首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrophysiological correlates of the processing of visualinformation were studied in epileptic patients with electrodeschronically implanted on the surface of striate and extrastriatecortex. In separate experiments patients viewed faces, letterstrings (words and non-words), numbers, and control stimuli.A negative potential, N200, was evoked by faces, letter strings,and numbers, but not by the control stimuli. N200 was recordedbilaterally from discrete regions of the fusiform and inferiortemporal gyri. These category-specific face, letter-string,and number "modules" vary in location. In most cases there wasno overlap in the location of face and letter-string modules,suggesting a mosaic of functionally discrete regions. In somecases letter-string and number N200s were recorded from thesame location, suggesting that these modules may be less spatiallyand functionally discrete. Face N200-like potentials can berecorded from temporal scalp, allowing the possibility of studyingearly face processing in normal subjects. Longer-latency face-specificpotentials were recorded from the inferior surface of the anteriortemporal lobe. Potentials evoked by colored checkerboards wererecorded from a region of the fusiform gyrus posterior to thefusiform region from which category-specific N200s were recorded. These results suggest that there are several processing streamsin inferior extrastriate cortex. In addition to object recognitionsystems previously proposed for faces and words, our preliminaryresults suggest a separate system dealing with numbers. Postulatedsystems dealing with larger manipulable objects and animalshave not been detected.  相似文献   

2.
To better understand face recognition, it is necessary to identify not only which brain structures are implicated but also the dynamics of the neuronal activity in these structures. Latencies can then be compared to unravel the temporal dynamics of information processing at the distributed network level. To achieve high spatial and temporal resolution, we used intracerebral recordings in epileptic subjects while they performed a famous/unfamiliar face recognition task. The first components peaked at 110 ms in the fusiform gyrus (FG) and simultaneously in the inferior frontal gyrus, suggesting the early establishment of a large-scale network. This was followed by components peaking at 160 ms in 2 areas along the FG. Important stages of distributed parallel processes ensued at 240 and 360 ms involving up to 6 regions along the ventral visual pathway. The final components peaked at 480 ms in the hippocampus. These stages largely overlapped. Importantly, event-related potentials to famous faces differed from unfamiliar faces and control stimuli in all medial temporal lobe structures. The network was bilateral but more right sided. Thus, recognition of famous faces takes place through the establishment of a complex set of local and distributed processes that interact dynamically and may be an emergent property of these interactions.  相似文献   

3.
This and the following two papers describe event-related potentials (ERPs) evoked by visual stimuli in 98 patients in whom electrodes were placed directly upon the cortical surface to monitor medically intractable seizures. Patients viewed pictures of faces, scrambled faces, letter-strings, number-strings, and animate and inanimate objects. This paper describes ERPs generated in striate and peristriate cortex, evoked by faces, and evoked by sinusoidal gratings, objects and letter-strings. Short-latency ERPs generated in striate and peristriate cortex were sensitive to elementary stimulus features such as luminance. Three types of face-specific ERPs were found: (i) a surface-negative potential with a peak latency of approximately 200 ms (N200) recorded from ventral occipitotemporal cortex, (ii) a lateral surface N200 recorded primarily from the middle temporal gyrus, and (iii) a late positive potential (P350) recorded from posterior ventral occipitotemporal, posterior lateral temporal and anterior ventral temporal cortex. Face-specific N200s were preceded by P150 and followed by P290 and N700 ERPs. N200 reflects initial face-specific processing, while P290, N700 and P350 reflect later face processing at or near N200 sites and in anterior ventral temporal cortex. Face-specific N200 amplitude was not significantly different in males and females, in the normal and abnormal hemisphere, or in the right and left hemisphere. However, cortical patches generating ventral face-specific N200s were larger in the right hemisphere. Other cortical patches in the same region of extrastriate cortex generated grating-sensitive N180s and object-specific or letter-string-specific N200s, suggesting that the human ventral object recognition system is segregated into functionally discrete regions.  相似文献   

