首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To reduce positron emission tomography (PET) and computed tomography (CT) misalignments and standardized uptake value (SUV) errors, cine average CT (CACT) has been proposed to replace helical CT (HCT) for attenuation correction (AC). A new method using interpolated average CT (IACT) for AC is introduced to further reduce radiation dose with similar image quality. Six patients were recruited in this study. The end-inspiration and -expiration phases from cine CT were used as the two original phases. Deformable image registration was used to generate the interpolated phases. The IACT was calculated by averaging the original and interpolated phases. The PET images were then reconstructed with AC using CACT, HCT and IACT, respectively. Their misalignments were compared by visual assessment, mutual information, correlation coefficient and SUV. The doses from different CT maps were analyzed. The misalignments were reduced for CACT and IACT as compared to HCT. The maximum SUV difference between the use of IACT and CACT was ~3%, and it was ~20% between the use of HCT and CACT. The estimated dose for IACT was 0.38 mSv. The radiation dose using IACT could be reduced by 85% compared to the use of CACT. IACT is a good low-dose approximation of CACT for AC.  相似文献   

2.
Our previous patient studies have shown that the use of respiration averaged computed tomography (ACT) for attenuation correction of the positron emission tomography (PET) data from PET/CT reduces the potential misalignment in the thorax region by matching the temporal resolution of the CT to that of the PET. In the present work, we investigated other approaches of acquiring ACT in order to reduce the CT dose and to improve the ease of clinical implementation. Four-dimensional CT (4DCT) data sets for ten patients (17 lung/esophageal tumors) were acquired in the thoracic region immediately after the routine PET/CT scan. For each patient, multiple sets of ACTs were generated based on both phase image averaging (phase approach) and fixed cine duration image averaging (cine approach). In the phase approach, the ACTs were calculated from CT images corresponding to the significant phases of the respiratory cycle: ACT(050phs) from end-inspiration (0%) and end-expiration (50%), ACT(2070phs) from mid-inspiration (20%) and mid-expiration (70%), ACT(4phs) from 0%, 20%, 50% and 70%, and ACT(10phs) from all ten phases, which was the original approach. In the cine approach, which does not require 4DCT, the ACTs were calculated based on the cine images from cine durations of 1 to 6 s at 1 s increments. PET emission data for each patient were attenuation corrected with each of the above mentioned ACTs and the tumor maximum standard uptake value (SUVmax), average SUV (SUVavg), and tumor volume measurements were compared. Percent differences were calculated between PET data corrected with various ACTs and that corrected with ACT(10phs). In the phase approach, the ACT(10phs) can be approximated by the ACT(4phs) to within a mean percent difference of 2% in SUV and tumor volume measurements. In cine approach, ACT(10phs) can be approximated to within a mean percent difference of 3% by ACTs computed from cine durations > or =3 s. Acquiring CT images only at the four significant phases for the ACT can reduce radiation dose to 1/3 of the current 4DCT dose; however, the implementation of this approach requires additional hardware that is not standard equipment on PET/CT scanners. In the cine approach, we recommend a duration of 6 +/- 1 s in order to include variations of respiratory patterns in a larger population. This approach can be easily implemented because cine acquisition mode is available on all GE PET/CT scanners. The CT dose in the cine approach can be reduced to approximately 5 mGy by using the lowest mA setting (10 mA), while still maintaining good quality CT data for PET attenuation correction. In our scanning protocol, the ACT is only acquired if respiration-induced misregistration is observed (determined before the PET scan is completed), and therefore patients do not receive unnecessary CT radiation dose.  相似文献   

3.
A challenge for positron emission tomography/computed tomography (PET/CT) quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently available, lowest dose CT techniques, extended duration cine CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging.  相似文献   

