首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compression of pellets coated with various aqueous polymer dispersions   总被引:4,自引:0,他引:4  
Pellets coated with a new aqueous polyvinyl acetate dispersion, Kollicoat SR 30 D, could be compressed into tablets without rupture of the coating providing unchanged release profiles. In contrast, the compression of pellets coated with the ethylcellulose dispersion, Aquacoat ECD 30, resulted in rupture of the coating and an increase in drug release. Plasticizer-free Kollicoat SR coatings were too brittle and ruptured during compression. The addition of only 10% w/w triethyl citrate as plasticizer improved the flexibility of the films significantly and allowed compaction of the pellets. The drug release was almost independent of the compression force and the pellet content of the tablets. The inclusion of various tabletting excipients slightly affected the drug release, primarily because of a different disintegration rate of the tablets. The core size of the starting pellets had no influence on the drug release. Pellets coated with the enteric polymer dispersion Kollicoat 30 D MAE 30 DP [poly(methacrylic acid, ethyl acrylate) 1:1] lost their enteric properties after compression because of the brittle properties of this enteric polymer. Coating of pellets with a mixture of Kollicoat MAE 30 DP and Kollicoat EMM 30 D [poly(ethyl acrylate, methyl methacrylate) 2:1] at a ratio of 70/30 and compaction of the pellets resulted in sufficient enteric properties.  相似文献   

2.
The objective of this study was to obtain pH-independent release profiles from coated pellets containing drugs with pH-dependent solubility. pH-independent release of the basic model drug verapamil HCl was achieved by coating with a combination of the neutral polymer dispersions Kollicoat SR 30 D (aqueous dispersion of polyvinyl acetate) and the enteric polymer dispersion Kollicoat MAE 30 DP (aqueous dispersion of methacrylic acid and ethyl acrylate copolymer; methacrylic acid copolymer type C). The two polymers where applied either as separate layers (enteric polymer + extended release polymer or vice versa) or as a polymer blend. A careful balance of the ratios of the polymers allowed the achievement of a pH-independent release. Higher amounts of the enteric polymer in the polymer blend resulted in a reversal of the pH-dependency, e.g. a faster release at pH 6.8 than in 0.1 N HCl.  相似文献   

3.
The objective of this study was to investigate the influence of talc and triethyl citrate (TEC) on stabilizing the drug release rates following curing and storage at elevated temperature of pellets coated with an aqueous acrylic polymeric dispersion. Core pellets containing anhydrous theophylline (20%), microcrystalline cellulose, and polyvinylpyrrolidone were prepared by extrusion-spheronization. The aqueous dispersions were prepared by adding up to 30% TEC as a plasticizer and talc up to 200% as an antiadherent to a mixture of Eudragit RS 30D/RL 30D (95:5). The theophylline pellets were coated in a fluidized-bed coating unit and then cured at elevated temperatures. Theophylline pellets were successfully coated with the Eudragit dispersions that contained up to 200% talc, based on the dry polymer weight, and the coating efficiency was greater than 93%. Our results demonstrated that the polymer, which was plasticized by TEC, was able to function as a film-forming agent for dispersions containing high levels of talc. No sticking of the coated pellets was observed during the coating process or during the curing or equilibrating phase, even with high levels of TEC in the film. The dissolution rate of theophylline from the coated pellets was delayed when the film coating dispersion contained high levels of talc. Additionally, the stability of the drug release profiles from the coated pellets after storage was significantly improved. Furthermore, a modified dissolution testing used to simulate mechanical stresses that may be encountered in vivo showed the film coated pellets would have sufficient strength. The results of this study demonstrated that high levels of film additives in the acrylic dispersion contributed to the stabilization of the drug release rates as well as the reproducibility of the coating process.  相似文献   

