首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most frequent inherited defect of fatty acid oxidation, with a significant morbidity and mortality in undiagnosed patients. Adverse outcomes can effectively be prevented by avoiding metabolic stress and following simple dietary measures. Therefore, prospective newborn screening (NBS) is being proposed for this condition. However, technical validation of MCADD population screening and assessment of its overall benefit require broadening of the as-yet-scarce knowledge of the MCADD genetic heterogeneity unraveled by NBS and its phenotypic consequences. Here, we describe the entire spectrum of sequence variations occurring in newborns with MCADD in the population of Bavaria, Germany, in relation to the biochemical phenotype. Among 524,287 newborns, we identified 62 cases of MCADD, indicating a birth incidence of 1 in 8,456. In all of the 57 newborns available for analysis, two alterations within the MCADD gene (ACADM) were identified. The most prevalent alteration c.985A>G (Lys329Glu) occurred in 27 (47%) newborns in the homozygous and in 18 (32%) in the heterozygous state (63% of defective alleles). The mild folding variant c.199T>C (Tyr67His) was identified in nine individuals, six of them being compound heterozygous with c.985A>G (Lys329Glu). Neither of the prevalent alterations were found in the remaining nine newborns. A total of 18 sequence variations were identified; 13 of them were novel: eight missense mutations, one nonsense mutation, two splice variants, and two small deletions. The remaining five were previously reported in MCADD patients. The ACADM heterogeneity uncovered was larger as anticipated from previous c.985A>G (Lys329Glu) carrier screening data. In addition, we show that MCADD appears to occur as frequently in Turkish newborns as in the native German population. Our data validate that biochemical NBS for MCADD is a highly specific procedure for disease detection, with the identification of a significant share of milder biochemical phenotypes, such as c.199T>C (Tyr67His). These show statistically lower acylcarnitine markers, allowing us to distinguish subgroups within the spectrum of ACADM sequence variations that correlate to biochemical MCADD disease expression. Our data might provide technical and medical guidance for decision making in the worldwide efforts to introduce MCADD population screening.  相似文献   

2.
The incidence of severe metabolic crises in medium chain acyl-CoA dehydrogenase deficiency (MCADD) patients homozygous for the common c.985A>G mutation, who had been identified by neonatal screening, was assessed prospectively and compared to retrospective cohort data in unscreened patients with identical genotypes. Logrank test showed a significant reduction of severe metabolic crises in the screened cohort (p<0.01). Neonatal screening appears to reduce the rate of severe metabolic crisis or death in the most prevalent subset of MCADD.  相似文献   

3.
Medium‐chain acyl‐CoA dehydrogenase deficiency (MCADD) represents a potentially fatal fatty acid β‐oxidation disorder. Newborn screening (NBS) by tandem mass spectrometry (MS/MS) has been implemented worldwide, but is associated with unresolved questions regarding population heterogeneity, burden on healthy carriers, cut‐off policies, false‐positive and negative rates. In a retrospective case‐control study, 333 NBS samples showing borderline acylcarnitine patterns but not reaching recall criteria were genotyped for the two most common mutations (c.985A>G/c.199C>T) and compared with genotypes and acylcarnitines of 333 controls, 68 false‐positives, and 34 patients. c.985A>G was more frequently identified in the study group and false‐positives compared to controls (1:4.3/1:2.3 vs. 1:42), whereas c.199C>T was found more frequently only within the false‐positives (1:23). Biochemical criteria were devised to differentiate homozygous (c.985A>G), compound heterozygous (c.985A>G/c.199C>T), and heterozygous individuals. Four false‐negatives were identified because our initial algorithm required an elevation of octanoylcarnitine (C8) and three secondary markers in the initial and follow‐up sample. The new approach allowed a reduction of false‐positives (by defining high cut‐offs: 1.4 μmol/l for C8; 7 for C8/C12) and false‐negatives (by sequencing the ACADM gene of few suspicious samples). Our validation strategy is able to differentiate healthy carriers from patients doubling the positive predictive value (42→88%) and to target NBS to MCADD‐subsets with potentially higher risk of adverse outcome. It remains controversial, if NBS programs should aim at identifying all subsets of all diseases included. Because the natural course of milder variants cannot be assessed by observational studies, our strategy could serve as a general model for evaluation of MS/MS‐based NBS.  相似文献   