4.
Hwang AB  Hasegawa BH 《Medical physics》2005,32(9):2799-2804
Photon attenuation in small animal nuclear medicine scans can be significant when using isotopes that emit lower energy photons such as iodine-125. We have developed a method to use microCT data to perform attenuation corrected small animal single-photon emission computed tomography (SPECT). A microCT calibration phantom was first imaged, and the resulting calibration curve was used to convert microCT image values to linear attenuation coefficient values that were then used in an iterative SPECT reconstruction algorithm. This method was applied to reconstruct a SPECT image of a uniform phantom filled with 125I-NaI. Without attenuation correction, the image suffered a 30% decrease in intensity in the center of the image, which was removed with the addition of attenuation correction. This reduced the relative standard deviation in the region of interest from 10% to 6%.  相似文献   

5.
Attenuation correction for small animal PET tomographs   总被引:2,自引:0,他引:2  
Attenuation correction is one of the important corrections required for quantitative positron emission tomography (PET). This work will compare the quantitative accuracy of attenuation correction using a simple global scale factor with traditional transmission-based methods acquired either with a small animal PET or a small animal x-ray computed tomography (CT) scanner. Two phantoms (one mouse-sized and one rat-sized) and two animal subjects (one mouse and one rat) were scanned in CTI Concorde Microsystem's microPET Focus for emission and transmission data and in ImTek's MicroCAT II for transmission data. PET emission image values were calibrated against a scintillation well counter. Results indicate that the scale factor method of attenuation correction places the average measured activity concentration about the expected value, without correcting for the cupping artefact from attenuation. Noise analysis in the phantom studies with the PET-based method shows that noise in the transmission data increases the noise in the corrected emission data. The CT-based method was accurate and delivered low-noise images suitable for both PET data correction and PET tracer localization.  相似文献   

6.
High-resolution cardiac PET imaging with emphasis on quantification would benefit from eliminating the problem of respiratory movement during data acquisition. Respiratory gating on the basis of list-mode data has been employed previously as one approach to reduce motion effects. However, it results in poor count statistics with degradation of image quality. This work reports on the implementation of a technique to correct for respiratory motion in the area of the heart at no extra cost for count statistics and with the potential to maintain ECG gating, based on rigid-body transformations on list-mode data event-by-event. A motion-corrected data set is obtained by assigning, after pre-correction for detector efficiency and photon attenuation, individual lines-of-response to new detector pairs with consideration of respiratory motion. Parameters of respiratory motion are obtained from a series of gated image sets by means of image registration. Respiration is recorded simultaneously with the list-mode data using an inductive respiration monitor with an elasticized belt at chest level. The accuracy of the technique was assessed with point-source data showing a good correlation between measured and true transformations. The technique was applied on phantom data with simulated respiratory motion, showing successful recovery of tracer distribution and contrast on the motion-corrected images, and on patient data with C15O and 18FDG. Quantitative assessment of preliminary C15O patient data showed improvement in the recovery coefficient at the centre of the left ventricle.  相似文献   

7.
A tube-voltage-dependent scheme is presented for transforming Hounsfield units (HU) measured by different computed tomography (CT) scanners at different x-ray tube voltages (kVp) to 511 keV linear attenuation values for attenuation correction in positron emission tomography (PET) data reconstruction. A Gammex 467 electron density CT phantom was imaged using a Siemens Sensation 16-slice CT, a Siemens Emotion 6-slice CT, a GE Lightspeed 16-slice CT, a Hitachi CXR 4-slice CT, and a Toshiba Aquilion 16-slice CT at kVp ranging from 80 to 140 kVp. All of these CT scanners are also available in combination with a PET scanner as a PET/CT tomograph. HU obtained for various reference tissue substitutes in the phantom were compared with the known linear attenuation values at 511 keV. The transformation, appropriate for lung, soft tissue, and bone, yields the function 9.6 x 10(-5). (HU+ 1000) below a threshold of approximately 50 HU and a (HU+ 1000)+b above the threshold, where a and b are fixed parameters that depend on the kVp setting. The use of the kVp-dependent scaling procedure leads to a significant improvement in reconstructed PET activity levels in phantom measurements, resolving errors of almost 40% otherwise seen for the case of dense bone phantoms at 80 kVp. Results are also presented for patient studies involving multiple CT scans at different kVp settings, which should all lead to the same 511 keV linear attenuation values. A linear fit to values obtained from 140 kVp CT images using the kVp-dependent scaling plotted as a function of the corresponding values obtained from 80 kVp CT images yielded y = 1.003 x -0.001 with an R2 value of 0.999, indicating that the same values are obtained to a high degree of accuracy.  相似文献   

