首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 36 clinical isolates of Staphylococcus aureus (29 fluoroquinolone-resistant strains and 7 fluoroquinolone-susceptible strains) were studied for the presence of point mutations in the gyrA gene by nonradioisotopic single-strand conformation polymorphism (Non-RI SSCP) analysis with silver stain. Direct DNA sequencing analysis of the PCR-amplified DNA fragments confirmed the results obtained by Non-RI SSCP analysis and revealed that fluoroquinolone resistance is closely associated with six types of mutations in the gyrA gene, of which three types of mutations were newly identified: (i) Ser-84-->Leu and Glu-88-->Gly, (ii) Ser-84-->Leu and Glu-88-->Lys, and (iii) Glu-88-->Gly. Furthermore, the novel ATT-->ATC mutation at codon 86 (silent mutation) was seen in only one fluoroquinolone-susceptible strain. All seven mutational types were separated from the wild type in a single electrophoretic step within 3 h after PCR amplification. Thus, we conclude that this new technique is a rapid, simple, and useful screening method for the genotyping of gyrA mutations associated with fluoroquinolone resistance.  相似文献   

2.
Detection of DNA sequence variation is fundamental to the identification of the genomic basis of phenotypic variability. Denaturing high-performance liquid chromatography (DHPLC) is a novel technique that has been used to detect mutations in human DNA. We report on the first study to use this technique as a tool to detect mutations in genes encoding antibiotic resistance in bacteria. Three methicillin-sensitive and three methicillin-resistant clinical Staphylococcus aureus isolates, susceptible to ciprofloxacin (MIC Leu, Ser-112-->Pro, Glu-88-->Lys in GyrA, Glu-84-->Val, Ser-80-->Phe in GrlA, Pro-456-->Ser in GyrB and Glu-422-->Asp, Pro-451-->Ser, Asp-432-->Gly in GrlB. Mutations could be rapidly and reproducibly identified from the PCR products using DHPLC, producing specific peak patterns that correlate with genotypes. This system facilitates the detection of resistance alleles, providing a rapid (5 min per sample), economic (96 sample per run) and reliable technique for characterizing antibiotic resistance in bacteria.  相似文献   

3.
The gene parC encodes the A subunit of topoisomerase IV of Escherichia coli. Mutations in the parC region analogous to those in the quinolone resistance-determining region of gyrA were investigated in 27 clinical isolates of E. coli for which ciprofloxacin MICs were 0.0007 to 128 micrograms/ml. Of 15 isolates for which ciprofloxacin MICs were > or = 1 microgram/ml, 8 showed a change in the serine residue at position 80 (Ser-80), 4 showed a change in Glu-84, and 3 showed changes in both amino acids. No mutations were detected in 12 clinical isolates for which ciprofloxacin MICs were < or = 0.25 micrograms/ml. These findings suggest that ParC from E. coli may be another target for quinolones and that mutations at residues Ser-80 and Glu-84 may contribute to decreased fluoroquinolone susceptibility.  相似文献   

4.
Point mutations in the gyrA genes of 451 clinical strains of Staphylococcus aureus isolated in Japan were detected by a combination of nonradioisotopic single-strand conformation polymorphism analysis and restriction fragment length polymorphism analysis and by direct sequencing. Six types of gyrA mutations were observed in 149 of the 451 strains (33%), and ofloxacin MICs were greater than 6.25 micrograms/ml for 147 of the 149 strains (98.7%). These mutations were localized between codons 84 and 88, and they were associated with fluoroquinolone resistance. Two types of silent mutations were also found. Among these eight types of mutations, three types are novel, i.e., the serine at position 84 (Ser-84)-->Val (TCA-->GTA), Ser-84-->Leu (TCA-->TTA) plus Ile-86 (ATT-->ATC, silent), and Phe-110 (TTT-->TTC, silent). Among GyrA mutants, strains with a Ser-84-->Leu alteration and strains with a Glu-88-->Lys alteration were dominant. In contrast, few strains had Ser-84-->Ala and Glu-88-->Gly alterations. All fluoroquinolones tested showed greater than a fourfold decrease in their activities in terms of their MICs that inhibited 50% of strains tested for each GyrA mutant, in comparison with their MICs that inhibited 50% of strains tested for susceptible strains. Most of the currently available fluoroquinolones, such as norfloxacin, enoxacin, ofloxacin, ciprofloxacin, tosufloxacin, lomefloxacin, sparfloxacin, and fleroxacin, were ineffective against each mutant. Mutants containing a Ser-84-->Leu or Val alteration showed high-level resistance to fluoroquinolones, and one containing a Ser-84-->Ala alteration showed relatively low-level resistance. Double mutations were associated with a higher level of resistance than single mutations.  相似文献   

