memories (LTM). One subset induces memory that decays within several hours, whereas the other induces memory that gradually develops after training. They convey reward signals to spatially segregated synaptic domains of the mushroom body (MB), a potential site for convergence. Furthermore, we identified a single type of dopamine neuron that conveys the reward signal to restricted subdomains of the mushroom body lobes and induces long-term memory. Constant appetitive memory retention after a single training session thus comprises two memory components triggered by distinct dopamine neurons.Memory of a momentous event persists for a long time. Whereas some forms of long-term memory (LTM) require repetitive training (13), a highly relevant stimulus such as food or poison is sufficient to induce LTM in a single training session (47). Recent studies have revealed aspects of the molecular and cellular mechanisms of LTM formation induced by repetitive training (811), but how a single training induces a stable LTM is poorly understood (12).Appetitive olfactory learning in fruit flies is suited to address the question, as a presentation of a sugar reward paired with odor induces robust short-term memory (STM) and LTM (6, 7). Odor is represented by a sparse ensemble of the 2,000 intrinsic neurons, the Kenyon cells (13). A current working model suggests that concomitant reward signals from sugar ingestion cause associative plasticity in Kenyon cells that might underlie memory formation (1420). A single activation session of a specific cluster of dopamine neurons (PAM neurons) by sugar ingestion can induce appetitive memory that is stable over 24 h (19), underscoring the importance of sugar reward to the fly.The mushroom body (MB) is composed of the three different cell types, α/β, α′/β′, and γ, which have distinct roles in different phases of appetitive memories (11, 2125). Similar to midbrain dopamine neurons in mammals (26, 27), the structure and function of PAM cluster neurons are heterogeneous, and distinct dopamine neurons intersect unique segments of the MB lobes (19, 2834). Further circuit dissection is thus crucial to identify candidate synapses that undergo associative modulation.By activating distinct subsets of PAM neurons for reward signaling, we found that short- and long-term memories are independently formed by two complementary subsets of PAM cluster dopamine neurons. Conditioning flies with nutritious and nonnutritious sugars revealed that the two subsets could represent different reinforcing properties: sweet taste and nutritional value of sugar. Constant appetitive memory retention after a single training session thus comprises two memory components triggered by distinct reward signals.  相似文献   

10.
11.
12.
13.
Learning theories distinguish elemental from configural learning based on their different complexity. Although the former relies on simple and unambiguous links between the learned events, the latter deals with ambiguous discriminations in which conjunctive representations of events are learned as being different from their elements. In mammals, configural learning is mediated by brain areas that are either dispensable or partially involved in elemental learning. We studied whether the insect brain follows the same principles and addressed this question in the honey bee, the only insect in which configural learning has been demonstrated. We used a combination of conditioning protocols, disruption of neural activity, and optophysiological recording of olfactory circuits in the bee brain to determine whether mushroom bodies (MBs), brain structures that are essential for memory storage and retrieval, are equally necessary for configural and elemental olfactory learning. We show that bees with anesthetized MBs distinguish odors and learn elemental olfactory discriminations but not configural ones, such as positive and negative patterning. Inhibition of GABAergic signaling in the MB calyces, but not in the lobes, impairs patterning discrimination, thus suggesting a requirement of GABAergic feedback neurons from the lobes to the calyces for nonelemental learning. These results uncover a previously unidentified role for MBs besides memory storage and retrieval: namely, their implication in the acquisition of ambiguous discrimination problems. Thus, in insects as in mammals, specific brain regions are recruited when the ambiguity of learning tasks increases, a fact that reveals similarities in the neural processes underlying the elucidation of ambiguous tasks across species.Learning can be categorized into two levels of complexity termed elemental and configural (nonelemental) (13). Simple and unambiguous links between events characterize elemental learning (4). By contrast, ambiguity and nonlinearity characterize configural learning, where associations involve conjunctions of elemental stimuli, which may have different, contradictory outcomes. As a consequence, solving configural tasks typically requires treating stimulus conjunctions as being different from the simple sum of their elemental components (58). For example, in a negative patterning task (911), subjects have to discriminate a nonreinforced conjunction