4.
The drug substance SAG/ZK has a short biological half-life and because of its weakly basic nature a strong pH-dependent solubility was observed. The aim of this study was to develop a controlled release (cr) multiple unit pellet formulation for SAG/ZK with pH-independent drug release. Pellets with a drug load of 60% were prepared by extrusion/spheronization followed by cr-film coating with an extended release polyvinyl acetate/polyvinyl pyrrolidone dispersion (Kollidon SR 30 D). To overcome the problem of pH-dependent drug release the pellets were then coated with a second layer of an enteric methacrylic acid and ethyl acrylate copolymer (Kollicoat MAE 30 DP). To increase the drug release rates from the double layered cr-pellets different osmotically active ionic (sodium and potassium chloride) and nonionic (sucrose) additives were incorporated into the pellet core. Drug release studies were performed in media of different osmotic pressure to clarify the main release mechanism. Extended release coated pellets of SAG/ZK demonstrated pH-dependent drug release. Applying a second enteric coat on top of the extended release film coat failed in order to achieve pH-independent drug release. Already low enteric polymer levels on top of the extended release coated pellets decreased drug release rates at pH 1 drastically, thus resulting in a reversal of the pH-dependency (faster release at pH 6.8 than in 0.1N HCl). The addition of osmotically active ingredients (sodium and potassium chloride, and sucrose) increased the imbibing of aqueous fluids into the pellet cores thus providing a saturated drug solution inside the beads and increasing drug concentration gradients. In addition, for these pellets increased formation of pores and cracks in the polymer coating was observed. Hence drug release rates from double layered beads increased significantly. Therefore, pH-independent osmotically driven SAG/ZK release was achieved from pellets containing osmotically active ingredients and coated with an extended and enteric polymer. In contrast, with increasing osmotic pressure of the dissolution medium the in vitro drug release rates decreased significantly.  相似文献   

5.
Theophylline or chlorpheniramine maleate pellets were coated with an aqueous ethylcellulose dispersion, Aquacoat. The influence of the plasticization time, curing conditions, storage time, and core properties on the drug release were investigated. The plasticization time (time between plasticizer addition to the polymer dispersion and the spraying process) did not affect the drug release, when the water-soluble plasticizer triethyl citrate, was used because of its rapid uptake by the colloidal polymer particles. In contrast, with the water-insoluble plasticizer acetyltributyl citrate (ATBC), plasticization time (1/2 h vs 24 h) influenced the drug release, the longer plasticization time resulted in a slower drug release because of a more complete plasticizer uptake prior to the coating step. However a thermal aftertreatment of the coated pellets at eleylated temperatures (curing step) reduced/eliminated the effect of the plasticization time with ATBC. In general, curing reduced the drug release and resulted in stable drug release profiles. The time period between the coating and the curing step was not critical when the pellets were cured for a longer time. The structure of the pellet core (high dose matrix vs low dose layered pellet) strongly affected the drug release. A slow, zero-order drug release was obtained with high dose theophylline pellets, while a more rapid, first-order release pattern was obtained with low dose theophylline-layered nonpareil pellets.  相似文献   

6.
Abstract

This study was performed to investigate the in vitro release characteristics of levodropropizine (LDP) from novel dual-coated sustained release (SR) pellets, and evaluate the pharmacokinetics of a novel controlled release (CR) preparation composed of the dual-coated SR pellets and immediate release (IR) LDP pellets. The dual-coated SR pellets composed of a drug-loaded nonpareil core, a sub-coating layer (HPMC 6cps) and an SR-coating layer (Aquacoat® ECD, Eudragit® RS 30D or Kollicoat® SR 30D) were prepared by a bottom-spray fluidized bed-coating method. The drug release from the dual-coated SR pellets coated with Aquacoat® ECD followed a zero-order profile in water, and the drug release was not affected by the coating level of the sub-coating layer and stable under the accelerated storage condition (40?°C, 75% RH) for 6 months. The CR preparation showed significantly decreased values of maximum drug concentration (Cmax) and elimination rate (K) than the reference product (LEVOTUS® SYR) but the similar bioavailability (F?=?95.43%). The novel CR preparation presents promising delivery of LDP with an immediate and sustained release manner, with similar clinical effect as the commercial IR product.  相似文献   

7.
Drug-layered pellets were coated with micronized polymer powders (Eudragit) RS, ethylcellulose, and shellac) by a dry powder coating technique as an alternative to organic- and aqueous-based coatings (Eudragit) RS 30D, Aquacoat) ECD) were investigated. High plasticizer concentrations (40%) and a thermal after-treatment (curing) were necessary for the coalescence of the polymer particles and good film formation. Ethylcellulose required a higher curing temperature and time than Eudragit) RS because of its higher glass transition temperature (133 versus 58 degrees C). A smaller polymer particle size also promoted film formation. In general, pellets coated with polymer powders required higher coating levels to obtain similar drug release patterns as pellets coated with organic polymer solutions and aqueous polymer dispersions.  相似文献   

