首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous studies, we investigated the cavitation phenomenon in a mechanical heart valve using an electro-hydraulic total artificial heart. With this system, a 50% glycerin solution kept at 37 degrees C was used as the working fluid. We reported that most of the cavitation bubbles were observed near the valve stop and were caused by the squeeze flow. However, in these studies, the effect of the partial pressure of CO(2) on the mechanical heart valve cavitation was neglected. In this study, in order to investigate the effect of the partial pressure of CO(2) on mechanical heart valve cavitation using an electro-hydraulic total artificial heart, we controlled the partial pressure of the CO(2) in vitro. A 25-mm Medtronic Hall valve was installed in the mitral position of an electro-hydraulic total artificial heart. In order to quantify the mechanical heart valve cavitation, we used a high-speed camera. Even though cavitation intensity slightly increased with increases in the PCO(2) at heart rates of 60, 70 and 100 bpm, throughout the experiment, there was no significant difference between the PCO(2) and cavitation intensity.  相似文献   

2.
Until now, we have estimated cavitation for mechanical heart valves (MHV) mounted in an electrohydraulic total artificial heart (EHTAH) with tap water as a working fluid. However, tap water at room temperature is not a proper substitute for blood at 37 degrees C. We therefore investigated MHV cavitation using a glycerin solution that was identical in viscosity and vapor pressure to blood at body temperature. In this study, six different kinds of monoleaflet and bileaflet valves were mounted in the mitral position in an EHTAH, and we investigated the mechanisms for MHV cavitation. The valve closing velocity, pressure drop measurements, and a high-speed video camera were used to investigate the mechanism for MHV cavitation and to select the best MHV for our EHTAH. The closing velocity of the bileaflet valves was slower than that of the monoleaflet valves. Cavitation bubbles were concentrated on the edge of the valve stop and along the leaflet tip. It was established that squeeze flow holds the key to MHV cavitation in our study. Cavitation intensity increased with an increase in the valve closing velocity and the valve stop area. With regard to squeeze flow, the Bj?rk-Shiley valve, because it is associated with slow squeeze flow, and the bileaflet valve with low valve closing velocity and small valve stop areas are better able to prevent blood cell damage than the monoleaflet valves.  相似文献   

3.
The aim of this study was to observe mechanical heart valve (MHV) cavitation pits resulting from in vivo testing of an electrohydraulic total artificial heart (EHTAH). During in vivo testing with three sets of valves (one set used in two animals), the slope of the driving pressure (left and right driving pressure) was used as a factor for investigating cavitation intensity, and the occurrence of cavitation was determined by the observation of cavitation pits on the explanted valve surfaces. Medtronic Hall valves were installed at the inlet and outlet positions of the two blood pumps. The EHTAH was tested using calves weighing 69–80 kg. The cavitation pits on the valve surface of the inlet valves of the left and right blood pumps were examined by scanning electron micrography. The driving pressure slope 5 ms before valve closure exceeded the cavitation threshold during in vitro testing. On both inlet valves, many large pits formed when the driving pressure slope was high and the pump operating time was long. When estimating cavitation intensity during in vivo testing, both a high driving pressure slope and a long operating time are important factors. The cavitation pits observed on the valve surfaces resulting from in vivo testing will eventually lead to leaflet fracture.  相似文献   

4.
Our group has developed an electrohydraulic total artificial heart (EHTAH) with two diaphragm-type blood pumps. Cavitation in a mechanical heart valve (MHV) causes valve surface damage. The objective of this study was to investigate the possibility of estimating the MHV cavitation intensity using the slope of the driving pressure just before valve closure in this artificial heart. Twenty-five and twenty-three-millimeter Medtronic Hall valves were mounted at the inlet and outlet ports, respectively, of both pumps. The EHTAH was connected to the experimental endurance tester developed by our group, and tested under physiological pressure conditions. Cavitation pits could be seen on the inlet valve surface and on the outlet valve surface of the right and left blood pumps. The pits on the inlet valves were more severe than those on the outlet valves in both blood pumps, and the cavitation pits on the inlet valve of the left blood pump were more severe than those on the inlet valve of the right blood pump. The longer the pump running time, the more severe the cavitation pits on the valve surfaces. Cavitation pits were concentrated near the contact area with the valve stop. The major cause of these pits was the squeeze flow between the leaflet and valve stop.  相似文献   