4.
Repetition priming typically leads to a decrease in the activation of sensory cortical areas upon a second exposure to the same visual stimulus. This effect is thought to reflect more efficient or fluent re-processing of previously seen stimuli so that less neural activity is required. Fluent re-processing has been hypothesized to be a potential link from repetition priming to neural changes associated with visual expertise. To examine this potential connection, the neural correlates of priming were examined across eight stimulus repetitions using functional magnetic resonance imaging. Sizeable regions of bilateral ventral occipito-temporal cortex (including the fusiform gyrus) exhibited reduced responses to the second presentation of a stimulus. Most of these areas displayed no further reduction in response to subsequent repetitions of the same stimuli. Because expertise accrues over many exposures, these areas, while clearly involved in priming, do not exhibit an activity pattern consistent with the development of expertise. In contrast, an area in the right posterior fusiform gyrus exhibited reductions in evoked response that grew in magnitude for stimulus repetitions from the second to the eighth presentations. This region exhibits a pattern of activity consistent with a gradual and cumulative enhancement of the fluency effect across trials, suggesting that it may mediate the link between priming and the development of visual expertise.  相似文献   

5.
Symmetry is an important cue in face perception. We manipulated symmetry and other configurational variables to study their role in face processing in the human brain. We employed 2 types of symmetry: image symmetry (where one part of the image is defined as the mirrored transform of the other part about an axis) and object symmetry (where the spatial relationships among the image components are interpreted as parts of a symmetric 3-dimensional object). We compared blood oxygenation level dependent responses in healthy human observers for upright front-view faces with responses to different symmetry-controlled images. The cortical areas activated by the face images, relative to Fourier-matched scrambled images, were the fusiform (FFA) and occipital (OFA) face areas, the middle occipital gyri (MOG), and areas around the superior temporal and intraoccipital sulci (IOS). Contrasting faces and their image-symmetric scrambled versions showed a similar activation pattern except in the right OFA, suggesting an involvement in facial symmetry processing. The upright versus inverted faces (with the same image symmetry but unfamiliar object identity) showed robust differential activation in the FFA, OFA, MOG, IOS, and precuneus. The response to frontal-view versus 3/4-view faces (having the same object symmetry but disrupted image symmetry) showed little differential activation in the FFA or the OFA but strong responses in the MOG and IOS, suggesting that face processing in the FFA and the OFA is holistic and viewpoint invariant.  相似文献   

6.
OBJECT: The aim of this study was to evaluate different types of sensory stimulation used to distinguish between microvasculature and venous drainage on functional magnetic resonance (fMR) images with blood oxygen level-dependent (BOLD) contrast. METHODS: Seven volunteers received three sensory stimulations. One consisted of small discontinuous automated pokes to the ventral aspect of the right thumbtip. The other two were delivered by the investigator, who vigorously brushed the ventral aspect of the right thumbtip either alone or in combination with the thenar region. Seven contiguous axial slices of the head were acquired using echoplanar fMR imaging during each mode of stimulation. Boxcar analysis and Student's t-test were performed. Cluster analysis was used to determine significant differences between rest and activation phases. The major findings were 1) that a discontinuous sensory stimulation involving a small skin area was able to evoke a limited activated area in the postcentral gyrus with a low activation index (AI [2%]); 2) that this limited activated area was included in the activated area elicited by the continuous sensory stimulations; and 3) that this also evoked multiple activated areas exhibiting AIs of either approximately 2% or greater than 5%. This indicated that the limited discontinuous tactile stimulation evoked a BOLD-contrast fMR image essentially of microvasculature, whereas the more extensive continuous stimulations evoked a BOLD-contrast fMR image in both microvasculature and venous drainage. CONCLUSIONS: Different sensory stimulations are necessary to differentiate primary sensory cortex from venous drainage for presurgical brain mapping.  相似文献   

7.
The feeling of familiarity can be triggered by stimuli from all sensory modalities, suggesting a multimodal nature of its neural bases. In the present experiment, we investigated this hypothesis by studying the neural bases of familiarity processing of odors and music. In particular, we focused on familiarity referring to the participants' life experience. Items were classified as familiar or unfamiliar based on participants' individual responses, and activation patterns evoked by familiar items were compared with those evoked by unfamiliar items. For the feeling of familiarity, a bimodal activation pattern was observed in the left hemisphere, specifically the superior and inferior frontal gyri, the precuneus, the angular gyrus, the parahippocampal gyrus, and the hippocampus. Together with previously reported data on verbal items, visual items, and auditory items other than music, this outcome suggests a multimodal neural system of the feeling of familiarity. The feeling of unfamiliarity was related to a smaller bimodal activation pattern mainly located in the right insula and likely related to the detection of novelty.  相似文献   

