首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three 18F‐labelled PET tracers, 2‐[18F]fluoroethyl 1‐[(1R)‐1‐phenylethyl]‐1H‐imidazole‐5‐carboxylate ([18F]FETO), 6‐[(S)‐(4‐chlorophenyl)‐(1H)‐1,2,4‐triazol‐1‐yl)methyl]‐1‐(2‐[18F]fluoroethyl)‐1H‐benzotriazole ([18F]FVOZ) and 7‐[2‐(2‐[18F]fluoroethoxy)ethoxy]‐1‐9H‐ β ‐carboline ([18F]FHAR) were synthesized by a one‐step nucleophilic fluorination using the automated commercial platform TRACERLab FXFN. The labelled products were obtained with 16–20% isolated decay corrected radiochemical yields after 70–75 min synthesis time. The radiochemical and chemical purities were more than 98% in all cases. The synthesis using commercial platform may make these tracers more accessible for clinical research. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
18F‐labelled fluoroalkylamines are attractive reagents for the preparation of positron emission tomography tracers containing amine, amide, and N‐heterocyclic moieties. Herein, we report that 2‐[18F]fluoroethylamine can be obtained from 2‐[18F]fluoroethyl azide by reduction with elemental copper under acidic conditions. Azide to amine reduction was achieved in near quantitative analytical yields within 30 min by heating a solution of 2‐[18F]fluoroethyl azide in the presence of copper wire and aqueous trifluoroacetic acid. Subsequent reaction of 2‐[18F]fluoroethylamine with benzoyl chloride in the presence of triethylamine provided N‐[18F]fluoroethyl benzamide in 63% decay‐corrected radiochemical yield from 2‐[18F]fluoroethyl azide. The utility of the Cu(0)/H+ azide reduction method was further exemplified by preparation of the potential GABAA tracer 9H‐β‐carboline N‐2‐[18F]fluoroethylamide, which was obtained in 46% decay‐corrected radiochemical yield by reaction of 2‐[18F]fluoroethylamine with the corresponding 9H‐β‐carboline pentafluorophenyl ester. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
By replacing the alkyl chain in a metomidate ester with 18F‐labelled di‐ or tri(ethylene glycol) chains, two 18F‐labelled PET tracers, i.e. 2‐(2‐[18F]fluoroethoxy)ethyl 1‐[(1R)‐1‐phenylethyl]‐1H‐imidazole‐5‐carboxylate (1) and 2‐[2‐(2‐[18F]fluoroethoxy)ethoxy]ethyl 1‐[(1R)‐1‐phenylethyl]‐1H‐imidazole‐5‐carboxylate (2), were synthesized. Two precursors, 2‐(2‐bromoethoxy)ethyl 1‐[(1R)‐1‐phenylethyl]‐1H‐imidazole‐5‐carboxylate and 2‐[2‐(2‐chloroethoxy)ethoxy]ethyl 1‐[(1R)‐1‐phenylethyl]‐1H‐imidazole‐5‐carboxylate, were prepared and used in one‐step nucleophilic [18F]fluorination reactions using conventional and microwave heating. Organ distribution, frozen section autoradiography and metabolite analysis were performed. The decay‐corrected radiochemical yields of 1 and 2 were 26±8 and 23±8%, respectively, when they were prepared using conventional heating. By performing microwave heating, the reaction time could be decreased and the yields of analogues 1 and 2 could be increased to 57±12 and 51±18%, respectively. Organ distribution studies in the rat showed considerable uptake in the lungs, adrenals and liver. Both compounds bound with low nonspecific binding (1: approx. 20–30%; 2: 2.9% or lower) to tissue from pig and human normal and pathologic adrenals. Metabolite analyses were performed in rats after 5 and 30 min for tracer 1 (20±6 and 2±1%) and tracer 2 (27±5 and 6±4%). Both compounds are interesting candidates for the detection of different types of adrenal disorders. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