5.
Recently, cavitation on the surface of mechanical heart valves has been studied as a cause of fractures occurring in implanted mechanical heart valves. The cause of cavitation in mechanical heart valve was investigated in both 25-mm Björk–Shiley and 25-mm Medtronic Hall valves. The closing events of these valves in the mitral position were simulated in an electrohydraulic total artificial heart with a stroke volume of 85?ml. The tests were conducted under physiologic pressures at heart rates of 60, 70, 80, and 90 beats/min with cardiac outputs of 4.5, 5.5, 6.4, and 7.5?l/min, respectively. The disk closing behavior was measured by a laser displacement sensor. The closing behaviors were investigated under various atrial and aortic pressures. In both valves, the duration of closing decreased with an increase in the cardiac output. The greater the amount of atrial pressure, the shorter the closing duration of both valves. The maximum closing velocity of the Medtronic Hall monostrut valve ranged from 0.8 to 0.9?m/s, and that of the Björk–Shiley monostrut valve ranged from 0.73 to 0.78?m/s. In both valves, the maximum closing velocities were less than the reported cavitation thresholds. This suggests that there should be no possibility of occurrence of cavitation in an electrohydraulic total artificial heart with mechanical heart valve.  相似文献   

6.
In this study, we investigated the possibility of estimating the mechanical heart valve (MHV) cavitation intensity using the slope of the driving pressure (DP) just before valve closure in a pneumatic ventricular assist device. We installed a 23-mm Medtronic Hall valve at the inlet of our pneumatic ventricular assist device (VAD). Tests were conducted under physiologic pressures at heart rates ranging from 60 to 90 beats/min and cardiac outputs ranging from 4.5 to 6.7 l/min. The valve-closing velocity was measured with a CCD laster displacement sensor, and the images of MHV cavitation were recorded using a high-speed video camera. The cavitation cycle time (equal to the observed duration of the cavitation bubbles) was used as the MHV cavitation intensity. The valve-closing velocity increased as the heart rate increased. Most of the cavitation bubbles were observed near the valve stop, and the cavitation intensity increased as the heart rate increased. The slope of the DP at 20 ms before valve closure was used as an index of the cavitation intensity. There were differences in the slope of the DP between low and high heart rates, but the slope of the DP had a tendency to linearly increase with increasing valve-closing velocity.  相似文献   

7.
Observation of cavitation bubbles in monoleaflet mechanical heart valves   总被引:1,自引:0,他引:1  
Recently, cavitation on the surface of mechanical heart valves (MHVs) has been studied as a cause of fractures occurring in implanted MHVs. In the present study, we investigated the mechanism of MHV cavitation associated with the Björk–Shiley valve and the Medtronic Hall valve in an electrohydraulic total artificial heart (EHTAH). The valves were mounted in the mitral position in the EHTAH. The valve closing motion, pressure drop measurements, and cavitation capture were employed to investigate the mechanisms for cavitation in the MHV. There are no differences in valve closing velocity between the two valves, and its value ranged from 0.53 to 1.96m/s. The magnitude of negative pressure increased with an increase in the heart rate, and the negative pressure in the Medtronic Hall valve was greater than that in the Björk–Shiley valve. Cavitation bubbles were concentrated at the edge of the valve stop; the major cause of these cavitation bubbles was determined to be the squeeze flow. The formation of cavitation bubbles depended on the valve closing velocity and the valve leaflet geometry. From the viewpoint of squeeze flow, the Björk–Shiley valve was less likely to cause blood cell damage than the Medtronic Hall valve in our EHTAH.  相似文献   