of two elements A and B from its reinforced elements (i.e., AB– vs. A+ and B+), which requires treating AB as being different from the simple sum of A and B (12, 13). The ambiguity of the task lies in the fact that each element (A and B) is as often reinforced (when presented alone) as nonreinforced (when presented as a compound). In mammals, different brain structures have been associated with these two learning forms: Whereas the hippocampus seems to be dispensable for learning elemental associations (6, 8), it is required for fast formation of conjunctive representations during learning tasks, such as spatial learning or contextual fear conditioning (6, 8, 10, 1419). Moreover, the cortical system is necessary to form configural representations over extended training, thus supporting the learning of nonlinear discriminations,Here, we ask whether the specialization of different brain centers for learning tasks of different complexity is a property that can be extended to an insect brain. Insects offer the possibility of studying sophisticated behaviors and simultaneously accessing the neural bases of these behaviors (20). Several studies have shown that insects, in particular the honey bee Apis mellifera, possess higher-order cognitive abilities (5, 21), which raises the question of which neural mechanisms support these capacities in a brain whose size is only 1 mm3 (22).The mushroom bodies (MBs) are paired structures in the insect brain that have been historically associated with olfactory learning and memory. Their function has been extensively studied in a variety of elemental learning protocols, mainly in the honey bee and the fruit fly Drosophila melanogaster (2329). In both species, MBs play a fundamental role for the encoding, storing, and retrieval of appetitive and aversive elemental memories, but no study has clearly established their role for nonelemental learning and memory (30). In fruit flies, this missing information may be due to the incapacity of these insects to solve nonelemental problems, such as negative patterning (31). By contrast, honey bees exhibit elaborated nonelemental learning abilities (3236), which have been suggested to require intact MB function (5).Here, we used a combination of nonelemental conditioning protocols, disruption of MB function, and optophysiological recordings of neural activity to determine whether MBs are necessary for nonelemental forms of learning. Our results show that acquisition of olfactory patterning discriminations is impaired in bees in which neural activity in the MBs was blocked by procaine injection (37, 38), but not in control animals injected with saline solution. By contrast, MB blockade by procaine affected neither olfactory processing upstream of the MBs nor elemental olfactory discriminations. To uncover the neural mechanisms underlying the necessity of MBs for patterning discriminations, we focused on GABAergic feedback neurons (39), which provide inhibitory feedback to the MBs of the bee (4043). We blocked GABAergic signaling by locally injecting picrotoxin (PTX), a GABA antagonist, into the MB calyces or into the MB lobes. We show that GABAergic feedback to the calyces—but not to the lobes—is required for patterning discriminations. These results uncover a previously unidentified role for MBs: namely, the disambiguation between elemental and conjunctive odor representations, thus supporting the learning of nonlinear discriminations.  相似文献   

14.
Tools to reliably measure Plasmodium falciparum (Pf) exposure in individuals and communities are needed to guide and evaluate malaria control interventions. Serologic assays can potentially produce precise exposure estimates at low cost; however, current approaches based on responses to a few characterized antigens are not designed to estimate exposure in individuals. Pf-specific antibody responses differ by antigen, suggesting that selection of antigens with defined kinetic profiles will improve estimates of Pf exposure. To identify novel serologic biomarkers of malaria exposure, we evaluated responses to 856 Pf antigens by protein microarray in 186 Ugandan children, for whom detailed Pf exposure data were available. Using data-adaptive statistical methods, we identified combinations of antibody responses that maximized information on an individual’s recent exposure. Responses to three novel Pf antigens accurately classified whether an individual had been infected within the last 30, 90, or 365 d (cross-validated area under the curve = 0.86–0.93), whereas responses to six antigens accurately estimated an individual’s malaria incidence in the prior year. Cross-validated incidence predictions for individuals in different communities provided accurate stratification of exposure between populations and suggest that precise estimates of community exposure can be obtained from sampling a small subset of that community. In addition, serologic incidence predictions from cross-sectional samples characterized heterogeneity within a community similarly to 1 y of continuous passive surveillance. Development of simple ELISA-based assays derived from the successful selection strategy outlined here offers the potential to generate