4.
Inherited deficiency of medium-chain acyl-CoA dehydrogenase (MCAD) is a severe, sometimes fatal disorder. A single mutation in the MCAD gene, 985A>G, is involved in approximately 90% of cases. To evaluate the relevance of implementing a systematic population-based screening program in the province of Quebec using a biochemical test, we measured the prevalence of this mutation in a set of anonymous newborn samples from the Quebec City area, a region where the majority of its inhabitants are French-Canadians. An allele-specific polymerase chain reaction assay was designed and used to detect the mutation in 7143 DNA samples obtained from consecutive anonymous newborns. Pools of eight DNA samples were genotyped in parallel for the same mutation to validate this pooling strategy. The allelic frequency of the MCAD 985A>G mutation was found to be 0.71% and the carrier frequency 1:71 (95% confidence interval 1:55 to 1:98). This estimate predicts a homozygous frequency of 1:19,837. Ninety-nine heterozygous carriers and one homozygous individual were identified out of 7143 samples. There was 100% concordance between the individual and pooled analyses, and the pooling strategy reduced the total genotyping costs by approximately 70%. The carrier frequency estimated for this population is similar to other northwestern European populations and would support implementation of systematic newborn screening (such as tandem mass spectrometry screening) for this disease. Pooling DNA samples followed by genotyping appears to be cost-effective for estimating prevalence of rare mutations.  相似文献   

5.
IntroductionMedium chain acyl-CoA dehydrogenase deficiency (MCADD) is the most frequent of the fatty acid oxidation disorders (FAOD), a group caused by defects in the mitochondrial B-oxidation of fatty acids. Fatty acid oxidation is critical in supplying energy during periods when glucose is limited or when energy needs are increased beyond the availability of glucose. In MCADD, this energy shortage can result in acute metabolic episodes or sudden death. The prevention of sudden death from MCADD served as the primary impetus to expand newborn screening. However, we have experienced sudden death in four children with MCADD despite their detection by newborn screening. The purpose of this report is to alert others to the danger of sudden death in MCADD even when it is detected by newborn screening, to identify the clinical symptoms that precede sudden death, and to examine the relationship between the newborn screening result and the risk for sudden death.MethodsWe describe these children and their metabolic findings with emphasis on their newborn screening octanoylcarnitine (C8) level, the primary marker for newborn detection of MCADD. We also performed a literature search of cases of sudden death in MCADD in which the clinical status preceding death is described.ResultsThe newborn screening C8 levels in our four cases were markedly elevated, ranging from 8.4 to 24.8 μmol/L (cut off < 0.8 μmol/L). Only two of the children were homozygous for the common c.985A>G MCAD mutation; the other two were heterozygous for this mutation. Similarly, among the eight reported cases which included MCAD genotypes, five were homozygous for the c.985A>G mutation, while two were heterozygous and one was homozygous for a splice site mutation. Vomiting 12–24 h before sudden death was present in all four of our cases, and the review of reported cases of sudden death in MCADD disclosed vomiting as a frequent symptom.ConclusionWe suggest that in MCADD (1) a newborn screening C8 level of 6 μmol/L or greater represents particular risk of sudden death; (2) that MCAD genotypes other than homozygosity for the c.985A>G mutation are also associated with sudden death; (3) that vomiting is a frequent symptom preceding sudden death; and (4) social support and medical follow-up of these families are crucial in reducing the occurrence of sudden death.  相似文献   

6.
Medium‐chain acyl‐CoA dehydrogenase deficiency (MCADD) is the commonest genetic defect of mitochondrial fatty acid β‐oxidation. About 60% of MCADD patients are homozygous for the c.985A>G (p.Lys329Glu) mutation in the ACADM gene (G985 allele). Herein, we present the first report on the molecular and biochemical spectrum of Portuguese MCADD population. From the 109 patients studied, 83 were diagnosed after inclusion of MCADD in the national newborn screening, 8 following the onset of symptoms and 18 through segregation studies. Gypsy ancestry was identified in 85/109 patients. The G985 allele was found in homozygosity in 102/109 patients, in compound heterozygosity in 6/109 and was absent in one patient. Segregation studies in the Gypsy families showed that 93/123 relatives were carriers of the G985 allele, suggesting its high prevalence in this ethnic group. Additionally, three new substitutions—c.218A>G (p.Tyr73Cys), c.503A>T (p.Asp168Val) and c.1205G>T (p.Gly402Val)—were identified. Despite the particularity of the MCADD population investigated, the G985 allele was found in linkage disequilibrium with H1(112) haplotype. Furthermore, two novel haplotypes, H5(212) and H6(122) were revealed.  相似文献   