8.
The cavitation intensity of a mechanical heart valve (MHV) may differ according to the geometry of the blood pump and driving mechanism. Our group is currently developing a pneumatic ventricular assist device (VAD), and the effects of different operating conditions on MHV cavitation in our pneumatic VAD were investigated. Tests were conducted under physiological pressure at heart rates ranging from 60 to 90 beats/min and at a systolic duration ranging from 38% to 43%. The valve-closing velocity was measured using a charge-coupled device (CCD) laser displacement sensor, and images of MHV cavitation were recorded using a high-speed video camera. A miniature pressure sensor was mounted 10 mm away from the inlet valve surface. The data were stored at a 1-MHz sampling rate using a digital oscilloscope. The pressure signal was band-pass filtered between 35 and 200 kHz using a digital filter. The cavitation bubbles were concentrated at the inlet valve stop, and were caused mainly by the squeeze flow. The band-pass filtered root mean squared (RMS) pressure and cavitation cycle duration increased with the closing velocity of the inlet valve. At a low heart rate and low systolic duration, the inlet valve closed before the outlet valve opened, which caused no cavitation bubbles to form around the valve stop.  相似文献   

9.
Cavitation on a mechanical heart valve (MHV) is attributable to transient regional pressure drop at the instant of valve closure. As a cavitation bubble collapses, it emits shock waves, which have the characteristics of high frequency oscillations (HFO) on a pressure time trace. The potential for such HFO bursts to cause material damage on an MHV can be measured by the cavitation impulse I, which is defined as the area under the trace of the HFO bursts. In the present study, experiments were conducted on a bileaflet MHV in a durability tester, operated at pulse rates from 300-1,000 bpm. In each case, the transient pressure near an occluder was monitored for 60,000 beats via a transducer. The peak pressure drop Pm and the corresponding cavitation impulse I obtained for the 60,000 beat sequence are found to resemble sample records of two stationary stochastic processes, each of which follows a log normal distribution. Their first order probability density functions are estimated from the records. The correlation is investigated between I and Pm associated with each beat, which is found to be of statistical significance.  相似文献   

10.
INTRODUCTIONSincetheartificialmechanicalheartvavle(AMHV)madeofmetalcoatedwithcarbonpossessesboththefavoratemachinabilityofthe...  相似文献   

11.
Recently, cavitation on the surface of mechanical heart valves has been studied as a cause of fractures occurring in implanted mechanical heart valves. In this study, to investigate the mechanism of cavitation bubbles associated with monoleaflet mitral valves in an electrohydraulic total artificial heart (EHTAH), and to select the best valves for our EHTAH system, we measured three parameters. First, an image was created of the cavitation bubbles using a high-speed camera. Second, pressure drop in the vicinity of the valve surface was measured using mini pressure sensor. Then, the closing of the valve was observed using a Laser displacement sensor. Most of the cavitation bubbles in the Medtronic Hall valve were observed at the edge of the valve stop. With the Omnicarbon valve, the cavitation bubbles were observed at the edge of the valve and on the inner side of the leaflet. On the other hand, cavitation bubbles were observed only on the inner side of the leaflet in Bj?rk-Shiley valve. Cavitation bubbles concentrated on the edge of the valve stop; the major cause of these cavitation bubbles was determined to be the squeeze flow. The formation of cavitation bubbles depended on the valve closing velocity and the valve leaflet geometry. From a viewpoint of squeeze flow, a low closing velocity and a small size of the valve stop could minimize cavitation.  相似文献   

