共查询到11条相似文献,搜索用时 62 毫秒
1.
目的 睡眠呼吸暂停综合征(sleep apnea syndrome, SAS)是由于睡眠时上气道通气不畅或堵塞引起的呼吸暂停或低通气,严重影响人类健康和生活。目前的检测方法是多导睡眠仪,检测过程较为复杂,影响患者正常睡眠。为此本文提出了一种针对血氧饱和度信号的引入交叉变异的全局混沌人工蜂群(cross global chaos artificial bee colony, CGCABC)算法优化支持向量机(support vector machine, SVM)的SAS检测方法。方法 从数据集ISRUC-SLEEP中提取25名SAS患者整晚8 h的脉搏血氧饱和度数据,经预处理后对每段数据计算5种非线性特征,包括近似熵、模糊熵、信息熵、排列熵和样本熵。比较发病片段信号特征和未发病片段信号特征之间的差异,使用CGCABC算法优化的SVM模型进行分类检测,并与人工蜂群(artificial bee colony, ABC)算法、粒子群(particle swarm optimization, PSO)算法、麻雀搜索(sparrow search, SS)算法优化SVM模型的检测结果进行对比。... 相似文献
2.
为实现睡眠分期,为穿戴式生理参数监测技术在慢病监测领域的应用提供技术支撑,发展基于心率变异性和支持向量机模型的睡眠分期算法。从心率时间间期序列中提取时域、频域和非线性等86个特征,将多导睡眠图仪的三分类结果(醒、快速眼动期、非快速眼动期)作为“金标准”,采用支持向量机作为多分类器模型;为保证训练集数据质量,使用开放睡眠数据库SHHS中由专家确认挑选的67例PSG样本作为训练集,实现特征筛选和模型参数训练。为验证模型的泛化性能,从SHHS数据库中进一步随机提取939例PSG样本,对模型性能进行测试。睡眠分期模型在训练集上的五折交叉验证的准确率为84.00%±1.33%,卡帕系数为0.70±0.03;在939例测试集上的准确率为76.10%±10.80%,卡帕系数为0.57±0.15。剔除RR间期异常(110例)和明显睡眠结构异常(29例)的样本后,测试集(800例)的准确率为82.00%±5.60%,卡帕系数为0.67±0.14。所提出的基于心率变异性分析的睡眠分期算法具有较高的准确性,大样本人群测试结果表明,该模型具有较好的普适性。 相似文献
3.
支持向量机在进行不同眼动模式分类任务时受参数影响较大,针对这一问题,本文提出一种基于改进鲸鱼算法优化支持向量机的算法以提升眼动数据分类性能。根据眼动数据特点,本研究先提取注视、眼跳相关的57个特征,再利用近邻相关(ReliefF)算法进行特征筛选。针对鲸鱼算法收敛精度低,易陷入局部最小值等问题,本文引入惯性权重平衡局部搜索和全局搜索,加快算法收敛速度,同时利用差分变异策略增加个体多样性,跳出局部最优。本文对8个测试函数进行实验,结果表明改进鲸鱼算法具有最佳的收敛精度和收敛速度。最后,本文将改进鲸鱼算法优化支持向量机模型应用于自闭症眼动数据分类任务,公开数据集实验结果表明,相较于传统的支持向量机方法,本文方法的眼动数据分类准确率有着较大提升,相较于标准鲸鱼算法和其他优化算法,本文方法优化后的模型具有更高的分类精度,为眼动模式识别提供了新思路与方法。未来或可利用眼动仪获取的眼动数据,结合本文方法辅助医疗诊断。 相似文献
4.
基于支持向量机的室性早搏检测 总被引:3,自引:1,他引:3
心电信号分类是自动心电监护设备的基础。支持向量机 (SVM)在分类和模式识别方面展现出卓越的性能。本研究将支持向量机应用于心电信号室性早搏 (PVC)的检测。根据室性早搏的特点 ,从 ML II导联中提取心率、形态心及小波域能量 3大类共 9个特征。并使用 MIT- BIH的 Arrhythmia数据库的数据 ,根据 AAMI建议要求 ,对采用不同核函数的支持向量机的性能作了比较。 相似文献
5.