One‐ and two‐step syntheses for the 18F‐labelling of 6‐[(S)‐(4‐chlorophenyl)(1H‐1,2,4‐triazol‐1‐yl)methyl]‐1‐(2‐[18F]fluoroethyl)‐1H‐benzotriazole, [18F]FVOZ, 1 and 6‐[(S)‐(4‐chlorophenyl)(1H‐1,2,4‐triazol‐1‐yl)methyl]‐1‐[2‐(2‐[18F]fluoroethoxy)ethyl]‐1H‐benzotriazole, [18F]FVOO, 2 were developed. In the two‐step synthesis, the nucleophilic fluorination step was performed by reacting (S)‐6‐[(4‐chlorophenyl)‐(1H‐1,2,4‐triazol‐1‐yl)methyl]‐1H‐benzotriazole (VOZ) with either the 18F‐labelled ethane‐1,2‐diyl bis(4‐methylbenzenesulfonate) or the oxydiethane‐2,1‐diyl bis(4‐methylbenzenesulfonate). The radiochemical yields were in the range of 9–13% after the 110–120 min total syntheses and the specific radioactivities were 175±7 GBq/µmol and 56 GBq/µmol for compounds 1 and 2, respectively. In the one‐step synthesis, the precursor 2‐{6‐[(4‐chlorophenyl)(1H‐1,2,4‐triazol‐1‐yl)methyl]‐1H‐1,2,3‐benzotriazol‐1‐yl}ethyl 4‐methylbenzenesulfonate (7) or 1‐[2‐(2‐bromoethoxy)ethyl]‐6‐[(4‐chlorophenyl)(1H‐1,2,4‐triazol‐1‐yl)methyl]‐1H‐benzotriazole (8) was directly labelled via an 18F nucleophilic substitution to give the corresponding tracer. The labelled compounds were obtained in 36–99% radiochemical yield after 75‐min syntheses. The specific radioactivities are 100 GBq/µmol for compound 1 and 80 GBq/µmol for compound 2. In vitro autoradiography using frozen rat brains illustrated specific binding in the medial amygdala, the bed nucleus of stria terminalis and the preoptic area, all of which corresponded well to the result of 11C‐labelled vorozole. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Two fluoroethoxy substituted derivatives, namely 2‐[4‐(2‐(2‐fluoroethoxy)phenyl)‐piperazin‐1‐ylmethyl]indole‐5‐carbonitrile ( 5a ) and 2‐[4‐(4‐(2‐fluoroethoxy)‐phenyl)piperazin‐1‐ylmethyl]indole‐5‐carbonitrile ( 5b ) were synthesized as analogs of the selective D4 receptor ligand 2‐[4‐(4‐fluorophenyl)piperazin‐1‐ylmethyl]indole‐5‐carbonitrile (FAUC 316). In vitro characterization using CHO‐cells expressing different dopamine receptor subtypes gave Ki values of 2.1 ( 5a ) and 9.9 nM ( 5b ) for the dopamine D4 subtype and displayed a 420‐fold D4‐selectivity over D2 receptors for 5b . The para‐fluoroethoxy substituted candidate 5b revealed substantially reduced α1 and serotoninergic binding affinities in comparison to the ortho‐fluoroethoxy substituted compound. In order to provide potential positron emission tomography (PET) imaging probes for the dopamine D4 receptor, 18F‐labelling conditions using [18F]fluoroethyl tosylate were optimized and led to radiochemical yields of 81 ± 5% ( [18F]5a ) and 47 ± 4% ( [18F]5b ) (n = 3, decay‐corrected and referred to labelling agent), respectively. Thus, 18F‐fluoroethylation favourably at the para position of the phenylpiperazine moiety of the 5‐cyano‐indole framework proved to be tolerated by D4 receptors and could also be applied to alternative scaffolds in order to develop D4 radioligand candidates for PET with improved D4 receptor affinity and selectivity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Direct fluorination of a pyrimidine nucleoside at the 2′‐arabino‐position has been deemed to be extremely difficult, if not impossible. The conventional synthesis of 2′‐deoxy‐2′‐fluoro‐5‐methy‐1‐β‐D ‐arabinofuranosyluracil (FMAU) and its 5‐substituted analogs involves stereospecific fluorination of the 1,3,5‐tri‐O‐benzoyl‐α‐D ‐ribofuranose‐2‐sulfonate ester followed by bromination at the C1‐postion, and then coupling with pyrimidine‐bis‐trimethylsilyl ether. Several radiolabeled nucleoside analogs, including [18F]FMAU, and other 5‐substituted analogs, were developed according to this methodology. However, routine production of these compounds using this multi‐step process is inconvenient and limits their clinical application. We developed a novel precursor and method for direct fluorination of preformed