8.
We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a (68)Ga/(68)Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.  相似文献   

9.
An attenuation-correction method for three-dimensional PET imaging, which obtains attenuation-correction factors from transmission measurements using an uncollimated flood source, is described. This correction is demonstrated for two different phantoms using transmission data acquired with QPET, a rotating imaging system with two planar detectors developed for imaging small volumes. The scatter amplitude in the transmission projections was a maximum of 30%; to obtain accurate attenuation-correction factors the scatter distribution was first calculated and subtracted. The attenuation-corrected emission images for both phantoms indicate that their original uniform amplitudes have been restored. The attenuation correction adds only a small amount of noise to the emission images, as evaluated from the standard deviation over a central region. For the first phantom, with maximum attenuation of 48%, the noise added was 2.6%. The second phantom was attenuated by a maximum of 37%, and 1.9% noise was added. Because the transmission data are smoothed, some artifacts are visible at the edges of the phantom where the correction factors change abruptly within the emission image.  相似文献   

10.
Error-free reconstruction of PET data with a registered CT attenuation map is essential for accurate quantification and interpretation of cardiac perfusion. Misalignment of the CT and PET data can produce an erroneous attenuation map that projects lung attenuation parameters onto the heart wall, thereby underestimating the attenuation and creating artifactual areas of hypoperfusion that can be misinterpreted as myocardial ischemia or infarction. The major causes of misregistration between CT and PET images are the respiratory motion, cardiac motion and gross physical motion of the patient. The misalignment artifact problem is overcome with automated cardiac registration software that minimizes the alignment error between the two modalities. Results show that the automated registration process works equally well for any respiratory phase in which the CT scan is acquired. Further evaluation of this procedure on 50 patients demonstrates that the automated registration software consistently aligns the two modalities, eliminating artifactual hypoperfusion in reconstructed PET images due to PET/CT misregistration. With this registration software, only one CT scan is required for PET/CT imaging, which reduces the radiation dose required for CT-based attenuation correction and improves the clinical workflow for PET/CT.  相似文献   

11.
目的在电子发射及计算机断层扫描系统(positron emission computed tomography/X-ray computed tomography,PET/CT)图像衰减校正的能量转换过程中,为了改进双线性转换法用线性关系来拟合非线性关系的不足,本文以支持向量回归为基础,提出了一种新的能量转换法即支持向量回归的PET/CT图像衰减校正方法来进行衰减校正,以寻找CT值和511 keV能量下线性衰减系数值之间的最佳转换关系。方法使用仿真软件GATE(Geant4 Application Tomographic Emission)模拟了11组不同材质的圆柱体体模。然后根据GATE仿真的不同材质圆柱体体模,求出其CT值和511 keV能量下线性衰减系数值并代入SVR模型中进行训练,建立CT值和511 keV能量下线性衰减系数值之间的SVR模型。最后与目前PET/CT衰减校正能量转换中常用的双线性能量转换法进行对比分析,并分别应用于GATE仿真的NCAT(NURBs Cardiac Torso)像素体模图像中,评估两种方法准确性的差异。结果支持向量回归的PET/CT图像衰减校正方法得到的511 keV能量下对应物质的线性衰减系数值的相对百分误差值较小(肺的相对百分误差值3.1%和肝脏的相对百分误差值1.08%),且经过支持向量回归法衰减校正的PET图像,其MSE评价值都是最小的(176.9230),其PSNR和AG的评价值都是最大的(31.8621和7.9083)。这说明经过支持向量回归法衰减校正的PET图像相比于双线性转换法衰减校正的PET图像,更接近于静态的图像。结论支持向量回归的PET/CT图像衰减校正方法在PET/CT图像的衰减校正应用中有更好的表现,可以更好地吻合CT值与511 keV能量下线性衰减系数之间的转换关系,从而提高了PET/CT图像的衰减校正效果,改善了PET/CT图像定量的准确性,便于医生做出更精确的临床诊断。  相似文献   