7.
Medium-chain acyl-CoA dehydrogenase (MCAD) is an enzyme responsible for large part of mitochondrial beta-oxidation of fatty acids and therefore stays on key position of cellular energy supply. In case of its deficiency, starvation, rapid growth periods or infections may cause fatal lack of energy, especially in the first years of life. MCAD deficiency is inherited in an autosomal recessive manner and it has been shown to be rather common in some European countries (Great Britain 1 in 6,000, Switzerland 1 in 10,000). In Caucasoid populations one mutation, the 985A>G transition, causing the amino acid substitution K329E, accounts for about 90% of all mutant MCAD alleles. Here we present data about screening the Estonian population for this mutation. We analyzed the DNA from 1,098 persons from all regions of Estonia (all newborns born in one month) and found 5 heterozygotes for 985A>G, that makes the carrier frequency 1 in 220 and the frequency of possibly affected homozygotes 1 out of 193,000. No mutant alleles were found among the samples of the children, who had unclear diagnosis for death during the years 1994 and 1995.  相似文献   

8.
The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We screened 592,785 babies and identified 34 with MCAD, 17 homozygous for c.985A > G, 14 with one copy, and 3 with no copy. We sequenced the exons of 19 patients, the 17 carrying one or no copy of c.985A > G, and two with marginal findings, and examined correlations between groups of mutations and biochemical markers. We found two known or putative pathogenic mutations in 18 of the 19 patients. Two mutations appeared more than once: c.199T > C, not recorded in clinically presenting cases (n = 4), and c.583G > A (n = 2). Patients homozygous for c.985A > G had the highest levels of neonatal octanoylcarnitine, plasma octanoylcarnitine when asymptomatic, and urinary acylglycines. Compound heterozygotes of c.985A > G and other mutations had intermediate levels, and those without c.985A > G, or heterozygous for that and c.199T > C had the lowest levels of these analytes. There was overlap in all values. The c.985A > G and c.583G > A mutations appear to have functional effects towards the severe end of the spectrum, and the c.199T > C mutation a smaller effect, as has been previously postulated. If these results are confirmed and extended, this could influence the advice given to parents of babies with MCAD detected by newborn screening, and make management more specific. In the meantime, all MCAD patients identified by newborn screening have, by definition, a functional defect and require careful clinical management.  相似文献   

9.
Medium chain acyl-CoA dehydrogenase deficiency (MCADD) is one of the most common fatty acid oxidation disorders. A subpopulation of children with MCADD present with metabolic crisis induced by fasting or illness, become lethargic, and can experience seizures or coma, culminating in a 20% mortality rate during the first episode. The frequency of these metabolic crises can be reduced with early diagnosis and treatment. The prevalence of MCADD in the United States is estimated to be 1 per 15,000 with p.K304E (c.985A > G) accounting for 90% of mutant alleles. In an 18-month period after initiating screening, the New York State Newborn Screening Mass Spectrometry Laboratory screened 385,893 newborns and referred 511 samples with elevated (>or=0.3 micromol/L) octanoylcarnitine (C8) levels for molecular testing. Of these referrals, six p.K304E homozygotes and 154 heterozygotes were identified. Twenty infants were biochemically confirmed with MCADD, per report from the child's pediatrician and/or treatment center. In these 20 cases, p.K304E accounted for only 47.5% of the mutant alleles. Further testing showed a second variant, p.Y42H, accounted for 7.5% of mutant alleles while the remaining 45% were unknown. Samples from all diagnosed non-p.K304E homozygous infants, and samples with C8 levels >or=1.0 micromol/L were sequenced (n = 16). Six novel and seven previously reported mutations were detected. These results suggest that p.K304E has a far lower representation in New York newborns with MCADD than current literature estimates and its full mutational spectrum is still unknown.  相似文献   