nucleoside analogs at the 2′‐arabino position, exemplified via radiosynthesis of [18F]FMAU. The 2′‐methylsulfonyl‐3′,5′‐O‐tetrahydropyranyl‐N3‐Boc‐5‐methyl‐1‐β‐D ‐ribofuranosiluracil was synthesized in multiple steps. Radiofluorination of this precursor with K18F/kryptofix produced 2′‐deoxy‐2′‐[18F]fluoro‐3′,5′‐O‐tetrahydropyranyl‐N3‐Boc‐5‐methyl‐1‐β‐D ‐arabinofuranosiluracil. Acid hydrolysis followed by high‐performance liquid chromatography purification produced the desired [18F]FMAU. The average radiochemical yield was 2.0% (decay corrected, n=6), from the end of bombardment. Radiochemical purity was >99%, and specific activity was >1800 mCi/µmol. Synthesis time was 95–100 min from the end of bombardment. This direct fluorination is a novel method for synthesis of [18F]FMAU, and the method should be suitable for production of other 5‐substituted pyrimidine analogs, including [18F]FEAU, [18F]FIAU, [18F]FFAU, [18F]FCAU, and [18F]FBAU. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
2‐(4‐Methylaminostyryl)‐6‐(2‐[18F]fluoroethoxy)benzoxazole ([18F]BF‐168) was prepared and found to be a potential probe for imaging amyloid‐β. The precursor, a 6‐(2‐tosyloxyethoxy)benzoxazole derivative, was fluorinated with [18F]KF and Kryptofix 222 in acetonitrile, and the crude product purified by semi‐preparative HPLC to give [18F]BF‐168. The radiochemical purity was >95% and the maximum specific activity was 106 TBq/mmol at the end of synthesis. The synthesis time was 110 min from the end of bombardment. 2‐(4‐[N‐methyl‐11C]methylaminostyryl)‐5‐fluorobenzoxazole ([11C]BF‐145) was also prepared from 2‐(4‐aminostyryl)‐5‐fluorobenzoxazole, [11C]MeI and 5 N NaOH in DMSO, and purified by semi‐preparative HPLC. The radiochemical purity was >95% and the specific activity was 40–70 TBq/mmol at the end of synthesis. The synthesis time was 45 min from the end of bombardment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
We developed three novel positron‐emission tomography (PET) probes, 2‐tert‐butyl‐4‐chloro‐5‐{6‐[2‐(2[18F]fluoroethoxy)‐ethoxy]‐pyridin‐3‐ylmethoxy}‐2H‐pyridazin‐3‐one ([18F]BCPP‐EF), 2‐tert‐butyl‐4‐chloro‐5‐[6‐(4‐[18F]fluorobutoxy)‐pyridin‐3‐ylmethoxy]‐2H‐pyridazin‐3‐one ([18F]BCPP‐BF), and 2‐tert‐butyl‐4‐chloro‐5‐{6‐[2‐(2‐[11C]methoxy‐ethoxy)‐ethoxy]‐pyridin‐3‐ylmethoxy}‐2H‐pyridazin‐3‐one ([11C]BCPP‐EM), for quantitative imaging of mitochondrial complex 1 (MC‐1) activity in vivo. These three PET probes were successfully labeled by nucleophilic [18F]fluorination or by [11C]methylation of their corresponding precursor with sufficient radioactivity yield, good radiochemical purity, and sufficiently high specific radioactivity for PET measurement. The specificity of these probes for binding to MC‐1 was assessed with rotenone, a specific MC‐1 inhibitor, by a rat brain slice imaging method in vitro. Rat whole‐body imaging by small‐animal PET demonstrated that all probes showed high uptake levels in the brain as well as in the heart sufficient to image them clearly. The rank order of uptake levels in the brain and the heart just after injection was as follows: high in [18F]BCPP‐BF, intermediate in [11C]BCPP‐EM, and low in [18F]BCPP‐EF. The kinetics of [18F]BCPP‐EF and [11C]BCPP‐EM provided a reversible binding pattern, whereas [18F]BCPP‐BF showed nonreversible accumulation‐type kinetics in the brain and heart. Metabolite analyses indicated that these three compounds were rapidly metabolized in the plasma but relatively stable in the rat brain up to 60 min post‐injection. The present study demonstrated that [18F]BCPP‐EF could be a useful PET probe for quantitative imaging of MC‐1 activity in the living brain by PET.  相似文献   

9.