5.
Mechanism of quinolone resistance in Staphylococcus aureus   总被引:4,自引:0,他引:4  
The resistance mechanisms to fluoroquinolones in Staphylococcus aureus were clarified by analyzing mutations in the genes encoding target enzymes, and examining the expression of the efflux pump, and determining the inhibitory activities of fluoroquinolones against the altered enzymes. Mutations in the grlA and gyrA genes of 344 clinical strains of S. aureus isolated in 1994 in Japan were identified by combinations of methods – single-strand conformation polymorphism analysis, restriction fragment length analysis, and direct sequencing – to identify possible relationships with fluoroquinolone resistance. Five types of single-point mutations and four types of double mutations were observed in the grlA gene in 204 strains (59.3%). Four types of single-point mutations and four types of double mutations were found in the gyrA gene in 188 strains (54.7%). Among these mutations, the grlA mutation of TCC → TTC or TAC (Ser-80 → Phe or Tyr) and the gyrA mutation of TCA → TTA (Ser-84 → Leu) were the principal ones, being detected in 137 (39.8%) and 121 (35.2%) isolates, respectively. A total of 15 types of mutation combinations within both genes were related to ciprofloxacin resistance (MIC ≧3.13 μg/ml) and were present in 193 mutants (56.1%). Strains containing mutations in both genes were highly resistant to ciprofloxacin (MIC50 =50 μg/ml). Those strains with the Ser-80 → Phe or Tyr alteration in grlA, but wild type in gyrA showed a lower level of ciprofloxacin resistance (MIC50≦12.5 μg/ml). Levofloxacin was active against 68 of 193 isolates (35.2%) with mutations at codon 80 of grlA in the presence or absence of concomitant mutations at codons 73, 84, or 88 in gyrA (MIC ≦6.25 μg/ml). Sitafloxacin (DU-6859a) showed good activity in 186 of 193 isolates (96.4%), with an MIC of ≦6.25 μg/ml. The contribution of membrane-associated multidrug efflux protein (NorA) expression to fluoroquinolone resistance was clarified by the checker-board titration method for determining the MIC of norfloxacin alone and in combination with carbonyl cyanide m-chlorophenylhydrazone. Among 344 clinical isolates, 139 strains (40.4%), in which the MIC of norfloxacin varied from 1.56 to >800 μg/ml, overexpressed the NorA protein. GrlA and GrlB proteins of topoisomerase IV, and GyrA and GyrB proteins of DNA gyrase encoded by genes with or without mutations were purified separately. The inhibitory activities of fluoroquinolones against the topoisomerase IV which contained a single amino acid change (Ser → Phe at codon 80, Glu → Lys at codon 84 of grlA, and Asp → Asn at codon 432 of grlB) were from 5 to 95 times weaker than the inhibitory activities against the non-altered enzyme. These results suggest that the mutations in the corresponding genes may confer quinolone resistance; the active efflux pump, NorA, was considered to be the third quinolone-resistance mechanism. The numerous and complicated mutations seen may explain the rapid and widespread development of quinolone resistance described in S. aureus. Sitafloxacin showed good antibacterial activity against ciprofloxacin- or levofloxacin-resistant mutants because of its high inhibitory activity against both topoisomerase IV and DNA gyrase. Received: March 3, 2000 / Accepted: May 2, 2000  相似文献   

