首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Primaly solid pseudopapillary neoplasm (SPN) of the ovary is a rare tumor; recently 6 cases have been reported. Its pathogenesis, however, remains largely unclear. We report an additional case of primary ovarian SPN of an 18‐year‐old girl. The aim of this study is to define the difference between pancreatic and ovarian SPN by histological and molecular examination. Microscopically the tumor predominantly showed a solid pattern and focally a pseudopapillary pattern. The tumor cells showed two patterns of abundant eosinophilic cytoplasm and intracytoplasmic vacuoles. Immunohistochemistry of the tumor was positive for β‐catenin (nuclear and cytoplasmic reactivity), α1‐antitrypsin, vimentin, CD56, synaptophysin (focal weak), CD10. Mutation analyses revealed a point mutation, c.110C >T, in exon 3 of the the β‐catenin gene (CTNNB1), which causes the replacement of serine with phenylalanine at codon 37. A Ser37 point mutation is known to be one of the oncogenic somatic mutations in pancreatic SPN and the major oncogenic β‐catenin mutation. Ovarian SPN of our case was similar to pancreatic SPN histologicaly and had the same genomic characteristics. We expected that both ovarian and pancreatic SPNs shared the same oncogenesis related to Wnt/β‐catenin pathway for tumorgenesis.  相似文献   

2.
Osteosarcoma is the most common malignant bone tumour, with a peak incidence in children and young adolescents, suggesting a role of rapid bone growth in its pathogenesis. The Wnt/β‐catenin pathway plays a crucial role in skeletal development and is indispensable for osteoblasts' lineage determination. Previous studies suggesting an oncogenic role for the Wnt/β‐catenin pathway in osteosarcoma were based on cytoplasmic staining of β‐catenin or the detection of one component of this pathway. However, those approaches are inappropriate to address whether the Wnt/β‐catenin pathway is functionally active. Therefore, in this study, we examined nuclear β‐catenin expression in 52 human osteosarcoma biopsies, 15 osteoblastomas (benign bone tumours), and four human osteosarcoma cell lines by immunohistochemistry. Furthermore, we modulated Wnt/β‐catenin pathway activity using a GIN (GSK3β inhibitor) and evaluated its effect on cell growth and osteogenic differentiation. Absence of nuclear β‐catenin staining was found in 90% of the biopsies and all osteosarcoma cell lines, whereas strong nuclear β‐catenin staining was observed in all osteoblastomas. Wnt‐luciferase activity was comparable to the negative control in all osteosarcoma cell lines. GIN stimulated the Wnt/β‐catenin pathway, as shown by translocation of β‐catenin into the nucleus and increased Wnt‐luciferase activity as well as mRNA expression of AXIN2, a specific downstream target gene. Stimulation of the Wnt/β‐catenin pathway by GIN significantly reduced cell proliferation in the cell lines MG‐63 and U‐2‐OS and enhanced differentiation in the cell lines HOS and SJSA‐1, as shown by an increase in alkaline phosphatase (ALP) activity and mineralization. In contrast with the oncogenic role of the Wnt/β‐catenin pathway in osteosarcoma as previous studies suggested, here we demonstrate that this pathway is inactivated in osteosarcoma. Moreover, activation of the Wnt/β‐catenin pathway inhibits cell proliferation or promotes osteogenic differentiation in osteosarcoma cell lines. Our data suggest that loss of Wnt/β‐catenin pathway activity, which is required for osteoblast differentiation, may contribute to osteosarcoma development. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

3.
4.