10.
Several countries include medium‐chain acyl‐CoA dehydrogenase (MCAD) deficiency, a rare autosomal recessive disease, in their newborn screening programmes despite prevalence uncertainty. We estimated the frequency of its most common mutation, c.985A>G, tested for regional differences and compared screening and genotype frequencies. We identified 43 studies reporting the frequency of c.985A>G over 10 million individuals, and pooled frequency data using a novel Bayesian approach. We found significant variation in the frequency of the mutation across regions supporting a reported founder effect. The proportion of c.985A>G homozygotes was highest in Western Europe with 4.1 (95%CI: 2.8–5.6) per 100,000 individuals, then the New World (3.2, 95%CI: 2.0–4.7), Southern (1.2, 95%CI: 0.6–2.0) and Eastern European regions (0.9, 95%CI: 0.5–1.7). No cases with the mutation were identified in Asian and Middle Eastern regions. Significant differences were found in some countries between the genotype and screening allele frequency of c.985A>G. Our predictions could inform the frequency of the mutation by region and our approach could apply to other genetic conditions.  相似文献   

11.
The newborn screening of homocystinuria in Taiwan has never been formally reported before. Since 1984, out of 5 million newborns screened, only 3 newborns (Han Taiwanese) suffering from homocystinuria were detected in this newborn screening program. Four mutations (p.R121L [c.362G>T], p.E176K [c.526G>A], p.V320G [c.959T>G] and p.G259D [c.776G>A]) were identified in these 3 patients. Unexpectedly, we recently found 8 patients presenting with homocystinuria in an Austronesian Taiwanese Tao tribe. Out of them, three patients participated in the newborn screening program but were unidentified by the current newborn homocystinuria (using methionine as a marker) screening. All the Tao patients are homozygous for a new p.D47E (c.141T>A) mutation. Among the 428 adult islanders screened for the D47E mutation, approximately 1 in 7.78 is a carrier of the mutation, and an estimated 1 in 240 islanders suffered from homocystinuria. This is the highest known prevalence of homocystinuria worldwide. The result of expression studies of all the mutations identified in Taiwan revealed that, except for p.D47E mutation, all mutations were severely limited in their ability to form functional tetramers. The clinical manifestations of the Tao patients varied widely, despite sharing the same mutation and very similar genetic and environmental backgrounds. Comparisons of clinical and biochemical phenotypes of these patients were presented in this report.  相似文献   

12.
In the follow-up of New Jersey newborn screens suggestive of medium chain acyl-CoA dehydrogenase deficiency (MCADD) during a 30-month period, we identified five patients of Hispanic American ethnicity. With information provided by the New Jersey Department of Health and Human Services Newborn Screening program we calculated an overall cumulative incidence of approximately 7.20/100,000 for MCADD; 7.58/100,000 among Hispanic Americans and 7.08/100,000 among non-Hispanic Americans. Among the five Hispanic American infants who screened positive, a common variant (c.443G>A [p.R148K]) was identified which accounted for 30% of the alleles; c.799G>A (p.G267R) and c.985A>G (p.K329E) each accounted for an additional 20%; and a novel variant c.302G>A (p.G101E) was identified in one patient. Although treated prospectively during interim illnesses to prevent unwanted sequelae; till date, none of the patients carrying the c.443G>A variant have been symptomatic. ? 2012 Wiley Periodicals, Inc.  相似文献   