12.
Abdoli M  Dierckx RA  Zaidi H 《Medical physics》2012,39(6):3343-3360
Metallic implants are known to generate bright and dark streaking artifacts in x-ray computed tomography (CT) images, which in turn propagate to corresponding functional positron emission tomography (PET) images during the CT-based attenuation correction procedure commonly used on hybrid clinical PET/CT scanners. Therefore, visual artifacts and overestimation and/or underestimation of the tracer uptake in regions adjacent to metallic implants are likely to occur and as such, inaccurate quantification of the tracer uptake and potential erroneous clinical interpretation of PET images is expected. Accurate quantification of PET data requires metal artifact reduction (MAR) of the CT images prior to the application of the CT-based attenuation correction procedure. In this review, the origins of metallic artifacts and their impact on clinical PET/CT imaging are discussed. Moreover, a brief overview of proposed MAR methods and their advantages and drawbacks is presented. Although most of the presented MAR methods are mainly developed for diagnostic CT imaging, their potential application in PET/CT imaging is highlighted. The challenges associated with comparative evaluation of these methods in a clinical environment in the absence of a gold standard are also discussed.  相似文献   

13.
14.
15.
Nye JA  Esteves F  Votaw JR 《Medical physics》2007,34(6):1901-1906
The introduction of positron emission/computed tomography (PET/CT) systems coupled with multidetector CT arrays has greatly increased the amount of clinical information in myocardial perfusion studies. The CT acquisition serves the dual role of providing high spatial anatomical detail and attenuation correction for PET. However, the differences between the interaction of respiratory and cardiac cycles in the CT and PET acquisitions presents a challenge when using the CT to determine PET attenuation correction. Three CT attenuation correction protocols were tested for their ability to produce accurate emission images: gated, a step mode acquisition covering the diastolic heart phase; normal, a high-pitch helical CT; and slow, a low-pitch, low-temporal-resolution helical CT. The amount of cardiac tissue in the emission image that overlaid lung tissue in the transmission image was used as the measure of mismatch between acquisitions. Phantom studies simulating misalignment of the heart between the transmission and emission sequences were used to correlate the amount of mismatch with the artificial defect changes in the emission image. Consecutive patients were studied prospectively with either paired gated (diastolic phase, 120 kVp, 280 mA, 2.6 s) and slow CT (0.562:1 pitch, 120 kVp, Auto-mA, 16 s) or paired normal (0.938:1 pitch, 120 kVp, Auto-mA, 4.8 s) and slow CT protocols, prior to a Rb-82 perfusion study. To determine the amount of mismatch, the transmission and emission images were converted to binary representations of attenuating tissue and cardiac tissue and overlaid using their native registration. The number of cardiac tissue pixels from the emission image present in the CT lung field yielded the magnitude of misalignment represented in terms of volume, of where a small volume indicates better registration. Acquiring a slow CT improved registration between the transmission and emission acquisitions compared to the gated and normal CT protocols. The volume of PET cardiac tissue in the CT lung field was significantly lower (p < 0.03) for the slow CT protocol in both the rest and stress emission studies. Phantom studies showed that an overlaying volume greater than 2.6 mL would produce significant artificial defects as determined by a quantitative software package that employs a normal database. The percentage of patient studies with overlaying volume greater than 2.6 mL was reduced from 71% with the normal CT protocol to 28% with the slow CT protocol. The remaining 28% exhibited artifacts consistent with heart drift and patient motion that could not be corrected by adjusting the CT acquisition protocol. The low pitch of the slow CT protocol provided the best match to the emission study and is recommended for attenuation correction in cardiac PET/CT studies. Further reduction in artifacts arising from cardiac drift is required and warrants an image registration solution.  相似文献   