8.
Stereoscopic vision is based on small differences in both retinal images known as retinal disparities. We investigated the cortical responses to retinal disparities in a patient suffering from occipital epilepsy by recording evoked potentials to random dot stereograms (RDS) from subdural electrodes placed in the parieto-occipito-temporal junction, medial surface of the occipital lobe (pericalcarine cortex) and basal surface of the occipital and temporal lobes (fusiform gyrus). Clear responses to disparity present in RDS were found in the fusiform cortex. We observed that the fusiform responses discriminate the onset from the offset of the stimulus, correlation from uncorrelation, and they show a longer latency than responses found in the pericalcarine cortex. Our findings indicate that the fusiform area is involved in the processing of the stereoscopic information and shows responses that suggest a high level of stereoscopic processing.  相似文献   

9.
In the previous paper the locations and basic response properties of N200 and other face-specific event-related potentials (ERPs) were described. In this paper responsiveness of N200 and related ERPs to the perceptual features of faces and other images was assessed. N200 amplitude did not vary substantially, whether evoked by colored or grayscale faces; normal, blurred or line-drawing faces; or by faces of different sizes. Human hands evoked small N200s at face-specific sites, but evoked hand-specific ERPs at other sites. Cat and dog faces evoked N200s that were 73% as large as to human faces. Hemifield stimulation demonstrated that the right hemisphere is better at processing information about upright faces and transferring it to the left hemisphere, whereas the left hemisphere is better at processing information about inverted faces and transferring it to the right hemisphere. N200 amplitude was largest to full faces and decreased progressively to eyes, face contours, lips and noses viewed in isolation. A region just lateral to face-specific N200 sites was more responsive to internal face parts than to faces, and some sites in ventral occipitotemporal cortex were face-part-specific. Faces with eyes averted or closed evoked larger N200s than those evoked by faces with eyes forward. N200 amplitude and latency were affected by the joint effects of eye and head position in the right but not in the left hemisphere. Full and three-quarter views of faces evoked larger N200s than did profile views. The results are discussed in relation to behavioral studies in humans and single-cell recordings in monkeys.  相似文献   

10.
We studied the existence, localization and attentional modulation of gamma-band oscillatory activity (30-130 Hz) in the human intracranial region. Two areas known to play a key role in visual object processing: the lateral occipital (LO) cortex and the fusiform gyrus. These areas consistently displayed large gamma oscillations during visual stimulus encoding, while other extrastriate areas remained systematically silent, across 14 patients and 291 recording sites scattered throughout extrastriate visual cortex. The lateral extent of the responsive regions was small, in the range of 5 mm. Induced gamma oscillations and evoked potentials were not systematically co-localized. LO and the fusiform gyrus displayed markedly different patterns of attentional modulation. In the fusiform gyrus, attention enhanced stimulus-driven gamma oscillations. In LO, attention increased the baseline level of gamma oscillations during the expectation period preceding the stimulus. Subsequent gamma oscillations produced by attended stimuli were smaller than those produced by unattended, irrelevant stimuli. Attentional modulations of gamma oscillations in LO and the fusiform gyrus were thus very different, both in their time-course (preparatory period and/or stimulus processing) and direction of modulation (increase or decrease). Our results thus suggest that the functional role of gamma oscillations depends on the area in which they occur.  相似文献   