13.
Newborn screening by tandem mass spectrometry (MS/MS) identifies patients with medium chain acyl-CoA dehydrogenase (MCAD) deficiency the most frequently observed disorder of fatty acid oxidation. Molecular genetic analysis is becoming a common tool to confirm those identified as affected by prospective screening and for carrier detection in family studies. The A985G (K304E) mutation accounts for approximately 80% of mutant alleles in MCAD deficient patients, presenting symptomatically, while greater variability of mutant alleles is observed among cases identified through prospective screening. Aside from A985G, the mutation spectrum in MCAD deficient patients is heterogeneous such that comprehensive gene analysis is required. Traditionally the MCAD gene is assayed by sequencing the entire coding region. Although effective and definitive, this approach is expensive, turn around time is slow, and is poorly amenable to a clinical service molecular genetics laboratory. Dye-binding/high-resolution thermal denaturation is a rapid and homogeneous method by which to scan a PCR product for evidence of sequence aberration. PCR is performed in capillaries in the presence of the dsDNA-binding dye LCGreen I and subsequently the DNA/dye complexes are analyzed by high-resolution thermal denaturation. DNA sequencing was limited to fragments displaying abnormal melting profiles. Of 18 specimens analyzed, 11 have a genotype consistent with MCAD deficiency and seven have a genotype consistent with carrier status. Clinical and biochemical data corroborate that the genotype results identified the affected patients and differentiates them from carriers. The entire process is homogeneous requiring no post-PCR manipulation and is completed in under 3 h.  相似文献   

14.
PURPOSE: In contrast to its high prevalence in Caucasians, medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is reported to be an extremely rare metabolic disorder in the Asian population. The common MCAD gene (ACADM) mutation 985A>G (p.K329E), accounting for the majority of cases in Caucasians, has not been detected in this ethnic group, and the spectrum of ACADM mutations has remained unknown. METHOD: Biochemical genetic testing including plasma acylcarnitine and urine acylglycine analyses, as well as sequencing of ACADM was performed in a Korean family with a newborn who had an elevated octanoyl (C8) carnitine concentration by newborn screening (NBS). Genotyping of 50 Korean newborns with normal NBS results was performed. RESULT: We report the identification of the first Korean patient with MCAD deficiency, caused by a novel missense mutation in ACADM, 843A>T (R281S), and a 4-bp deletion, c.449_452delCTGA. The patient became symptomatic before notification of the abnormal NBS result. Both the father and a brother who were identified as carriers for the 4-bp deletion had mildly elevated plasma C8 and C10:1 carnitine concentrations, whereas the acylcarnitine profile was normal in the mother who carries the missense mutation. CONCLUSION: The 4-bp deletion may represent a common Asian ACADM mutation, considering that it recently has also been found in two of the three Japanese patients in whom genotyping was performed. Greater availability of MCAD mutation analysis is likely to unravel the molecular basis of MCAD deficiency in the Asian population that might differ from Caucasians.  相似文献   

15.
Virtually all patients with medium-chain acyl-CoA dehydrogenase deficiency (MCADD) are homozygous or compound heterozygous for the 985A > G mutation, which limits the study of a possible genotype/phenotype correlation. A newborn Palestinian infant died suddenly on the second day of life. A previous sibling had also died in similar circumstances aged 3 weeks. Urine organic acid and bloodspot acylcarnitine analysis were consistent with MCADD. He was homozygous for a novel MCAD splice mutation, IVS3-1G > C. This mutation leads to deletion of 7 bp and introduction of a premature termination codon as a result of complete missplicing of MCAD mRNA. This misspliced MCAD mRNA encodes a non-functional protein and is furthermore reduced in amounts due to nonsense-mediated decay, resulting in total lack of functional MCAD enzyme. This is the first molecular identification of MCADD in an Arab patient and the first reported splice mutation in the MCAD gene that has been functionally characterized. The association of homozygosity for a null mutation with lethal neonatal presentation in the index patient and presumably the previous infant suggested a genotype/phenotype correlation. However, a 6-year-old completely asymptomatic sibling also had the characteristic MCADD biochemical phenotype and was homozygous for the same IVS3-1G > C mutation. As a first candidate to modify the disease presentation, by modulating the overlapping enzyme activity, we tested the entire family for the prevalent SCAD gene 625G > A susceptibility variant. Interestingly, all family members were 625G > A homozygous. Additional genetic and/or environmental factors must play a major role in determining the phenotypic diversity of MCADD.  相似文献   