蛋白质与蛋白质相互作用研究是蛋白质组学的重要研究内容之一.本研究采用支持向量机学习方法,将氨基酸物理化学特性和序列信息方法相结合构建支持向量,选取DIP数据库中的酵母表达蛋白序列进行蛋白质相互作用预测.在34 000对酵母表达蛋白实验数据中,预测准确率达到83.72%,而单独运用基于氨基酸物理化学特性的方法和基于序列信息的方法预测准确率分别为75.86%和79.63%.在提高预测准确率的同时通过引入离散信息度量函数(FDOD)减少支持向量的维数,使支持向量学习时间缩短,提高相互作用预测的速度. 相似文献
6.
遗传算法和支持向量机是近年来发展迅速的机器学习算法,对样本量较小而变量数较大的基因微阵列数据支持向量机具有很好的分类效果。而遗传算法通过初始种群的不断进化(交叉,变异和选择),从而收敛到最优解,达到降维的目的。本文将二者结合,采用遗传算法并以支持向量机的分类准确率作为适应度函数,提高分类准确度。结果显示这种方法对分类更加有效。本文同时也对特征基因在代谢通路上的分布和功能作了一定的研究。 相似文献
7.
基于支持向量机的足月胎儿体重预测新方法 总被引:3,自引:0,他引:3
支持向量机回归估计的性能往往依赖于核函数及其参数、不敏感系数和惩罚因子的确定。支持向量机中参数的确定是一个较为困难的问题 ,以往通常采用交叉验证的方法确定参数。本研究提出了自适应参数调整支持向量回归估计方法 (A -SVM) ,给出了自适应参数调整算法。并已成功地应用于足月胎儿体重的建模 ,且经与径向基网 -偏最小二乘回归方法 (RBFN -PLSR)建立的模型比较 ,A -SVM方法拟合精度和预测能力均比RBFN-PLSR方法好。 相似文献
8.
基于小波分解和支持向量机的P300识别算法 总被引:2,自引:0,他引:2
针对支持向量机方法在P300识别中训练和识别速度相对较慢的不足,本研究提出了一种将小波分解与支持向量机相结合的P300识别方法。该方法通过小波分解实现脑电信号的特征提取,同时利用Span估计方法实现支持向量机最优参数的快速选择;然后借助支持向量机良好的分类性能实现P300的识别。本研究在BCICompetition 2003的P300实验数据集上对该方法进行了验证,结果表明,与传统支持向量机算法相比,本算法具有更高的训练和识别速度,并且在5次重复实验时达到了100%的识别准确率。 相似文献
9.
脑-机接口(BCI)中导联选择的目的是在所有记录脑电信号的导联中,选择出与特定心理任务分类最相关的导联,对于简化BCI系统,提高系统传输速率具有重要影响.本研究提出一种基于支持向量机(SVM)的导联选择算法,所采用的实验数据来自德国组织的第三届国际BCI数据竞赛数据集IVa中两个受试者(al,aw).结果表明,该算法对al数据集导联可从118减少到22,同时系统识别的精度从92%提高到98%;对aw数据集导联可从118减少到35,同时系统识别的精度从89%提高到93%.可简化BCI系统的设计,改善系统性能. 相似文献
10.
眼电图(electrooculogram,EOG)是一种最常用的眼球运动记录技术,但一直缺乏从EOG扫视信号中提取二维人眼位置信息的有效方法.本文提出了利用支持向量机对二维人眼位置信息进行提取的新方法,建立了相应的模型.研究结果表明,基于支持向量机的提取方法是准确、有效的,构筑EOG-SVR系统是可行的. 相似文献
11.
乳腺癌分子分型对乳腺癌的治疗具有决定性的参考作用,传统的分型方法有创且可能存在假阳性问题,而已有的基于影像学的分型方法准确率较低。本文提出一种利用迁移学习提取特征并结合支持向量机的分型预测方法,对乳腺癌PET/CT标记图像进行融合和归一化,再使用Xception迁移学习网络进行特征提取,最后使用支持向量机进行分类实现分型。对样本测试集进行性能评估表明,Xception+SVM模型的准确率达到0.687,AUC为0.787,优于现有基于影像学的方法,验证了本文方法的有效性。 相似文献