rich epidemiologic surveillance data that will be widely accessible to malaria control programs.Many countries have extensive programs to reduce the burden of Plasmodium falciparum (Pf), the parasite responsible for most malaria morbidity and mortality (1). Effectively using limited resources for malaria control or elimination and evaluating interventions require accurate measurements of the risk of being infected with Pf (215). To reflect the rate at which individuals are infected with Pf in a useful way, metrics used to estimate exposure in a community need to account for dynamic changes over space and time, especially in response to control interventions (1618).A variety of metrics can be used to estimate Pf exposure, but tools that are more precise and low cost are needed for population surveillance. Existing metrics have varying intrinsic levels of precision and accuracy and are subject to a variety of extrinsic factors, such as cost, time, and availability of trained personnel (19). For example, entomological measurements provide information on mosquito to human transmission for a community but are expensive, require specially trained staff, and lack standardized procedures, all of which reduce precision and/or make interpretation difficult (1922). Parasite prevalence can be measured by detecting parasites in the blood of individuals from a cross-sectional sample of a community and is, therefore, relatively simple and inexpensive to perform, but results may be imprecise, especially in areas of low transmission (19, 23), and biased by a number of factors, including immunity and access to antimalarial treatment (5, 6, 19, 2325). The burden of symptomatic disease in a community can be estimated from routine health systems data; however, such data are frequently unreliable (5, 2628) and generally underestimate the prevalence of Pf infection in areas of intense transmission. Precise and quantitative information about exposure at an individual level can be reliably obtained from cohort studies by measuring the incidence of asymptomatic and/or symptomatic Pf infection (i.e., by measuring the molecular force of infection) (2935). Unfortunately, the expense of cohort studies limits their use to research settings. The end result is that most malaria-endemic regions lack reliable, timely data on Pf exposure, limiting the capabilities of malaria control programs to guide and evaluate interventions.Serologic assays offer the potential to provide incidence estimates for symptomatic and asymptomatic Pf infection, which are currently obtained from cohort studies, at the cost of cross-sectional studies (3638). Although Pf infections are transient, a record of infection remains detectable in an individual’s antibody profile. Thus, appropriately chosen antibody measurements integrated with age can provide information about an individual’s exposure history. Antibodies can be measured by simple ELISAs and obtained from dried blood spots, which are easy to collect, transport, and store (3941). Serologic responses to Pf antigens have been explored as potential epidemiological tools (4245), and estimated rates of seroconversion to well-characterized Pf antigens accurately reflect stable rates of exposure in a community, whereas distinct changes in these rates are obtained from successful interventions (22, 39, 41, 4653). However, current serologic assays are not designed to detect short-term or gradual changes in Pf exposure or measure exposure to infection at an individual level. The ability to calibrate antibody responses to estimates of exposure in individuals could allow for more flexible sampling of a population (e.g., not requiring age stratification), improve accuracy of exposure estimates from small sample sizes, and better characterize heterogeneity in exposure within a community.Different Pf antigens elicit antibody responses with different magnitudes and kinetics, providing a large and diverse set of potential biomarkers for exposure (38, 5458). We hypothesized that new and more highly informative serologic biomarkers better able to characterize an individual’s recent exposure history could be identified by analyzing antibody responses to a large number of candidate Pf antigens in participants with well-characterized exposure histories. To test this hypothesis, we probed plasma from participants in two cohort studies in Uganda against a protein microarray containing 856 Pf antigens. The primary aim of this analysis was to identify responses to select antigens that were most informative of recent exposure using robust, data-adaptive statistical methods. Each participant’s responses to these selected antigens were used as predictors for two primary outcomes of their recent exposure to Pf: (i) days since last Pf infection and (ii) the incidence of symptomatic malaria in the last year. These individual-level estimates were then aggregated across a population to assess community-level malaria exposure. The selection strategy presented here identified accurate biomarkers of exposure for children living in areas of moderate to high Pf exposure and illustrates the utility of this flexible and broadly applicable approach.  相似文献   

15.