Tsang J Y S, Mendoza P, Lam C C F, Yu A M C, Putti T C, Karim R Z, Scolyer R A, Lee C S, Tan P H & Tse G M
(2012) Histopathology  61, 667–674 Involvement of α‐ and β‐catenins and E‐cadherin in the development of mammary phyllodes tumours Aims: Phyllodes tumours (PT) are rare but clinically important fibroepithelial tumours of the breast. β‐Catenin, a key component in Wnt signalling, has been shown to be important in the development of PT. It also functions as a component of the cadherin complex, which may therefore be implicated in PT pathogenesis. By assessing stromal α‐catenin, β‐catenin and E‐cadherin expression in 158 PT cases using immunohistochemistry and examining associations with clinicopathological features, we aimed to determine the role of these proteins in PT pathogenesis. Methods and results: Cytoplasmic β‐catenin correlated with α‐catenin expression. A significantly higher expression of both markers was observed in borderline than in benign PT (P = 0.003 and <0.001, respectively), but a lower level was found in malignant PT. Cytoplasmic E‐cadherin expression was significantly higher in borderline and malignant than in benign PT (P = 0.001 and 0.012, respectively), but was not correlated with other markers. Both E‐cadherin and α‐catenin showed stronger correlations with histological parameters than β‐catenin. α‐Catenin showed a significant correlation with recurrence (P = 0.005 and 0.016, respectively). Conclusions: α‐ and β‐catenins may be important in the early stages of PT development, while E‐cadherin may be required for malignant development. The correlation of α‐catenin expression with tumour recurrence may be relevant in predicting PT behaviour.  相似文献   

5.
6.
7.
Background: Mechanisms involved in early patterning of the mammalian gonad as it develops from a bipotential state into a testis or an ovary are as yet not well understood. Sex‐specific vascularization is essential in this process, but more specific mechanisms required to, for example, establish interstitial vs. cord compartments in the testis or ovigerous cords in the ovary have not been reported. Adherens junctions (AJs) are known for their roles in morphogenesis; we, therefore, examined expression of AJ components including β‐catenin, p120 catenin, and cadherins for possible involvement in sex‐specific patterning of the gonad. Results: We show that, at the time of early gonadal sex differentiation, membrane‐associated β‐catenin and p120 catenin colocalize with cell‐specific cadherins in both sex‐nonspecific and sex‐specific patterns. These expression patterns are consistent with an influence of AJs in overall patterning of the testis vs. ovary through known AJ mechanisms of cell–cell adhesion, cell sorting, and boundary formation. Conclusions: Together these complex and dynamic patterns of AJ component expression precisely mirror patterning of tissues during gonadogenesis and raise the possibility that AJs are essential effectors of patterning within the developing testis and ovary. Developmental Dynamics 241:1782–1798, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Aberrant phosphoinositide 3‐kinase (PI3K), mitogen‐activated protein kinase (MAPK) and WNT signalling are emerging as key events in the multistep nature of prostate tumourigenesis and progression. Here, we report a compound prostate cancer murine model in which these signalling pathways cooperate to produce a more aggressive prostate cancer phenotype. Using Cre‐LoxP technology and the probasin promoter, we combined the loss of Pten (Ptenfl/fl), to activate the PI3K signalling pathway, with either dominant stabilized β‐catenin [Catnb+/lox(ex3)] or activated K‐RAS (K‐Ras+/V12) to aberrantly activate WNT and MAPK signalling, respectively. Synchronous activation of all three pathways (triple mutants) significantly reduced survival (median 96 days) as compared with double mutants [median: 140 days for Catnb+/lox(ex3)Ptenfl/fl; 182 days for Catnb+/lox(ex3)K‐Ras+/V12; 238 days for Ptenfl/flK‐Ras+/V12], and single mutants [median: 383 days for Catnb+/lox(ex3); 407 days for Ptenfl/fl], reflecting the accelerated tumourigenesis. Tumours followed a stepwise progression from mouse prostate intraepithelial neoplasia to invasive adenocarcinoma, similar to that seen in human disease. There was significantly elevated cellular proliferation, tumour growth and percentage of invasive adenocarcinoma in triple mutants as compared with double mutants and single mutants. Triple mutants showed not only activated AKT, extracellular‐signal regulated kinase 1/2, and nuclear β‐catenin, but also significantly elevated signalling through mechanistic target of rapamycin complex 1 (mTORC1). In summary, we show that combined deregulation of the PI3K, MAPK and WNT signalling pathways drives rapid progression of prostate tumourigenesis, and that deregulation of all three pathways results in tumours showing aberrant mTORC1 signalling. As mTORC1 signalling is emerging as a key driver of androgen deprivation therapy resistance, our findings are important for understanding the biology of therapy‐resistant prostate cancer and identifying potential approaches to overcome this. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

15.