12.
Several aspects of mechanical heart valve cavitation, in particular of "severe" vapor cavitation, have been investigated in order to describe the phenomenon of cavitation itself and to classify various mechanical heart valves with respect to their tendency to cavitation. Furthermore, following the results of the measurements, a model for determination of time-dependent physical properties and dynamics of cavitation bubbles, such as size, pressure and temperature was developed. In order to classify the cavitation tendency of mechanical valves, a pulsatile hydraulic-driven circularly mock loop was used. Besides measurements of the relevant hemodynamic parameters, the leaflet velocities of the valves were also determined. In addition, numerous high-resolution pressure measurements, in particular the pressure drops necessary for the initiation of cavitation (local atrial pressure drop), were performed. For the investigation of bubble dynamics, a second pulsatile electro-magnetically-driven tester was used. The influence of density, viscosity and temperature of the fluid on the onset of cavitation was investigated. Cavitation events were recorded with a digital high-speed video camera (up to 40,500 frames/sec) for all investigated heart valves and under different conditions. A critical local upstream pressure drop (located within the model atrium after valve closure) of 450 mmHg was found for all valves as well as a valve specific correlation between left ventricular pressure gradient and local upstream pressure drop. Also, a valve dependent correlation between left ventricular pressure gradient and the local upstream pressure drop was provided. Finally, valve specific parameters were found to predict the cavitation tendency for a specific heart valve. The implementation of a suitable theoretical model allowed conclusions on bubble physics. High pressures (up to 800 bar) and temperatures (up to 1,300 degrees C) at bubble collapse have been determined. The influence of fluid parameters such as density, viscosity and temperature on the onset of cavitation is negligible within physiological range. Critical regions for cavitation for all mechanical heart valves were detected. All mechanical heart valves investigated show cavitation under different conditions (dp/dt) associated with high pressures and temperatures at bubble collapse. Cavitation bubble occurrence depends on valve design and location.  相似文献   

13.
Bubble cavitation occurs in the flow field when local pressure drops below vapor pressure. One hypothesis states that low-pressure regions in vortices created by instantaneous valve closure and occluder rebound promote bubble formation. To quantitatively analyze the role of vortices in cavitation, we applied particle image velocimetry (PIV) to reduce the instantaneous fields into plane flow that contains information about vortex core radius, maximum tangential velocity, circulation strength, and pressure drop. Assuming symmetrical flow along the center of the St. Jude Medical 25-mm valve, flow fields downstream of the closing valve were measured using PIV in the mitral position of a circulatory mock loop. Flow measurements were made during successive time phases immediately following the impact of the occluder with the housing (O/H impact) at valve closing. The velocity profile near the vortex core clearly shows a typical Rankine vortex. The vortex strength reaches maximum immediately after closure and rapidly decreases at about 10 ms, indicating viscous dissipation; vortex strength also intensifies with rising pulse rate. The maximum pressure drop at the vortex center is approximately 20 mmHg, an insignificant drop relative to atmospheric vapor pressures, which implies vortices play a minor role in cavitation formation.  相似文献   

14.
15.
To investigate the characteristics of cavitation intensity, we performed a synchronized analysis of the visual images of cavitation and the pressure signals using a pulsatile device. The pulsatile device employed was a pneumatic ventricular assist device (PVAD) that is currently being developed by our group. A 23-mm Medtronic Hall valve (M-H valve) and a 23-mm Sorin Bicarbon bileaflet valve (S-B valve) were mounted in the inlet port of the PVAD after the sewing ring had been removed. A function generator provided a square signal, which was used as the trigger signal, via Electrocardiogram R wave (ECG-R) mode, of the control - drive console for circulatory support. The square signal was also used, after a suitable delay, to synchronize operation of a pressure sensor and a high-speed video camera. The data were stored using a digital oscilloscope at a 1-MHz sampling rate, and then the pressure signal was band-pass filtered between 35 and 200 kHz using a digital filter. The valve-closing velocity, visual cavitation time, and root mean square (RMS) pressure of the M-H valve were greater than those of the S-B valve. Both the visual cavitation time and RMS pressure represent the cavitation intensity, and this is a very important factor when estimating mechanical heart valve cavitation intensity in an artificial heart.  相似文献   

16.
Examination by light microscopy, scanning electron microscopy (SEM), and x-ray microanalysis of a clinical total artificial heart (TAH) implanted for 112 days revealed no evidence of calcification, pannus, or vegetative thrombus. A macroscopic thrombus was seen along the suture line in the right atrium but did not obstruct blood flow or valve function. Microscopic thrombi (less than 0.1 mm) and evidence of microemboli were observed on the pumping diaphragm using SEM. Characterization of selected polyetherurethane (PEU) samples from the pumping bladders and housing by Curie-point pyrolysis mass spectrometry (Py-MS) revealed unexpected differences between postmortem retrieved ventricles. Although the origin of these differences could be traced back to batch-to-batch variations in the original PEU material (Biomer), the precise nature of the observed differences in chemical structure and/or composition is still unknown. Numerical comparison between pyrolysis mass spectra from PEU samples exposed to blood or tissue and unexposed samples from the same ventricles did not detect evidence of biodegradation. Continual improvements in fabrication and quality control should minimize surface imperfections and ensure polymer reproducibility; however, existing materials and design parameters appear to be adequate for continued clinical implantation.  相似文献   