8.
Theophylline pellets were coated with cellulosic (Aquacoat ECD 30, Surelease clear) or acrylic (Eudragit NE30D, RS30D) polymer aqueous dispersions, containing 10% (related to the insoluble polymer content) of pectin HM or calcium pectinate, using a Uni-Glatt fluidized-bed coating apparatus. When commercial pectinolytic enzymes were added to the dissolution media (0.05 M acetate - phosphate buffer, pH 6.0), the release of theophylline from the coated pellets was generally slower than that observed in the media without enzymes. The enzymatic slowing down of the drug release, depending on the type of the aqueous polymer dispersion used, is more important with mixed Eudragit NE/calcium pectinate coated pellets. The results obtained have been examined with regard to the validity of the approach based on the combination of pectins and the insoluble polymer aqueous dispersions intended for specific-delivery of drugs to the colon. The mechanism of the hydrophilic drug release from pellets coated with insoluble polymer aqueous dispersions containing an aqueous gel-forming polymer has been also discussed.  相似文献   

9.
The objective of this study was to investigate the possible impacts of curing and storage conditions on dissolution of controlled release diphenhydramine HCl pellets coated with EUDRAGIT NE30D. The accumulative percentage of dissolved active drug was used as the response in three statistical experimental design studies: 32 full factorial, Box-Behnken and 2(3) designs. By only considering curing temperature and curing time, both factors were found to significantly affect the dissolution rate, but curing temperature had greater impact than curing time. When considering polymer coating level, curing temperature and curing time together, polymer coating level and curing temperature had important effects on dissolution rate, but curing time became insignificant among these three factors. The addition of the water-soluble additives hydroxypropyl methyl cellulose and mannitol made coating films less sensitive to curing, and there was little or no difference in their effect in the model studied. Lower levels of a water-insoluble additive (kaolin) had little impact on dissolution; however, when the level of water-insoluble additive increased, the coating film became more sensitive to curing, especially at the lower curing temperature of 30 degrees C.  相似文献   

10.
The aim of this study was to develop an alternative method for enteric coating of HPMC capsules that avoids the sealing step before coating, resulting in ready-to-use enteric-coated capsules for the use in retail or hospital pharmacy or R&D sections of pharmaceutical industry and for the production of enteric-coated heat and moisture sensitive biomaterials. HPMC caps and bodies 00 (Vcaps, Capsugel) were coated separately in a fluid bed apparatus prior to filling (GPCG-1, Glatt) with Eudragit® L30D-55 or Eudragit® FS 30 D (Röhm), Aqoat® AS-HF (Shin-Etsu) and Sureteric® (Colorcon), using an optimised coating process. The coated bodies were filled and closed with the coated caps without encountering problems of coating damage. The release in 0.1N HCl after 2 h from capsules coated with Eudragit® L30D-55, Eudragit® FS 30 D, Aqoat® AS-HF and Sureteric® was 0.6±0.3, 0.6±0.3, 1.2±0.2 and 7.3±1.9%, respectively. The alternative method was reproducible and offered a way to overcome the time-consuming and expensive sealing step required using the conventional coating procedure. The obtained enteric-coated HPMC capsules can be stored (un)-filled for at least 6 months without loosing enteric properties.  相似文献   

11.
The purpose of this research study was to investigate the influence of an enteric polymer on the drug release properties of theophylline pellets coated with Eudragit RS 30D. Theophylline pellets were coated with aqueous colloidal dispersions of Eudragit RS 30D containing various amounts of Eudragit L 100-55. The effect of storage conditions on the release of drug from coated pellets was determined as a function of the pH of the dissolution medium. The results from the dissolution study showed significant changes in the dissolution rate of theophylline from pellets coated with Eudragit RS 30D when cured at 40 degrees C for 4 days. No change in the drug release rate was observed when Eudragit L100-55 was present in the Eudragit RS 30D dispersion. Increasing the ratio of Eudragit L100-55 to Eudragit RS 30D resulted in faster drug release rates from the coated pellets. An increase in the pH of the dissolution medium was found to enhance drug release from the pellets coated with Eudragit RS 30D containing Eudragit L 100-55. Theophylline pellets when coated with Eudragit RS 30D containing the enteric polymer Eudragit L100-55 demonstrated no aging effects when stored at elevated temperatures. The overcoating of the pellets with Eudragit RD 100 did not affect the drug release profiles and prevented the particles from agglomerating during curing and storage.  相似文献   