Recently, two fluorine‐18 labelled derivatives of flumazenil were described: 5‐(2′‐[18F]fluoroethyl)‐5‐desmethylflumazenil (ethyl 8‐fluoro‐5‐[18F]fluoroethyl‐6‐oxo‐5,6‐dihydro‐4H‐benzo‐[f]imidazo[1,5‐a] [1,4]diazepine‐3‐carboxylate; [18F]FEFMZ) and 3‐(2′‐[18F]fluoro)‐flumazenil (2′‐[18F]fluoroethyl 8‐fluoro‐5‐methyl‐6‐oxo‐5,6‐dihydro‐4H‐benzo‐[f]imidazo[1,5‐a]‐[1,4]diazepine‐3‐carbo‐ xylate; [18F]FFMZ). Since the biodistribution data of the latter were superior to those of the former we developed a synthetic approach for [18F]FFMZ starting from a commercially available precursor, thereby obviating the need to prepare a precursor by ourselves. The following two‐step procedure was developed: First, [18F]fluoride was reacted with 2‐bromoethyl triflate using the kryptofix/acetonitrile method to yield 2‐bromo‐[18F]fluoroethane ([18F]BFE). In the second step, distilled [18F]BFE was reacted with the tetrabutylammonium salt of 3‐desethylflumazenil (8‐fluoro‐5‐methyl‐6‐oxo‐5,6‐dihydro‐4H‐benzo‐[f]imidazo[1,5‐a] [1,4]diazepine‐3‐carboxylic acid) to yield [18F]FFMZ. The synthesis of [18F]FFMZ allows for the production of up to 7 GBq of this PET‐tracer, enough to serve several patients. [18F]FFMZ synthesis was completed in less than 80 min and the radiochemical purity exceeded 98%. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Tolbutamide ( 1 ) is a sulfonurea agent used to stimulate insulin secretion in type 2 diabetic patients. Its analogue 1‐(4‐(2‐[18F]fluoroethoxy)benzenesulfonyl)‐3‐butyl urea ( 3 ) was synthesized in overall radiochemical yields of 45% as a potential β‐cell imaging agent. Compound 3 was synthesized by 18F‐fluoroalkylation of the corresponding hydroxy precursor ( 2 ) with 2‐[18F]fluoroethyltosylate in DMF at 120°C for 10 min followed by purification with HPLC in a synthesis time of 50 min. Insulin secretion experiments of the authentic 19F‐standard compound on rat islets showed that the compound has a similar stimulating effect on insulin secretion as that of tolbutamide ( 1 ). The partition coefficient of compound 3 between octanol/water was determined to be 1.3±0.3 (n=5). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The cocaine‐derived dopamine reuptake inhibitors FE‐β‐CIT (8‐(2‐fluoroethyl)‐3‐(4‐iodophenyl)‐8‐azabicyclo[3.2.1]octane‐2‐carboxylic acid methyl ester) (1) and PR04.MZ(8‐(4‐fluorobut‐2‐ynyl)‐3‐p‐tolyl‐8‐azabicyclo[3.2.1]octane‐2‐carboxylic acid methyl ester) (2) were labelled with 18F‐fluorine using a two‐step route. 2‐[18F]Fluoroethyltosylate and 4‐[18F]fluorobut‐2‐yne‐1‐yl tosylate were used as labelling reagents, respectively. Radiochemically pure (>98%) [18F]FE‐β‐CIT and [18F]PRD04.MZ (32–86 GBq/µmol) were obtained after a synthesis time of 100 min in about 25% non‐decay‐corrected overall yield.  相似文献   

12.