Increasing rates of life-threatening infections and decreasing susceptibility to antibiotics urge development of an effective vaccine targeting Staphylococcus aureus. This study evaluated the efficacy and immunologic mechanisms of a vaccine containing a recombinant glycoprotein antigen (NDV-3) in mouse skin and skin structure infection (SSSI) due to methicillin-resistant S. aureus (MRSA). Compared with adjuvant alone, NDV-3 reduced abscess progression, severity, and MRSA density in skin, as well as hematogenous dissemination to kidney. NDV-3 induced increases in CD3+ T-cell and neutrophil infiltration and IL-17A, IL-22, and host defense peptide expression in local settings of SSSI abscesses. Vaccine induction of IL-22 was necessary for protective mitigation of cutaneous infection. By comparison, protection against hematogenous dissemination required the induction of IL-17A and IL-22 by NDV-3. These findings demonstrate that NDV-3 protective efficacy against MRSA in SSSI involves a robust and complementary response integrating innate and adaptive immune mechanisms. These results support further evaluation of the NDV-3 vaccine to address disease due to S. aureus in humans.The bacterium Staphylococcus aureus is the leading cause of skin and skin structure infections (SSSIs), including cellulitis, furunculosis, and folliculitis (14), and a common etiologic agent of impetigo (5), erysipelas (6), and superinfection in atopic dermatitis (7). This bacterium is a significant cause of surgical or traumatic wound infections (8, 9), as well as decuibitus and diabetic skin lesions (10). Moreover, SSSI is an important risk factor for systemic infection. The skin is a key portal of entry for hematogenous dissemination, particularly in association with i.v. catheters. S. aureus is now the second most common bloodstream isolate in healthcare settings (11), and SSSI is a frequent source of invasive infections such as pneumonia or endocarditis (12, 13). Despite a recent modest decline in rates of methicillin-resistant S. aureus (MRSA) infection in some cohorts (13), infections due to S. aureus remain a significant problem (14, 15). Even with appropriate therapy, up to one-third of patients diagnosed with S. aureus bacteremia succumb—accounting for more attributable annual deaths than HIV, tuberculosis, and viral hepatitis combined (16).The empiric use of antibiotics in healthcare-associated and community-acquired settings has increased S. aureus exposure to these agents, accelerating selection of resistant strains. As a result, resistance to even the most recently developed agents is emerging at an alarming pace (17, 18). The impact of this trend is of special concern in light of high rates of mortality associated with invasive MRSA infection (e.g., 15–40% in bacteremia or endocarditis), even with the most recently developed antistaphylococcal therapeutics (19, 20). Moreover, patients who experience SSSI due to MRSA exhibit high 1-y recurrence rates, often prompting surgical debridement (21) and protracted antibiotic treatment.Infections due to MRSA are a special concern in immune-vulnerable populations, including hemodialysis (22), neutropenic (23, 24), transplantation (25), and otherwise immunosuppressed patients (26, 27), and in patients with inherited immune dysfunctions (2831) or cystic fibrosis (32). Patients having deficient interleukin 17 (IL-17) or IL-22 responses (e.g., signal transduction mediators STAT3, DOCK8, or CARD9 deficiencies) exhibit chronic or “cold” abscesses, despite high densities of pathogens such as S. aureus (33, 34). For example, patients with Chronic Granulomatous Disease (CGD; deficient Th1 and oxidative burst response) have increased risk of disseminated S. aureus infection. In contrast, patients with Job’s Syndrome (deficient Th17 response) typically have increased risk to SSSI and lung infections, but less so for systemic S. aureus bacteremia (35, 36). This pattern contrasts that observed in neutropenic or CGD patients (37). These themes suggest efficacious host defenses against MRSA skin and invasive infections involve complementary but distinct molecular and cellular immune responses.From these perspectives, vaccines or immunotherapeutics that prevent or lessen severity of MRSA infections, or that enhance antibiotic efficacy, would be significant advances in patient care and public health. However, to date, there are no licensed prophylactic or therapeutic vaccine immunotherapies for S. aureus or MRSA infection. Unfortunately, efforts to develop vaccines targeting S. aureus capsular polysaccharide type 5 or 8 conjugates, or the iron-regulated surface determinant B protein, have not been successful thus far (38, 39). Likewise, passive