Background: The posterior lateral line in zebrafish develops from a migrating primordium that deposits clusters of cells that differentiate into neuromasts at regular intervals along the trunk. The deposition of these neuromasts is known to be coordinated by Wnt and FGF signals that control the proliferation, migration, and organization of the primordium. However, little is known about the control of proliferation in the neuromasts following their deposition. Results: We show that pharmacological activation of the Wnt/β‐catenin signaling pathway with 1‐azakenpaullone upregulates proliferation in neuromasts post‐deposition. This results in increased size of the neuromasts and overproduction of sensory hair cells. We also show that activation of Wnt signaling returns already quiescent supporting cells to a proliferative state in mature neuromasts. Additionally, activation of Wnt signaling increases the number of supporting cells that return to the cell cycle in response to hair cell damage and the number of regenerated hair cells. Finally, we show that inhibition of Wnt signaling by overexpression of dkk1b suppresses proliferation during both differentiation and regeneration. Conclusions: These data suggest that Wnt/β‐catenin signaling is both necessary and sufficient for the control of proliferation of lateral line progenitors during development, ongoing growth of the neuromasts, and hair cell regeneration. Developmental Dynamics 242:832–846, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Cancer stem cells (CSCs) are commonly associated with cancer recurrence and metastasis that occurs in up to 30–55% of non‐small‐cell lung carcinoma (NSCLC) patients. Herein, we showed that serine‐arginine protein kinase 1 (SRPK1) was highly expressed at both the mRNA and the protein levels in human NCSLC. SRPK1 was associated with the clinical features of human NSCLC, including clinical stage (p < 0.001) and T (p = 0.001), N (p = 0.007), and M (p = 0.001) classifications. Ectopic overexpression of SRPK1 promoted the acquisition of a stem cell‐like phenotype in human NSCLC cell lines cultured in vitro. Overexpression of SRPK1 increased sphere formation and the proportion of side‐population cells that exclude Hoechst dye. Conversely, SRPK1 silencing reduced the number of spheres and the proportion of side‐population cells. Mouse studies indicated that SRPK1 promoted NSCLC cell line tumour growth and SRPK1 overexpression reduced the number of tumour cells required to initiate tumourigenesis in vivo. Mechanistically, gene set enrichment analysis showed that Wnt/β‐catenin signalling correlated with SRPK1 mRNA levels and this signalling pathway was hyperactivated by ectopic SRPK1 expression in NSCLC cell lines. Immunofluorescence demonstrated that SRPK1 enhanced β‐catenin accumulation in the nuclei of NSCLC cell lines, and inhibition of β‐catenin signalling abrogated the SRPK1‐induced stem cell‐like phenotype. Together, our findings suggest that SRPK1 promotes a stem cell‐like phenotype in NSCLC via Wnt/β‐catenin signalling. Moreover, SRPK1 may represent a novel target for human NSCLC diagnosis and therapy. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
20.
Colorectal cancer (CRC) is the second leading cause of cancer‐related mortality in Western countries. Although the aberrant expression of several microRNAs (oncomiRs) is associated with CRC progression, the molecular mechanisms of this phenomenon are still under investigation. Here we show that miR‐101 expression is differentially impaired in CRC specimens, depending on tumour grade. miR‐101 re‐expression suppresses cell growth in 3D, hypoxic survival and invasive potential in CRC cells showing low levels of miR‐101. Additionally, we provide molecular evidence of a bidirectional regulatory mechanism between miR‐101 expression and important CRC pro‐malignant features, such as inflammation, activation of the Wnt/β‐catenin signalling pathway and epithelial–mesenchymal transition (EMT). We then propose that up‐regulated miR‐101 may function as a tumour suppressor in CRC and that its pharmacological restoration might hamper the aggressive behaviour of CRC in vivo. MiR‐101 expression may also represent a cancer biomarker for CRC diagnosis and prognosis. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号