12.
The objective of this study was to develop meloxicam-loaded colon-specific pellets coated with Eudragit FS 30 D and further evaluate their in vitro release and in vivo absorption in beagle dogs. Meloxicam-loaded cores (drug loading, 4.8%, w/w) were prepared by layering drug-binder (HPMC)-solubilizer (beta-cyclodextrin) solution onto nonpareils (710-850 microm) and then coated with a copolymer of methyl acrylate, methyl methacrylate and methacrylic acid (Eudragit FS 30 D). The obtained pellets with 15% (w/w) coating level had a spherical form and a smooth surface with coating thickness approximately 28 microm. The in vitro drug release from the pellets was pH-dependent with sufficient gastric resistance (pH 1.2: no release; pH 6.8: 6%; pH 7.0: 52%; pH 7.2: 100%; pH 7.4: 100%, after 3 h incubation). In vivo study was carried out using pentagastrin-pretreated beagle dogs. The onset of meloxicam absorption from the coated pellets with 15% (w/w) Eudragit FS 30 D (3.0+/-0.8 h) was significantly delayed (p<0.05) compared to that from the uncoated drug-layered cores (0.6+/-0.3 h). The area under the meloxicam plasma concentration-time curve (AUC(0-->96)(h) was not significantly different between the two preparations (p>0.05), although AUC(0-->96)(h) obtained after oral administration of coated pellets (142.5+/-59.6 microg h/ml) was lower than that obtained after administration of uncoated drug-layered cores (180.8+/-61.9 microg h/ml). These results suggested that meloxicam could be delivered to the colon with 15% (w/w) coating level of Eudragit FS 30 D and this polymer coating had no significant influence on the relative bioavailability of meloxicam of the pellets.  相似文献   

13.
The purpose of the study was to (i) prepare the chitosan/Kollicoat SR 30D film-coated pellets for colonic drug delivery, and (ii) evaluate the colonic delivery and efficacy of these coated pellets in the rat. The pellets were coated to different film thickness with chitosan/Kollicoat SR 30D formulations. In vitro drug release was assessed in simulated gastrointestinal (GI) tract conditions. Biodistribution of aminosalicylates (5-ASA) in GI tract and plasma was measured after oral administration of coated or uncoated 5-ASA pellets. Efficacy of the coated or uncoated 5-ASA pellets was tested in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rat colitis model. Healing of induced colitis was assessed by measuring the myeloperoxidase activities, colon wet weight/body weight, and damage score. The coating was susceptible to bacteria digestion, resulting in an increase in the release of 5-ASA from the coated pellets. After administration of the coated pellets, the drug concentration in the large intestine was higher than those of uncoated pellets. In plasma, the observed mean Cmax from the coated pellets was significantly lower than that of the uncoated pellets. Chitosan/Kollicoat SR 30D film-coated pellets could deliver the 5-ASA to the targeted site, providing effective treatment for inflammatory bowel disease. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:186–195, 2010  相似文献   

14.
The objectives of this study were to evaluate the mechanical and thermal properties of films prepared from Eudragit® NE 30D/Eudragit® L 30D-55 blends and to examine the dissolution behavior of beads coated with the polymer blends up to 120% weight gain. Eudragit® NE 30D and L 30D-55 dispersions were blended at 50:50, 67:33, 75:25, and 80:20 ratios. Cast films were evaluated by texture analysis and differential scanning calorimetry. Increasing Eudragit® NE 30D concentration increased miscibility, softness, and decreased stiffness of the films. At 80:20 ratio, the polymer blend was completely miscible whereby Eudragit® L 30D-55 was molecularly distributed in the mixture. This was confirmed by SEM analysis. The surface morphology of films and beads was evaluated before and after dissolution by scanning electron microscopy. SEM analysis demonstrated that the size of the pores formed after the dissolution of Eudragit® L 30D-55 at pH 6.8 was dependent on the miscibility of the Eudragit® blend. The implications of this effect were apparent in dissolution studies. For the 75:25 and 80:20 blends, a linear increase in lag time up to 7 h was observed with an increase in coat weight gain from 15 to 120%. At 60% weight gain, the 80:20 blend delayed drug release by approximately 7 h whereas the less miscible 75:25 blend delayed drug release by only 3.5 h. A lag time could therefore be controlled by manipulating both the theoretical weight gain of the beads and the concentration of Eudragit® NE 30D in the blend.  相似文献   