11.
OBJECTIVE: The goal was to assess auditory cortex activation evoked by pure-tone stimulus with functional MRI. METHODS: Five healthy children, aged 7 to 10 years, were studied. Hearing evaluation was performed by pure-tone audiometry in a sound-treated room and in the MRI scanner with the scanner noise in the background. Subjects were asked to listen to pure tones (500, 1000, 2000, and 4000 Hz) at thresholds determined in the MRI scanner. Functional image processing was performed with a cross-correlation technique with a correlation coefficient of 0.5 (P < 0.0001). Auditory cortex activation was assessed by observing activated pixels in functional images. RESULTS: Functional images of auditory cortex activation were obtained in 3 children. All children showed activation in Heschl's gyrus, middle temporal gyrus, superior temporal gyrus, and planum temporale. The number of activated pixels in auditory cortexes ranged from 4 to 33. CONCLUSIONS: Functional images of auditory cortex activation evoked by pure-tone stimuli are obtained in healthy children with the functional MRI technique.  相似文献   

12.
Cortical potentials were recorded from implanted electrodes during a difficult working memory task requiring rapid storage, modification and retrieval of multiple memoranda. Synchronous event-related potentials were generated in distributed occipital, parietal, Rolandic and prefrontal sites beginning approximately 130 ms after stimulus onset and continuing for >500 ms. Coherent phase-locked, event-related oscillations supported interaction between these dorsal stream structures throughout the task period. The Rolandic structures generated early as well as sustained potentials to sensory stimuli in the absence of movement. Activation peaks and phase lags between synaptic populations suggested that perceptual processing occurred exclusively in the visual association cortex from approximately 90 to 130 ms, with its results projected to fronto-parietal areas for interpretation from approximately 130 to 280 ms. The direction of interaction then appeared to reverse from approximately 300 to 400 ms, consistent with mental arithmetic being performed by fronto-parietal areas operating upon a visual scratch pad in the dorsolateral occipital cortex. A second reversal, from approximately 420 to 600 ms, may have represented an updating of memoranda stored in fronto-parietal sites. Lateralized perisylvian oscillations suggested an articulatory loop. Anterior cingulate activity was evoked by feedback signals indicating errors. These results indicate how a fronto-centro-parietal 'central executive' might interact with an occipital visual scratch pad, perisylvian articulatory loop and limbic monitor to implement the sequential stages of a complex mental operation.  相似文献   

13.
OBJECTIVE: This study was designed to describe regional changes in blood oxygenation level dependent signals in functional magnetic resonance images (fMRI) elicited by thermal pain in hypnotized subjects. These signals approximately identify the neural correlates of the applied stimulation to identify neuroanatomic structures involved in the putative effects of clinical hypnosis on pain perception. METHODS: After determination of the heat pain threshold of 12 healthy volunteers, fMRI scans were performed at 1.5 Tesla by using echoplanar imaging technique during repeated painful heat stimuli. Activation of brain regions in response to thermal pain during hypnosis (using a fixation and command technique of hypnosis) was compared with responses without hypnosis. RESULTS: With hypnosis, less activation in the primary sensory cortex, the middle cingulate gyrus, precuneus, and the visual cortex was found. An increased activation was seen in the anterior basal ganglia and the left anterior cingulate cortex. There was no difference in activation within the right anterior cingulate gyrus in our fMRI studies. No activation was seen within the brainstem and thalamus under either condition. CONCLUSION: Our observations indicate that clinical hypnosis may prevent nociceptive inputs from reaching the higher cortical structures responsible for pain perception. Whether the effects of hypnosis can be explained by increased activation of the left anterior cingulate cortex and the basal ganglia as part of a possible inhibitory pathway on pain perception remains speculative given the limitations of our study design.  相似文献   

14.
Synesthesia is defined as the involuntary and automatic perception of a stimulus in 2 or more sensory modalities (i.e., cross-modal linkage). Colored-hearing synesthetes experience colors when hearing tones or spoken utterances. Based on event-related potentials we employed electric brain tomography with high temporal resolution in colored-hearing synesthetes and nonsynesthetic controls during auditory verbal stimulation. The auditory-evoked potentials to words and letters were different between synesthetes and controls at the N1 and P2 components, showing longer latencies and lower amplitudes in synesthetes. The intracerebral sources of these components were estimated with low-resolution brain electromagnetic tomography and revealed stronger activation in synesthetes in left posterior inferior temporal regions, within the color area in the fusiform gyrus (V4), and in orbitofrontal brain regions (ventromedial and lateral). The differences occurred as early as 122 ms after stimulus onset. Our findings replicate and extend earlier reports with functional magnetic resonance imaging and positron emission tomography in colored-hearing synesthesia and contribute new information on the time course in synesthesia demonstrating the fast and possibly automatic processing of this unusual and remarkable phenomenon.  相似文献   