16.
In present positron emission tomography (PET)/computed tomography (CT) scanners, PET attenuation correction is performed by relying on the information given by a single CT scan. The scaling of the linear attenuation coefficients from CT x-ray energy to PET 511 keV gamma energy is prone to errors especially in the presence of CT contrast agents. Attenuation correction based upon two CT scans at different energies but performed at the same time and patient position should reduce such errors and therefore improve the accuracy of the reconstructed PET images at the cost of introduced additional noise. Such CT scans could be provided by future PET/CT scanners that have either dual source CT or energy sensitive CT. Three different dual energy scaling methods for attenuation correction are introduced and assessed by measurements with a modified NEMA 1994 phantom with different CT contrast agent concentrations. The scaling is achieved by differentiating between (1) Compton and photoelectric effect, (2) atomic number and density, or (3) water-bone and water-iodine scaling schemes. The scaling method (3) is called hybrid dual energy computed tomography attenuation correction (hybrid DECTAC). All three dual energy scaling methods lead to a reduction of contrast agent artifacts with respect to single energy scaling. The hybrid DECTAC method resulted in PET images with the weakest artifacts. Both, the hybrid DECTAC and Compton/photoelectric effect scaling resulted also in images with the lowest PET background variability. Atomic number/density scaling and Compton/photoelectric effect scaling had problems to correctly scale water, hybrid DECTAC scaling and single energy scaling to correctly scale Teflon. Atomic number/density scaling and hybrid DECTAC could be generalized to reduce these problems.  相似文献   

17.
The image quality in a conventional positron emission tomography (PET)/computed tomography (CT) scanner is degraded by respiratory motion because of erroneous attenuation correction when three-dimensional image acquisition is used. To overcome this problem, time-resolved data acquisition (4D) is required. For this, a Siemens Biograph 16 PET/CT scanner has been modified and its normal capability has been extended to a true 4D-PET/4D-CT imaging device including phase-correlated attenuation correction. To verify the correct functionality of this device, experiments on a respiratory motion phantom that allowed movement in two dimensions have been performed. The measurements showed good spatial correlation as well as good time synchronization between the PET and CT data. Furthermore, the motion pattern of the phantom and the shape of the activity distribution have been examined, and the volume of the reconstructed PET images has been analyzed. The results demonstrate the feasibility of such a procedure, and we therefore recommend that 4D-PET data should be reconstructed using 4D-CT data, which can be acquired on the same machine.  相似文献   

18.
19.
Positron emission tomography (PET) is a non-invasive imaging modality, which is clinically widely used both for diagnosis and accessing therapy response in oncology, cardiology and neurology.Fusing PET and CT images in a single dataset would be useful for physicians who could read the functional and the anatomical aspects of a disease in a single shot.The use of fusion software has been replaced in the last few years by integrated PET/CT systems, which combine a PET and a CT scanner in the same gantry. CT images have the double function to correct PET images for attenuation and can fuse with PET for a better visualization and localization of lesions. The use of CT for attenuation correction yields several advantages in terms of accuracy and patient comfort, but can also introduce several artefacts on PET-corrected images.PET/CT image artefacts are due primarily to metallic implants, respiratory motion, use of contrast media and image truncation. This paper reviews different types artefacts and their correction methods.PET/CT improves image quality and image accuracy. However, to avoid possible pitfalls the simultaneous display of both Computed Tomography Attenuation Corrected (CTAC) and non corrected PET images, side by side with CT images is strongly recommended.  相似文献   

20.

Background  

Positron Emission Tomography (PET), Computed Tomography (CT), PET/CT and Single Photon Emission Tomography (SPECT) are non-invasive imaging tools used for creating two dimensional (2D) cross section images of three dimensional (3D) objects. PET and SPECT have the potential of providing functional or biochemical information by measuring distribution and kinetics of radiolabelled molecules, whereas CT visualizes X-ray density in tissues in the body. PET/CT provides fused images representing both functional and anatomical information with better precision in localization than PET alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号