16.
17.
Biallelic variants in the ACADM gene cause medium-chain acyl-CoA dehydrogenase deficiency (MCADD). This study reports on differences in the occurrence of secondary free carnitine (C0) deficiency and different biochemical phenotypes related to genotype and age in 109 MCADD patients followed-up at a single tertiary care center during 22 years. C0 deficiency occurred earlier and more frequently in c.985A>G homozygotes (genotype A) compared to c.985A>G compound heterozygotes (genotype B) and individuals carrying variants other than c.985A>G and c.199C>T (genotype D) (median age 4.2 vs. 6.6 years; p < 0.001). No patient carrying c.199C>T (genotype C) developed C0 deficiency. A daily dosage of 20–40 mg/kg carnitine was sufficient to maintain normal C0 concentrations. Compared to genotype A as reference group, octanoylcarnitine (C8) was significantly lower in genotypes B and C, whereas C0 was significantly higher by 8.28 μmol/L in genotype C (p < 0.05). In conclusion, C0 deficiency is mainly found in patients with pathogenic genotypes associated with high concentrations of presumably toxic acylcarnitines, while individuals carrying the variant c.199C>T are spared and show consistently mild biochemical phenotypes into adulthood. Low-dose carnitine supplementation maintains normal C0 concentrations. However, future studies need to evaluate clinical benefits on acute and chronic manifestations of MCADD.  相似文献   

18.
目的 探讨在新生儿中进行线粒体DNA(mitochondria DNA,mtDNA)A1555G突变基因大规模筛查在预防药物性耳聋的必要性.方法 随机取2008年在深圳市出生的1000名新生儿的血滤纸标本,用Chelex-100树脂提取DNA,PCR扩增,变性高效液相色谱法(denaturing hig-performance liquid chromatography,DHPLC)进行mtDNA A1555G突变基因筛查,计算出阳性突变频率.结果 1000名新生儿血滤纸样本中,共检测出2例样本存在mtDNA A1555G突变,突变率为0.2%.结论 mtDNA A1555G突变在新生儿中出现的频率较高,对其进行mtDNA A1555G突变大规模筛查发现氨基甙类抗生素敏感个体,能有效地对新生儿及其家族高危人群进行合理性指导用药,从而更好地预防药物性耳聋.  相似文献   

19.
Zellweger syndrome is known to be caused by numerous mutations that occur in at least 12 of the PEX genes. While phenotypes vary, many are severely debilitating, and death can result in affected newborns. Since the disease follows an autosomal recessive pattern of inheritance, carrier screening can be done for at‐risk couples, but the number of potential mutations sites to screen can be daunting. Ethnicity‐specific studies can help narrow this range by highlighting mutations that are present at higher percentages in certain populations. In this article, the carrier frequencies for two mutations causative of the severe Zellweger syndrome spectrum phenotype that occur in the PEX2 gene, c.355C>T and c.550del, were studied in individuals of Ashkenazi Jewish descent in order to advise on inclusion in existing carrier screening mutation panels for this population. The screening was performed for 2093 individuals through the use of TaqMan genotyping assays, real‐time PCR, and allelic discrimination. Results indicated a carrier frequency of 0.813% (±0.385%) for the c.355C>T mutation and a carrier frequency of 0.00% (±0.00%) for the c.550del mutation. On the basis of these frequencies, we believe that the c.355C>T mutation should be considered for inclusion in carrier screening panels for the Ashkenazi population.  相似文献   

20.
Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 2 (USH2) is the most common type of USH and is frequently caused by mutations in USH2A. In a recent mutation screening of USH2A in Japanese USH2 patients, we identified 11 novel mutations in 10 patients and found the possible frequent mutation c.8559-2A>G in 4 of 10 patients. To obtain a more precise mutation spectrum, we analyzed further nine Japanese patients in this study. We identified nine mutations, of which eight were novel. This result indicates that the mutation spectrum for USH2A among Japanese patients largely differs from Caucasian, Jewish and Palestinian patients. Meanwhile, we did not find the c.8559-2A>G in this study. Haplotype analysis of the c.8559-2G (mutated) alleles using 23 single nucleotide polymorphisms surrounding the mutation revealed an identical haplotype pattern of at least 635?kb in length, strongly suggesting that the mutation originated from a common ancestor. The fact that all patients carrying c.8559-2A>G came from western Japan suggests that the mutation is mainly distributed in that area; indeed, most of the patients involved in this study came from eastern Japan, which contributed to the absence of c.8559-2A>G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号