15.
There is increasing evidence from cellular recordings in primates and behavioral studies in humans that motion can be processed by other than the magnocellular (M) pathway and the cortical dorsal stream. Little is known about cortical processing of moving stimuli when the information is conveyed by the third retinogeniculocortical pathway - the so-called koniocellular (K) pathway. We addressed this issue in humans by studying the spatio-temporal dynamics of the brain electrical fields evoked by tritan (S-cone isolating) and luminance-defined moving stimuli. Tritan and luminance stimuli are presumably carried by the K and M pathways respectively. We found two time intervals where significant stimulus-specific electric fields were evoked: an early period between 40 and 75 ms after stimulus onset, and a later period between 175 and 240 ms. Some of these fields were identical for tritanand luminance-motion, suggesting that the processing of moving stimuli share common cortical substrates when mediated via K and M pathway input. However, tritan-motion stimuli also evoked unique electric fields that appeared earlier in time than the common motion-specific fields, indicating very fast activation of cortical areas specific to input through the K pathway. A distributed source localization procedure revealed simultaneous activation of striate and extrastriate areas even at the early processing stages, strongly suggesting a very fast activation of the visual cerebral network.  相似文献   

16.
Williams syndrome (WS) is a rare neurodevelopmental disorder caused by a 1.6 Mb microdeletion on chromosome 7q11.23 and characterized by hypersocial personality and prominent visuospatial construction impairments. Previous WS studies have identified functional and structural abnormalities in the hippocampal formation, prefrontal regions crucial for amygdala regulation and social cognition, and the dorsal visual stream, notably the intraparietal sulcus (IPS). Although aberrant ventral stream activation has not been found in WS, object-related visual information that is processed in the ventral stream is a critical source of input into these abnormal regions. The present study, therefore, examined neural interactions of ventral stream areas in WS. Using a passive face- and house-viewing paradigm, activation and functional connectivity of stimulus-selective regions in fusiform and parahippocampal gyri, respectively, were investigated. During house viewing, significant activation differences were observed between participants with WS and a matched control group in IPS. Abnormal functional connectivity was found between parahippocampal gyrus and parietal cortex and between fusiform gyrus and a network of brain regions including amygdala and portions of prefrontal cortex. These results indicate that abnormal upstream visual object processing may contribute to the complex cognitive/behavioral phenotype in WS and provide a systems-level characterization of genetically mediated abnormalities of neural interactions.  相似文献   

17.
BACKGROUND: The action of propofol has been studied in vitro and in vivo, but the effects of intravenously administered propofol on synaptic transmission in freely behaving rats have not been studied before. METHODS: Rats were implanted with recording electrodes in the dentate gyrus and with stimulation electrodes in the medial perforant path (MPP). Paired pulses at different interpulse intervals (IPIs) were delivered to the MPP, and average evoked potentials were recorded in the dentate gyrus before and after a bolus of propofol (10 or 20 mg/kg administered intravenously) or control vehicle was injected via femoral vein cannula. Because of the layered structure of the hippocampus, population excitatory postsynaptic potentials and population spikes could be distinguished and analyzed. RESULTS: Propofol has no significant effect on the population excitatory postsynaptic potentials or population spike evoked by a single MPP stimulus pulse. However, paired-pulse inhibition of the dentate population spikes was increased at IPI of 20 and 30 ms. Paired-pulse inhibition of the population spike was most prominent when tail pinch response was lost (deep and moderate anesthesia), but it persisted during light anesthesia. At 200 ms IPI, paired-pulse facilitation of population spikes was observed during moderate anesthesia in most rats. CONCLUSIONS: In freely behaving rats, intravenous propofol enhanced paired-pulse inhibition at < 50 ms IPI, likely by enhancing gamma-aminobutyric acid A receptor-mediated inhibition. Propofol also increased paired-pulse facilitation at 200 ms IPI through an unknown mechanism, which may contribute to the neuroexcitatory effect of propofol.  相似文献   