6.
Resistance to fluoroquinolone (FQ) antibiotics in Streptococcus pneumoniae has been attributed primarily to specific mutations in the genes for DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE). Resistance to some FQs can result from a single mutation in one or more of the genes encoding these essential enzymes. A group of 160 clinical isolates of pneumococci was examined in this study, including 36 ofloxacin-resistant isolates (MICs, ≥8 μg/ml) recovered from patients in North America, France, and Belgium. The susceptibilities of all isolates to clinafloxacin, grepafloxacin, levofloxacin, sparfloxacin, and trovafloxacin were examined by the National Committee for Clinical Laboratory Standards reference broth microdilution and disk diffusion susceptibility testing methods. Among the ofloxacin-resistant strains, 32 of 36 were also categorized as resistant to levofloxacin, 35 were resistant to sparfloxacin, 29 were resistant to grepafloxacin, and 19 were resistant to trovafloxacin. In vitro susceptibility to clinafloxacin appeared to be least affected by resistance to the other FQs. Eight isolates with high- and low-level resistance to the newer FQs were selected for DNA sequence analysis of the quinolone resistance-determining regions (QRDRs) of gyrA, gyrB, parC, and parE. The DNA and the inferred amino acid sequences of the resistant strains were compared with the analogous sequences of reference strain S. pneumoniae ATCC 49619 and FQ-susceptible laboratory strain R6. Reduced susceptibilities to grepafloxacin and sparfloxacin (MICs, 1 to 2 μg/ml) and trovafloxacin (MICs, 0.5 to 1 μg/ml) were associated with either a mutation in parC that led to a single amino acid substitution (Ser-79 to Phe or Tyr) or double mutations that involved the genes for both GyrA (Ser-81 to Phe) and ParE (Asp-435 to Asn). High-level resistance to all of the compounds except clinafloxacin was associated with two or more amino acid substitutions involving both GyrA (Ser-81 to Phe) and ParC (Ser-79 to Phe or Ser-80 to Pro and Asp-83 to Tyr). No mutations were observed in the gyrB sequences of resistant strains. These data indicate that mutations in pneumococcal gyrA, parC, and parE genes all contribute to decreased susceptibility to the newer FQs, and genetic analysis of the QRDR of a single gene, either gyrA or parC, is not predictive of pneumococcal resistance to these agents.  相似文献   

7.
OBJECTIVES: To characterize the mechanisms of fluoroquinolone resistance in urinary tract pathogens exhibiting a multiple antibiotic resistance phenotype as well as a high-level resistance to fluoroquinolones. METHODS: Nineteen Escherichia coli urinary tract infection pathogens exhibiting high-level resistance to fluoroquinolones were characterized in this study. Alterations in outer membrane proteins (OMPs) and lipopolysaccharide (LPS) were analysed by PAGE. Changes to the quinolone resistance-determining regions (QRDRs) of GyrA and ParC were determined by PCR and DNA sequencing. The presence of the qnrA gene was determined by PCR amplification. Ciprofloxacin uptake was determined spectrophotometrically using the quinolone accumulation assay. RESULTS: OMP analysis showed decreased expression, the absence of certain proteins or the presence of proteins with altered molecular weights when compared with wild-type strains. Most isolates possessed a smooth LPS phenotype. Isolates had double mutations in GyrA codons 83 and 87, in addition to a ParC alteration at Ser-80/Glu-84. Isolates accumulated varying levels of ciprofloxacin, and upon the addition of carbonyl cyanide m-chlorophenylhydrazone, increased accumulation was observed in all instances. E. coli isolates with a rough LPS phenotype appeared to accumulate higher levels of ciprofloxacin compared with those with a smooth LPS phenotype expressing OmpF normally, or even those not possessing OmpF. All E. coli isolates tested demonstrated active efflux of ciprofloxacin. Plasmid-mediated quinolone resistance (presence of the qnrA gene) was observed in 36.8% of isolates. CONCLUSIONS: A combination of target gene alterations, altered OM permeability, presence of the qnrA gene and active efflux appear to act together to produce a high-level, multiresistance phenotype.  相似文献   