15.
Theophylline or chlorpheniramine maleate pellets were coated with an aqueous ethylcellulose dispersion, Aquacoat. The influence of the plasticization time, curing conditions, storage time, and core properties on the drug release were investigated. The plasticization time (time between plasticizer addition to the polymer dispersion and the spraying process) did not affect the drug release, when the water-soluble plasticizer, triethyl citrate, was used because of its rapid uptake by the colloidal polymer particles. In contrast, with the water-insoluble plasticizer, acetyltributyl citrate (ATBC), plasticization time (1/2 h vs 24 h) influenced the drug release, the longer plasticization time resulted in a slower drug release because of a more complete plasticizer uptake prior to the coating step. However, a thermal aftertreatment of the coated pellets at elevated temperatures (curing step) reduced/eliminated the effect of the plasticization time with ATBC. In general, curing reduced the drug release and resulted in stable drug release profiles. The time period between the coating and the curing step was not critical when the pellets were cured for a longer time. The structure of the pellet core (high dose matrix vs low dose layered pellet) strongly affected the drug release. A slow, zero-order drug release was obtained with high dose theophylline pellets, while a more rapid, first-order release pattern was obtained with low dose theophylline-layered nonpareil pellets.  相似文献   

16.
The aim of this study was to statistically optimize the use of blends of methacrylic acid ester copolymers with different permeability properties as controlled-release coating systems for tablets to produce predictable predesigned release profiles. A full factorial design was used to study and optimize the use of methacrylic acid ester copolymers Eudragit RS 30D and Eudragit RL 30D as coating materials for controlled release. Directly compressed theophylline tablets were coated with aqueous dispersions containing different proportions of the two copolymers using a side-vented coating pan (Accela Cota). The effect of polymer loading level at 5, 7.5, and 10% weight gain and curing time at 50 degrees C for 12 and 24 hours were also evaluated. Coated tablets were tested for their drug release in water using a United States Pharmacopeia (USP) dissolution apparatus #2. The results showed that increasing the content of the lower permeability copolymer Eudragit RS 30D, increasing the polymer load, and increasing curing time at 50 degrees C resulted in slower drug release. A statistical model that describes and predicts the drug release properties of the coated tablets as a function of the copolymers ratio in the coating dispersion, polymer load, and curing time at 50 degrees C was developed. The most significant factor affecting drug release was found to be the ratio of the two copolymers in the coating dispersion followed by the curing time at 50 degrees C and the polymer loading level. Good correlations were observed between the model fitted values andthe experimental values. An optimized formula prepared by superimposing two-dimensional contour plots was prepared; its release profile was found to be in agreement with the prediction obtained from the model.  相似文献   

17.
目的制备含萘普生钠和盐酸伪麻黄碱的复方缓释微丸,考察理论聚合物包覆量、抗黏剂用量、热处理时间等因素对盐酸伪麻黄碱缓释微丸释放度的影响。方法采用挤出滚圆法制备萘普生钠速释微丸及盐酸伪麻黄碱含药丸芯,采用丙烯酸树脂水分散体(EudragitRS 30D)流化床包衣技术制备盐酸伪麻黄碱缓释微丸,采用紫外分光光度法测定萘普生钠的含量及溶出度,采用HPLC法测定盐酸伪麻黄碱的含量及释放度。结果萘普生钠、微晶纤维素、硫酸钠质量比为10∶9∶1时,制得的萘普生钠速释微丸圆整度好,脆碎度低,10 min累积释药大于90%;当盐酸伪麻黄碱缓释微丸的理论聚合物包覆量为50%、滑石粉用量为聚合物质量的40%、热处理时间为24 h时,药物释放过程接近零级释药模型。结论所制备的萘普生钠速释微丸及盐酸伪麻黄碱缓释微丸体外释药均符合速释和缓释要求,后者的体外释药过程接近零级释药模型。  相似文献   