18.
Learning perceptual skills is characterized by rapid improvements in performance within the first hour of training (fast perceptual learning) followed by more gradual improvements that take place over several daily practice sessions (slow perceptual learning). Although it is widely accepted that slow perceptual learning is accompanied by enhanced stimulus representation in sensory cortices, there is considerable controversy about the neural substrates underlying early and rapid improvements in learning perceptual skills. Here we measured event-related brain potentials while listeners were presented with 2 phonetically different vowels. Listeners' ability to identify both vowels improved gradually during the first hour of testing and was paralleled by enhancements in an early evoked response ( approximately 130 ms) localized in the right auditory cortex and a late evoked response ( approximately 340 ms) localized in the right anterior superior temporal gyrus and/or inferior prefrontal cortex. These neuroplastic changes depended on listeners' attention and were preserved only if practice was continued; familiarity with the task structure (procedural learning) was not sufficient. We propose that the early increases in cortical responsiveness reflect goal-directed changes in the tuning properties of auditory neurons involved in parsing concurrent speech signals. Importantly, the neuroplastic changes occurred rapidly, demonstrating the flexibility of human speech segregation mechanisms.  相似文献   

19.
Effects of Propofol on Hippocampal Synaptic Transmission in Behaving Rats   总被引:1,自引:0,他引:1  
Background: The action of propofol has been studied in vitro and in vivo, but the effects of intravenously administered propofol on synaptic transmission in freely behaving rats have not been studied before.

Methods: Rats were implanted with recording electrodes in the dentate gyrus and with stimulation electrodes in the medial perforant path (MPP). Paired pulses at different interpulse intervals (IPIs) were delivered to the MPP, and average evoked potentials were recorded in the dentate gyrus before and after a bolus of propofol (10 or 20 mg/kg administered intravenously) or control vehicle was injected via a femoral vein cannula. Because of the layered structure of the hippocampus, population excitatory postsynaptic potentials and population spikes could be distinguished and analyzed.

Results: Propofol has no significant effect on the population excitatory postsynaptic potentials or population spike evoked by a single MPP stimulus pulse. However, paired-pulse inhibition of the dentate population spikes was increased at IPI of 20 and 30 ms. Paired-pulse inhibition of the population spike was most prominent when tail pinch response was lost (deep and moderate anesthesia), but it persisted during light anesthesia. At 200 ms IPI, paired-pulse facilitation of population spikes was observed during moderate anesthesia in most rats.  相似文献   


20.
We investigated the spatio-temporal dynamic of attentional bias towards fearful faces. Twelve participants performed a covert spatial orienting task while recording visual event-related brain potentials (VEPs). Each trial consisted of a pair of faces (one emotional and one neutral) briefly presented in the upper visual field, followed by a unilateral bar presented at the location of one of the faces. Participants had to judge the orientation of the bar. Comparing VEPs to bars shown at the location of an emotional (valid) versus neutral (invalid) face revealed an early effect of spatial validity: the lateral occipital P1 component (approximately 130 ms post-stimulus) was selectively increased when a bar replaced a fearful face compared to when the same bar replaced a neutral face. This effect was not found with upright happy faces or inverted fearful faces. A similar amplification of P1 has previously been observed in electrophysiological studies of spatial attention using non-emotional cues. In a behavioural control experiment, participants were also better at discriminating the orientation of the bar when it replaced a fearful rather than a neutral face. In addition, VEPs time-locked to the face-pair onset revealed a C1 component (approximately 90 ms) that was greater for fearful than happy faces. Source localization (LORETA) confirmed an extrastriate origin of the P1 response showing a spatial validity effect, and a striate origin of the C1 response showing an emotional valence effect. These data suggest that activity in primary visual cortex might be enhanced by fear cues as early as 90 ms post-stimulus, and that such effects might result in a subsequent facilitation of sensory processing for a stimulus appearing at the same location. These results provide evidence for neural mechanisms allowing rapid, exogenous spatial orienting of attention towards fear stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号