8.
We examined the response of Streptococcus pneumoniae 7785 to clinafloxacin, a novel C-8-substituted fluoroquinolone which is being developed as an antipneumococcal agent. Clinafloxacin was highly active against S. pneumoniae 7785 (MIC, 0.125 μg/ml), and neither gyrA nor parC quinolone resistance mutations alone had much effect on this activity. A combination of both mutations was needed to register resistance, suggesting that both gyrase and topoisomerase IV are clinafloxacin targets in vivo. The sparfloxacin and ciprofloxacin MICs for the parC-gyrA mutants were 16 to 32 and 32 to 64 μg/ml, respectively, but the clinafloxacin MIC was 1 μg/ml, i.e., within clinafloxacin levels achievable in human serum. S. pneumoniae 7785 mutants could be selected stepwise with clinafloxacin at a low frequency, yielding first-, second-, third-, and fourth-step mutants for which clinafloxacin MICs were 0.25, 1, 6, and 32 to 64 μg/ml, respectively. Thus, high-level resistance to clinafloxacin required four steps. Characterization of the quinolone resistance-determining regions of the gyrA, parC, gyrB, and parE genes by PCR, HinfI restriction fragment length polymorphism, and DNA sequence analysis revealed an invariant resistance pathway involving sequential mutations in gyrA or gyrB, in parC, in gyrA, and finally in parC or parE. No evidence was found for other resistance mechanisms. The gyrA mutations in first- and third-step mutants altered GyrA hot spots Ser-83 to Phe or Tyr (Escherichia coli coordinates) and Glu-87 to Gln or Lys; second- and fourth-step parC mutations changed equivalent hot spots Ser-79 to Phe or Tyr and Asp-83 to Ala. gyrB and parE changes produced novel alterations of GyrB Glu-474 to Lys and of Pro-454 to Ser in the ParE PLRGK motif. Difficulty in selecting first-step gyrase mutants (isolated with 0.125 [but not 0.25] μg of clinafloxacin per ml at a frequency of 5.0 × 10−10 to 8.5 × 10−10) accompanied by the small (twofold) MIC increase suggested only a modest drug preference for gyrase. Given the susceptibility of defined gyrA or parC mutants, the results suggested that clinafloxacin displays comparable if unequal targeting of gyrase and topoisomerase IV. Dual targeting and the intrinsic potency of clinafloxacin against S. pneumoniae and its first- and second-step mutants are desirable features in limiting the emergence of bacterial resistance.  相似文献   

9.
The nucleotide sequences of the quinolone resistance-determining regions (QRDRs) of the parC and gyrA genes from seven ciprofloxacin-resistant (Cpr) isolates of viridans group streptococci (two high-level Cpr Streptococcus oralis and five low-level Cpr Streptococcus mitis isolates) were determined and compared with those obtained from susceptible isolates. The nucleotide sequences of the QRDRs of the parE and gyrB genes from the five low-level Cpr S. mitis isolates and from the NCTC 12261 type strain were also analyzed. Four of these low-level Cpr isolates had changes affecting the subunits of DNA topoisomerase IV: three in Ser-79 (to Phe or Ile) of ParC and one in ParE at a position not previously described to be involved in quinolone resistance (Pro-424). One isolate did not show any mutation. The two high-level Cpr S. oralis isolates showed mutations affecting equivalent residue positions of ParC and GyrA, namely, Ser-79 to Phe and Ser-81 to Phe or Tyr, respectively. The parC mutations were able to transform Streptococcus pneumoniae to ciprofloxacin resistance, while the gyrA mutations transformed S. pneumoniae only when mutations in parC were present. These results suggest that DNA topoisomerase IV is a primary target of ciprofloxacin in viridans group streptococci, DNA gyrase being a secondary target.  相似文献   

10.
OBJECTIVES: Prevalence of single quinolone-resistance determining region (QRDR) mutations in Streptococcus pneumoniae was studied from nine institutions over 5 years to track the incidence of single QRDR mutations. METHODS: All 1106 levofloxacin-susceptible pneumococci (MICs < or = 2.0 mg/L) identified from 1112 total isolates (99.5% susceptibility) in TRUST 3 (1999), TRUST 5 (2001) and TRUST 7 (2003) surveillance studies from the same nine hospitals in nine states were screened for QRDR mutations. Using pyrosequencing, the strains were screened for mutations corresponding to hot spots Asp-78, Ser-79 and Asp-83 in ParC; Asp-80, Ser-81 and Glu-85 in GyrA; Asp-435 in ParE and Asp-435 in GyrB. DNA sequencing of QRDRs was performed to confirm mutations. RESULTS: No QRDR mutations were found in any of the isolates with levofloxacin MICs < or = 0.5 mg/L and no gyrA or gyrB QRDR mutations were found in any of the screened isolates (MICs < or = 2 mg/L). Four single-step QRDR mutants with the following amino acid substitutions were found: ParE Asp-435 to Asn (isolated in 1999 in Colorado); ParC Asp-83 to Asn (isolated in 2001 in Kentucky); ParC Ser-79 to Phe (isolated in 2003 in Indiana) and ParC Ser-79 to Tyr (isolated in 2003 in California). These non-clonal strains had levofloxacin MICs of 1 mg/L and were non-susceptible to ciprofloxacin (MIC 2-4 mg/L). CONCLUSIONS: Overall prevalence of single QRDR mutations in levofloxacin-susceptible S. pneumoniae with MICs of < or = 2 mg/L was 0.4% (4/1106) and has remained <1% within nine institutions over 5 years (1999-2003).  相似文献   