Four novel 18F‐labeled quinazoline derivatives with low lipophilicity, [18F]4‐(2‐fluoroethoxy)‐6,7‐dimethoxyquinazoline ( [ 18 F]I ), [18F]4‐(3‐((4‐(2‐fluoroethoxy)‐7‐methoxyquinazolin‐6‐yl)oxy)propyl)morpholine ( [ 18 F]II ), [18F]4‐(2‐fluoroethoxy)‐7‐methoxy‐6‐(2‐methoxyethoxy)quinazoline ( [ 18 F]III ), and [18F]4‐(2‐fluoroethoxy)‐6,7‐bis(2‐methoxyethoxy)quinazoline ( [ 18 F]IV ), were synthesized via a 2‐step radiosynthesis procedure with an overall radiochemical yield of 10% to 38% (without decay correction) and radiochemical purities of >98%. The lipophilicity and stability of labeled compounds were tested in vitro. The log P values of the 4 radiotracers ranged from 0.52 to 1.07. We then performed ELISA to measure their affinities to EGFR‐TK; ELISA assay results indicated that each inhibitor was specifically bounded to EGFR‐TK in a dose‐dependent manner. The EGFR‐TK autophosphorylation IC50 values of [ 18 F]I , [ 18 F]II , [ 18 F]III , and [ 18 F]IV were 7.732, 0.4698, 0.1174, and 0.1176 μM, respectively. All labeled compounds were evaluated via cellular uptake and blocking studies in HepG2 cell lines in vitro. Cellular uptake and blocking experiment results indicated that [ 18 F]I and [ 18 F]III had excellent cellular uptake at 120‐minute postinjection in HepG2 carcinoma cells (51.80 ± 3.42%ID/mg protein and 27.31 ± 1.94%ID/mg protein, respectively). Additionally, biodistribution experiments in S180 tumor‐bearing mice in vivo indicated that [ 18 F]I had a very fast clearance in blood and a relatively high uptake ratio of tumor to blood (4.76) and tumor to muscle (1.82) at 60‐minute postinjection. [ 18 F]III had a quick clearance in plasma, and its highest uptake ratio of tumor to muscle was 2.55 at 15‐minute postinjection. These experimental results and experiences were valuable for the further exploration of novel radiotracers of quinazoline derivatives.  相似文献   

13.
This study reports the synthesis and characterization of 4‐chloro‐2‐tert‐butyl‐5‐[2‐[[1‐[2‐[18F]fluroethyl]‐1H‐1,2,3‐triazol‐4‐yl]methyl]phenylmethoxy]‐3(2H)‐pyridazinone ([18F]Fmp2) for myocardial perfusion imaging (MPI). The tosylate precursor and non‐radioactive compound [19F]Fmp2 were synthesized and characterized by infrared, 1H‐NMR, 13C‐NMR, and mass spectra (MS). The radiotracer [18F]Fmp2 was obtained by one‐step nucleophilic substitution of tosyl with 18F, and evaluated as an MPI agent in vitro and in vivo. Starting from [18F]KF/K222 solution, the typical decay‐corrected radiochemical yield (RCY) was 38 ± 8.8% with high radiochemical purity (>98%). The specific activity was calculated as 10 GBq/µmol at the end of synthesis determined by HPLC analysis. In the mice biodistribution, [18F]Fmp2 showed very high initial heart uptake (53.35 ± 5.47 %ID/g at 2 min after injection) and remarkable retention. The heart/liver, heart/lung, and heart/blood ratios were 7.98, 8.20, and 53.13, respectively at 2 min post‐injection. In the Positron Emission Tomography (PET) imaging study of Chinese mini‐swine, the standardized uptake value of the liver decreased modestly during the 2 h post‐injection, while the heart uptake and heart/liver ratios continued to increase with time. [18F]Fmp2 exhibited good stability, high heart uptake and low lung uptake in mice and Chinese mini‐swine. It may be worthy of further modification to improve liver clearance for MPI in the future.  相似文献   

14.