17.
Objectives: As is true for all mechanical prostheses, bileaflet heart valves are prone to thrombus formation; reduced hemodynamic performance and embolic events can occur as a result. Prosthetic valve thrombosis affects the power spectra calculated from the phonocardiographic signals corresponding to prosthetic closing events. Artificial neural network-based classifiers are proposed for automatically and noninvasively assessing valve functionality and detecting thrombotic formations. Further studies will be directed toward an enlarging data set, extending the investigated frequency range, and applying the presented approach to other bileaflet mechanical valves. Methods: Data were acquired for the normofunctioning St. Jude Regent valve mounted in the aortic position of a Sheffield Pulse Duplicator. Different pulsatile flow conditions were reproduced, changing heart rate and stroke volume. The case of a thrombus completely blocking 1 leaflet was also investigated. Power spectra were calculated from the phonocardiographic signals and used to train artificial neural networks of different topologies; neural networks were then tested with the spectra acquired in vivo from 33 patients, all recipients of the St. Jude Regent valve in the aortic position. Results: The proposed classifier showed 100% correct classification in vitro and 97% when applied to in vivo data: 31 spectra were assigned to the right class, 1 received a false positive classification, and 1 was "not classifiable." Conclusion: Early malfunction detection is necessary to prevent thrombotic events in bileaflet mechanical heart valves. Following further clinical validation with an extended patient database, artificial neural network-based classifiers could be embedded in a portable device able to detect valvular thrombosis at early stages of formation: this would help clinicians make valvular dysfunction diagnoses before the appearance of critical symptoms.  相似文献   

18.
Journal of Artificial Organs - An in-vitro study was conducted to investigate the general feasibility of using only one pumping chamber of the SynCardia total artificial heart (TAH) as a...  相似文献   

19.
It is possible that mechanical heart valves mounted in an artificial heart close much faster than those used for clinical valve replacement, resulting in the formation of cavitation bubbles. In this study, the mechanism for mechanical heart cavitation was investigated using the Medtronic Hall monoleaflet valve and the Sorin Bicarbon bileaflet valve mounted at the mitral position in an electrohydraulic total artificial heart. The valve-closing velocity was measured with a charge-coupled device (CCD) laser displacement sensor, and images of mechanical heart valve cavitation were recorded using a high-speed video camera. The valve-closing velocity of the Sorin Bicarbon bileaflet valve was lower than that of the Medtronic Hall monoleaflet valve. Most of the cavitation bubbles generated by the monoleaflet valve were observed near the valve stop; with the Sorin Bicarbon bileaflet valve, cavitation bubbles were concentrated along the leaflet tip. The cavitation density increased as the valve-closing velocity and the valve stop area increased. These results strongly indicate that squeeze flow holds the key to cavitation in the mechanical heart valve. From the perspective of squeeze flow, bileaflet valves with a low valve-closing velocity and a small valve stop area may cause less blood cell damage than monoleaflet valves.  相似文献   

20.
Bacterial infections are a significant complication of long-term total artificial heart implantation. We evaluated the functional capabilities of host defense mechanisms in two patients sustained long-term by a total artificial heart. Although serum complement and polymorphonuclear leukocyte function remained intact, both patients became B and T lymphopenic and there was an initial decrease in the ratio of helper/inducer to suppressor/cytotoxic cells. Histologic examination of their lymphoidal tissue at autopsy further revealed reduced numbers of germinal centers and atrophy of the T lymphocyte-dependent areas. In addition, the reticuloendothelial system was engorged with degenerate erythrocytes. We hypothesize that blockade of the reticuloendothelial system was induced by multiple blood transfusions necessitated by device-associated hemolysis and coagulopathy. This blockade may have led to a progressive loss of content of the antigen-specific lymphoidal elements and, perhaps, to a reduced ability to ingest microbe-antibody complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号