11.
One hundred sixteen unrelated clinical isolates of Staphylococcus aureus (70 ciprofloxacin resistant and 46 ciprofloxacin susceptible) from eight countries were studied for the presence of mutations in the grlA, grlB, gyrA, and gyrB gene loci. Two mutations within grlA (located at codons 80 and 84) and two mutations within gyrA (located at codons 84 and 88) were clearly associated with ciprofloxacin resistance, although other mutations detected within the four genes studied may also contribute to decreased susceptibility.  相似文献   

12.
Of 901 group B streptococcus strains analyzed, 13 (1.4%) were resistant to levofloxacin (MICs of >32 μg/ml for seven isolates, 2 μg/ml for four isolates, and 1.5 μg/ml for four isolates). Mutations in the quinolone resistance-determining regions (QRDRs) of gyrase and topoisomerase IV were identified. A double mutation involving the Ser-81 change to Leu for gyrA and the Ser-79 change to Phe or to Tyr for parC was linked to a high level of fluoroquinolone resistance. In addition, two other mutational positions in parC were observed, resulting in an Asp-83-to-Tyr substitution and an Asp-83-to-Asn substitution. Different mutations were also observed in gyrB, with unknown significance. Most levofloxacin-resistant GBS strains were of serotype Ib and belonged to sequence type 19 (ST19) and clonal complex 19 (CC-19). Most of them exhibited the epsilon gene.  相似文献   

13.
The problem of Pseudomonas aeruginosa resistance to fluoroquinolones is of growing concern in hospitals. The major mechanism of the resistance of this bacterium to fluoroquinolones is the modification of type II topoisomerases (DNA gyrase and topoisomerase IV). In this study, we examined, using the technique of DNA pyrosequencing, mutations in the quinolone resistance-determining regions of the gyrA and parC genes of 38 clinical isolates of P. aeruginosa that were non-susceptible to at least one of the three fluoroquinolones tested. The most common origin of the isolates was sputum (44.7 %), followed by wounds (11 %), urine (5 %), and ear discharge (5 %). Serotypes O:11 (21 %), O:2 (18.4 %), and O:6 (7.8 %), were the most predominant. Among these 38 isolates, 11 were susceptible, 22 were resistant, and 5 were intermediate-resistant to ciprofloxacin. We found that 19 (50 %) of these strains had a mutation in the gyrA gene (Thr 83 Ile), one of them presented a new mutation (His 80 Arg), 8 (21.05 %) strains had an additional mutation in the parC gene (Ser 80 Leu), and one of these strains had two new mutations not previously reported (Gln 84 Asp, Ala 85 Gly). The ciprofloxacin-sensitive strains had no mutations in the sequence area examined. We found that 81.8 % of the isolates that were resistant to ciprofloxacin had a mutation in the gyrA gene. Some of these resistant strains also had a mutation in the parC gene. The results of this study suggest that pyrosequencing is a reliable technique for the determination of the antibiotic resistance pattern of a given bacterial strain.  相似文献   