Recent publications reported high uptake of the carbon‐11 labelled 11β‐hydroxylase inhibitors (R)–[O–methyl‐11C]metomidate ([11C]MTO) and (R)–[O–ethyl‐11C]etomidate ([11C]ETO) in adrenocortical incidentalomas with excellent selectivity for positron emission tomography (PET). In our studies [18F]FETO, (the [18F]fluoroethyl ester of etomidate, (R)‐1‐(1‐phenylethyl)‐1H‐imidazole‐5‐carboxylic acid, 2′‐[18F]fluoroethyl ester), an analogue of [11C]MTO and [11C]ETO was chosen due to the suspected similarity of the pharmacokinetic and pharmacodynamic properties, and was prepared in the following two step procedure: First, [18F]fluoride was reacted with 2‐bromoethyl triflate using the kryptofix/acetonitrile method to yield 2–bromo‐[18F]fluoroethane ([18F]BFE). In the second step, [18F]BFE was reacted with the tetrabutylammonium salt of (R)‐1‐(1‐phenylethyl)‐1H‐imidazole‐5‐carboxylic acid to yield [18F]FETO, a novel inhibitor of the 11β‐hydroxylase. The proposed synthesis of [18F]FETO allows the production of sufficient amounts of this new PET‐tracer to serve 1–2 patients with an overall synthesis time of less than 80 min. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
4‐[18F]Fluoro‐N‐hydroxybenzimidoyl chloride (18FBIC), an 18F‐labelled aromatic nitrile oxide, was developed as building block for Ru‐promoted 1,3‐dipolar cycloaddition with alkynes. 18FBIC is obtained in a one‐pot synthesis in up to 84% radiochemical yield (RCY) starting from [18F]fluoride with 4‐[18F]fluorobenzaldehyde (18FBA) and 4‐[18F]fluorobenzaldehyde oxime (18FBAO) as intermediates, by reaction of 18FBAO with N‐chlorosuccinimide (NCS). 18FBIC was found to be a suitable and stable synthon to give access to 18F‐labelled 3,4‐diarylsubstituted isoxazoles by [Cp*RuCl(cod)]‐catalysed 1,3‐dipolar cycloaddition with various alkynes. So the radiosynthesis of a fluorine‐18–labelled COX‐2 inhibitor [18F] 1b , a close derivative of valdecoxib, was performed with 18FBIC and 1‐ethynyl‐4‐(methylsulfonyl)benzene, providing [18F] 1b in up to 40% RCY after purification in 85 minutes. The application of 18FBIC as a building block in the synthesis of 18F‐labelled heterocycles will generally extend the portfolio of available PET radiotracers.  相似文献   

16.
2‐[14C]‐N‐(6‐Chloro‐9H‐pyrido [3,4‐b]indol‐8‐yl)‐3‐pyridinecarboxamide (9A , also referred to as [14C]‐PS‐1145) was synthesized from [14C]‐paraformaldehyde in five steps in an overall radiochemical yield of 15%. The key intermediate 1‐[14C]‐6‐chloro‐1,2,3,4‐tetrahydro‐β‐carboline was obtained by Pictet–Spengler cyclization of chlorotryptamine with [14C]‐paraformaldehyde. Similar reactions were conducted with tryptamine to address the generality of the methodology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The syntheses of adenosine analogues, 2′‐deoxy‐2′‐[18F]fluoro‐9‐β‐D ‐arabinofuranosyladenine ([18F]‐FAA) and 3′‐deoxy‐3′‐[18F]fluoro‐9‐β‐D ‐xylofuranosyladenine ([18F]‐FXA) are reported. Adenosine ( 1 ) was converted to its methoxytrityl derivatives 2 and 3 as a mixture. After separation, these derivatives were converted to their respective triflates 4 and 5 . Each triflate was reacted with tetrabutylammonium[18F]fluoride to produce 6b or 7b , which by acidic hydrolysis yielded compounds 8b and 9b . Crude preparations were purified by HPLC to obtain the desired pure products. The radiochemical yields were 10‐18% decay corrected (d. c.) for 8b and 30‐40% (d. c.) for 9b in 4 and 3 runs, respectively. Radiochemical purity was >99% and specific activity was >74 GBq/μmol at the end of synthesis (EOS). The synthesis time was 90‐95 min from the end of bombardment (EOB). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
2‐[(4‐[18F]Fluorobenzoyloxy)methyl]‐1,4‐naphthalenedione ([18F]7 ) and 4‐[18F]fluorobenzoic acid ([18F]8 . This coupling reaction was fast and gave quantitative yields. Further investigations are warranted on the use of DCC as a coupling agent in Positron Emission Tomography. The synthesis including HPLC purification and reformulation has been fully automated on a modified FDG synthesiser with two reactor vials. [18F]1 was found to be stable in plasma and saline, but underwent rapid metabolism in a phase 1 metabolite assay using rat S9 liver fractions. An in vivo evaluation of [18F]相似文献   

19.