immunization using monoclonal antibodies targeting the S. aureus adhesin clumping factor A (ClfA, tefibazumab) (40) or lipoteichoic acid (pagibaximab) (41) have not shown efficacy against invasive infections in human clinical studies to date. Moreover, the striking recurrence rates of SSSI due to MRSA imply that natural exposure does not induce optimal preventive immunity or durable anamnestic response to infection or reinfection. Thus, significant challenges exist in the development of an efficacious vaccine targeting diseases caused by S. aureus (42) that are perhaps not optimally addressed by conventional approaches.The NDV-3 vaccine reflects a new strategy to induce durable immunity targeting S. aureus. Its immunogen is engineered from the agglutinin-like sequence 3 (Als3) adhesin/invasin of Candida albicans, which we discovered to be a structural homolog of S. aureus adhesins (43). NDV-3 is believed to cross-protect against S. aureus and C. albicans due to sequence (T-cell) and conformational (B-cell) epitopes paralleled in both organisms (44). Our prior data have shown that NDV-3 is efficacious in murine models of hematogenous and mucosal candidiasis (45), as well as S. aureus bacteremia (4648). Recently completed phase I clinical trials demonstrate the safety, tolerability, and immunogenicity of NDV-3 in humans (49).  相似文献   

16.
17.
18.
19.
Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are critical regulators of neuronal excitability, but less is known about their possible roles in synaptic plasticity and memory circuits. Here, we characterized the HCN gene organization, channel properties, distribution, and involvement in associative and nonassociative forms of learning in Aplysia californica. Aplysia has only one HCN gene, which codes for a channel that has many similarities to the mammalian HCN channel. The cloned acHCN gene was expressed in Xenopus oocytes, which displayed a hyperpolarization-induced inward current that was enhanced by cGMP as well as cAMP. Similarly to its homologs in other animals, acHCN is permeable to K+ and Na+ ions, and is selectively blocked by Cs+ and ZD7288. We found that acHCN is predominantly expressed in inter- and motor neurons, including LFS siphon motor neurons, and therefore tested whether HCN channels are involved in simple forms of learning of the siphon-withdrawal reflex in a semiintact preparation. ZD7288 (100 μM) significantly reduced an associative form of learning (classical conditioning) but had no effect on two nonassociative forms of learning (intermediate-term sensitization and unpaired training) or baseline responses. The HCN current is enhanced by nitric oxide (NO), which may explain the postsynaptic role of NO during conditioning. HCN current in turn enhances the NMDA-like current in the motor neurons, suggesting that HCN channels contribute to conditioning through this pathway.Hyperpolarization-activated, cyclic nucleotide-gated (HCN), cation nonselective ion channels generate hyperpolarization-activated inward currents (Ih) and thus tend to stabilize membrane potential (13). In addition, binding of cyclic nucleotides (cAMP and cGMP) to the C-terminal cyclic nucleotide binding domain (CNBD) enhances Ih and thus couples membrane excitability with intracellular signaling pathways (2, 4). HCN channels are widely important for numerous systemic functions such as hormonal regulation, heart contractility, epilepsy, pain, central pattern generation, sensory perception (415), and learning and memory (1624).However, in previous studies it has been difficult to relate the cellular effects of HCN channels directly to their behavioral effects, because of the immense complexity of the mammalian brain. We have therefore investigated the role of HCN channels in Aplysia, which has a numerically simpler nervous system (25). We first identified and characterized an HCN gene in Aplysia, and showed that it codes for a channel that has many similarities to the mammalian HCN channel. We found that the Aplysia HCN channel is predominantly expressed in motor neurons including LFS neurons in the siphon withdrawal reflex circuit (26, 27). We therefore investigated simple forms of learning of that reflex in a semiintact preparation (2830) and found that HCN current is involved in classical conditioning and enhances the NMDA-like current in the motor neurons. These results provide a direct connection between HCN channels and behavioral learning and suggest a postsynaptic mechanism of that effect. HCN current in turn is enhanced by nitric oxide (NO), a transmitter of facilitatory interneurons, and thus may contribute to the postsynaptic role of NO during conditioning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号