14.
Most Aeromonas strains isolated from two European rivers were previously found to be resistant to nalidixic acid. In order to elucidate the mechanism of this resistance, 20 strains of Aeromonas caviae (n = 10), A. hydrophila (n = 5), and A. sobria (n = 5) complexes, including 3 reference strains and 17 environmental isolates, were investigated. Fragments of the gyrA, gyrB, parC, and parE genes encompassing the quinolone resistance-determining regions (QRDRs) were amplified by PCR and sequenced. Results obtained for the six sensitive strains showed that the GyrA, GyrB, ParC, and ParE QRDR fragments of Aeromonas spp. were highly conserved (> or =96.1% identity), despite some genetic polymorphism; they were most closely related to those of Vibrio spp., Pseudomonas spp., and members of the family Enterobacteriaceae (72.4 to 97.1% homology). All 14 environmental resistant strains carried a point mutation in the GyrA QRDR at codon 83, leading to the substitution Ser-83-->Ile (10 strains) or Ser-83-->Arg. In addition, seven strains harbored a mutation in the ParC QRDR either at position 80 (five strains), generating a Ser-80-->Ile (three strains) or Ser-80-->Arg change, or at position 84, yielding a Glu-84-->Lys modification. No amino acid alterations were discovered in the GyrB and ParE QRDRs. Double gyrA-parC missense mutations were associated with higher levels of quinolone resistance compared with the levels associated with single gyrA mutations. The most resistant strains probably had an additional mechanism(s) of resistance, such as decreased accumulation of the drugs. Our data suggest that, in mesophilic Aeromonas spp., as in other gram-negative bacteria, gyrase and topoisomerase IV are the primary and secondary targets for quinolones, respectively.  相似文献   

15.
 A fluorometric real-time polymerase chain-reaction (PCR)-hybridization system, the LightCycler was developed for the detection of Neisseria gonorrhoeae in clinical samples and the analysis of point mutations associated with quinolone resistance in the gyrA gene. This system allowed us to amplify the N. gonorrhoeae-specific gyrA gene from an amount of DNA corresponding to five genome copies per reaction. We were able to detect N. gonorrhoeae in either 55 control strains or 36 nonisolated clinical urethral swab specimens, and to analyze the presence of mutations in codons Ser-91 and Asp-95 of the gyrA gene within 1 h. The mutation status in the gyrA gene assessed by the LightCycler assay was completely in agreement with the results of our previous conventional sequencing analysis, and was associated with the susceptibility to ciprofloxacin. Received: November 8, 2001 / Accepted: December 21, 2001  相似文献   

16.
The nucleotide sequences of the quinolone resistance-determining regions of the gyrA and parC genes from five ciprofloxacin-resistant strains of Haemophilus influenzae (MICs, 2 to 32 micrograms/ml) isolated from patients with cystic fibrosis and three ciprofloxacin-susceptible strains of H. influenzae (MICs, < or = 0.1 micrograms/ml) were determined. Four of the five resistant strains possessed at least one amino acid substitution in each of the GyrA and ParC fragments studied. The mutations identified in GyrA were a serine at residue 84 (Ser-84) to Leu or Tyr and Asp-88 to Asn or Tyr. ParC mutations were in positions exactly analogous to those identified in GyrA, namely, Ser-84 to Ile and Glu-88 to Lys. The Glu-88 to Lys ParC substitution was identified only in high-level ciprofloxacin-resistant strains. These mutations have been shown to be the origin of the observed resistance after transformation into ciprofloxacin-susceptible H. influenzae isolates. These results suggest that H. influenzae isolates require at least one amino acid substitution in both GyrA and ParC in order to attain significant levels of resistance to quinolones.  相似文献   

17.
gyrA mutations in quinolone-resistant pathogenic isolates of Staphylococcus spp. have been detected by the direct HinfI digestion of polymerase chain reaction products. Homology among gyrA genes allowed rapid examination of both coagulase-positive and -negative isolates. DNA sequence analysis revealed that ciprofloxacin resistance in Staphylococcus epidermidis is associated with a novel Ser-84----Phe mutation in the DNA gyrase A protein, analogous to Ser-84----Leu changes observed in Staphylococcus aureus.  相似文献   