The well established M1 selective muscarinergic antagonist Pirenzepine 11‐[2‐(4‐methyl‐piperazin‐1‐yl)‐acetyl]‐5,11‐dihydro‐benzo[e]pyrido[3,2‐b][1,4]diazepin‐6‐one (1) exhibits an unusual behaviour in vivo, which cannot be explained with M1 antagonism exclusively. One of the aspects discussed is a specific interaction with poly ADP‐ribose polymerase (PARP‐1). 1 undergoes metabolism to form LS 75 5,11‐dihydro‐benzo[e]pyrido[3,2‐b][1,4]diazepin‐6‐one (2). In order to study deviations in Pirenzepine efficacy from pure M1 binding in vivo using PET, appropriate positron emitter labelled analogues of 1 and 2 were synthesised. Non‐radioactive reference compounds 3 and 4 were tested for PARP‐1 inhibition. The n‐octanol–water partition coefficients of compounds 1, 2, 3 and 4 at pH 7.4 (logD7.4) were determined. Both, 3 and 4 were labelled with 18F via 2‐[18F]fluoroalkylation in position 5 of the benzodiazepinone moiety to obtain N5‐[18F]fluoroethyl Pirenzepine [18F]‐3 and N5‐[18F]fluoroethyl LS 75 [18F]‐4. Radiotracers [18F]‐3 and [18F]‐4 were obtained in radiochemical yields of 15±4 % and 30±5% after 120 and 110 min, respectively. Metabolism of both compounds was investigated in vitro in human and rat plasma, respectively. Compound 3 did not show activity as an inhibitor of PARP‐1. Contrary, 4 displays moderate PARP‐1 inhibition potency. The new radiotracer [18F]‐4 can be applied for molecular imaging using autoradiography and PET. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The neurotransmitter glutamate is thought to be crucially involved in a huge number of neurological and psychiatric disorders, such as Morbus Parkinson, Alzheimer's disease and schizophrenia. Aiming at an improved diagnostic tool for PET a new [18F]fluorine labelled NMDA receptor ligand was developed that may potentially allow the in vivo visualization of glutama‐tergic neurotransmission. The 19F‐analogue trans‐5,7‐dichloro‐4‐(3‐{4‐[4‐(2‐fluoroethyl)‐piperazin‐1‐yl]‐phenyl}‐ureido)‐1,2,3,4‐tetrahydro quinoline‐2‐carboxylic acid was synthesised to determine the binding affinity, lipophilicity and biodistribution of the ligand. This substance exhibits a Ki of 12 nM for the glycine binding site using [3H]MDL‐105,519 assays on pig cortical membranes. A logD of 1.3 was determined for this compound according to the OECD guidelines employing the HPLC method. Radiosynthesis of this ligand was achieved by labelling the precursor trans‐5,7‐dichloro‐4‐[3‐(4‐piperazin‐1‐yl‐phenyl)‐ureido]‐1,2,3,4‐tetrahydroquinoline‐2‐carboxylic acid methyl ester with 2‐[18F]fluoroethyltosylate and subsequent cleaving of the methyl ester moiety, resulting in an overall decay corrected yield of 35% of the final product trans‐5,7‐dichloro‐4‐(3‐{4‐[4‐(2‐[18F]fluoroethyl)‐piperazin‐1‐yl]‐phenyl}‐ureido)‐1,2,3,4‐tetrahydroquinoline‐2‐carboxylic acid. The biodistribution kinetics of this compound were determined with Sprague Dawley rats ex vivo for brain, liver, kidney, and bone. The ligand showed a maximum brain uptake 30 min.p.i. of about 0.1% ID/g. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号