18.
Kollicoat SR 30D is a unique 30% aqueous dispersion of polyvinvyl acetate stabilized by polyvinyl-pyrrolidone intended for preparation of sustained release products. Detailed evaluation of this polymer dispersion as a sustained release coating for active pharmaceutical ingredients of two diverse classes of drugs was studied. A water insoluble drug (ibuprofen) and a water soluble drug (ascorbic acid) were selected as model active drugs. Ibuprofen was granulated using a GPCG-1 fluid bed processor prior to tableting, to improve the particle size and particle flow properties. In this process a 2(3) factorial design was implemented to evaluate the optimum process parameters such as spray rate, inlet air temperature and the inlet air velocity. The statistical model selected was Y(ijkl) = mu + tau(i) + beta(j) + theta(k) + (taubeta)ij + (betatheta)jk + (tautheta)ik + (taubetatheta)ijk + epsilon(ijkl). The factorial design showed that the spray rate, inlet air temperature, and inlet air velocity had a significant effect (p value <0.05) on the particle size. Significant improvement was observed in the flow properties of the granules. The granules were coated with Kollicoat SR30D dispersion using top spray method in the fluid bed processor. The dissolution studies showed that the release of ibuprofen decreased with an increase in the coating levels of Kollicoat SR 30 D. In the case of ascorbic acid, preparation of sustained release coated commercial granules was not possible due to the difficulty in coating a highly soluble drug particle. However, the coated granules when compressed into tablets showed some sustainability. Ibuprofen tablets manufactured with coated granules with a 15 g polymer for 300 g batch showed dissolution parameters of t50 and t90 at 4.2 hr and 7.5 hr, respectively. An approximate zero-type of release was observed when the polymer content was increased to 45 g for 300 g batch. Ascorbic acid tablets made with coated commercial granules having a total polymer content of 45 g per a 500 g batch showed an average dissolution t50 and t90 at 1.0 hr and 4.55 hr, respectively. When the total polymer content was increased to 60 g, per 500 g, the average dissolution t50 and t90 delayed to 1.40 hr and 7.20 hr, respectively.  相似文献   

19.
A new approach to developing a drug-polymer mixed coat for highly water-soluble diltiazem pellets was investigated at different coating levels. Drug layering and the coating procedures were performed using a bottom spray fluidized bed coater. Drug pellets were coated with Eudragit NE40 (NE40) alone and in combination with diltiazem and hydrophilic cellulose derivatives. Dissolution studies revealed that incorporation of hydrophilic substances such as methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), and the drug itself considerably increased the release rates. The release from mixed polymer coatings was fast compared to pellets coated with NE40 only. The major portion of the drug was released in about 2 hours in case of MC and NE40 mixed coat compared to hours from coated pellets containing HPMC or diltiazem. Incorporation of 15% to 25% drug with respect to the polymer coat helped to achieve a drug-release profile at a desirable rate over a 12 hour period. Moreover, the test formulation comprising 25% diltiazem with respect to 7% NE40 had a dissolution profile that matched the commercial product, Herbesser SR capsules. The release of diltiazem from the coated pellets was slightly affected by the pH of dissolution media.  相似文献   

20.
The objective of this study was to investigate the influence of a hydrophilic polymer, hydroxyethylcellulose (HEC), on the release properties of theophylline from pellets coated with Eudragit RS 30 D, and the physicochemical properties of Eudragit RS 30 D cast films. The release rate of theophylline from Eudragit RS 30 D coated pellets decreased during storage at 25 degrees C/60% RH due to the further coalescence of colloidal acrylic particles. In addition, water-vapor permeability and tensile strength of Eudragit RS 30 D cast film decreased after 1-month storage at 25 degrees C/60% RH. The presence of 10% hydroxyethylcellulose in the coating formulation was shown to stabilize the drug release rate from coated pellets, the water-vapor permeability and the tensile strength of free films. Atomic force microscopy and scanning electronic microscopy were used to demonstrate that the HEC was immiscible with Eudragit RS 30 D in the cast films. The stabilization effect of HEC was investigated and determined to be due to the formation of an incompatible phase between the latex particles which impaired further coalescence of the colloidal acrylic particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号