18.
Of 73 clinical strains of Haemophilus influenzae isolated from the urethra of men with urogenital infections, we enrolled 6 strains (8.2%) with levofloxacin (LVFX) minimum inhibitory concentrations (MICs) of ≥0.03 μg/ml in this study. All the strains were isolated from non-gonococcal urethritis (NGU). We amplified the quinolone resistance-determining region of the gyrA gene and the analogous region of the parC gene from bacterial DNAs by PCR and sequenced the PCR products. Two strains with a LVFX MIC of 0.03 μg/ml had an amino acid change of Asp88 to Gly in GyrA. One with a LVFX MIC of 0.06 μg/ml had a change of Asp88 to Tyr in GyrA. Two with respective LVFX MICs of 0.12 and 0.25 μg/ml had a change of Ser84 to Leu in GyrA. One with a LVFX MIC of 1 μg/ml had changes of Ser84 to Leu in GyrA and of Ser84 to Ile in ParC. Multilocus sequence typing showed two strains with a change of Asp88 to Gly in GyrA had the same sequence type, but the others had sequence types different from each other. Single amino acid changes in GyrA alone or single changes in both GyrA and ParC could contribute to decreased susceptibility to fluoroquinolones in H. influenzae isolates from NGU. Most of the isolates with GyrA and/or ParC alterations would be multiclonal. The prevalence of such isolates would be relatively low, and they would still be susceptible to fluoroquinolones commonly prescribed for treatment of NGU.  相似文献   

19.
BACKGROUND: The development of infections with ganciclovir (GCV)-resistant human cytomegalovirus (HCMV) remains a serious problem in recipients of stem cell or organ transplants. Nearly all GCV-resistant clinical isolates have mutations in the viral UL97 gene. The rapid detection of GCV-resistant HCMV infections is necessary and the relative proportions of wild-type and mutant strains are predictive for the efficiency of antiviral therapy. To date, genotypical resistance screening has been limited to restriction fragment length polymorphism (RFLP) and sequencing analyses. Here, we present a comprehensive real-time PCR approach for the detection of most frequent mutations in the UL97 gene associated with GCV resistance. METHODS: The laboratory strains AD169 and Towne, different wild-type isolates and plasmids constructed by site-directed mutagenesis and overlap extension with specific point-mutations in the UL97 gene were analysed by LightCycler PCR and compared with UL97 RFLP and sequencing analyses. RESULTS: A new and comprehensive set of LightCycler PCRs was created using specific hybridization probes with melting-point analysis for the relevant codons 594, 595, 603 and 607. Different wild-type isolates and plasmids containing specific UL97 mutations conferring GCV resistance were investigated in the real-time PCR assay. Total processing time was 80 min per assay, whereas combinations of RFLP and sequencing needed at least 3-4 days. Proportions of co-existing wild-type and mutant strains in mixed viral populations can be obtained. CONCLUSIONS: We established a rapid real-time PCR approach for the detection of most frequent HCMV UL97 mutations associated with GCV resistance. Moreover, the method allows semiquantitative differentiation of the proportions of co-existing wild-type and mutant strains. This approach represents a new alternative for laborious RFLP analysis.  相似文献   

20.
Mutations in quinolone targets were analysed in 80 unrelated nalidixic acid-resistant (NALR) Escherichia coli strains whose nalidixic acid and ciprofloxacin MICs ranged from 32 to >256 mg/L and 0.03-64 mg/L, respectively. These strains were isolated from food products (23) and faecal samples from humans (15) and healthy animals (42). Thirteen nalidixic acid-susceptible (NALS) E. coli strains were also analysed. Mutations in gyrA and parC genes were studied by PCR and sequencing. No amino acid changes were detected in GyrA or ParC proteins of the 13 NALS strains. A single change in the GyrA protein was detected in all 61 NALR strains with ciprofloxacin MICs Leu (54), Ser-83-->Ala (one), Ser-83-->Val (one), Asp-87-->Asn (two), Asp-87-->Tyr (two) and Asp-87-->Gly (one). A double change in GyrA was found in 18 of 19 NALR strains with ciprofloxacin MICs >/= 4 mg/L. Amino acid substitutions were Ser-83-->Leu, with an additional change [Asp-87-->Asn (15), Asp-87-->Tyr (two) or Asp-87-->His (one)]. The remaining strain (ciprofloxacin MIC 4 mg/L) showed a single Ser-83-->Leu substitution. In respect of the ParC protein, a single change at Ser-80 or Glu-84 was found in 25 of 42 strains, with ciprofloxacin MICs ranging from 0.5 to 32 mg/L. A double substitution (Ser-80-->Ile and Glu-84-->Gly) was found in one strain (ciprofloxacin MIC 64 mg/L). No amino acid changes were detected in the GyrB protein of 18 NALR strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号