首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We observed the characteristics of white matter fibers and gray matter in multiple sclerosis patients, to identify changes in diffusion tensor imaging fractional anisotropy values following white matter fiber injury. We analyzed the correlation between fractional anisotropy values and changes in whole-brain gray matter volume. The participants included 20 patients with relapsing-remitting multiple sclerosis and 20 healthy volunteers as controls. All subjects underwent head magnetic resonance imaging and diffusion tensor imaging. Our results revealed that fractional anisotropy values decreased and gray matter volumes were reduced in the genu and splenium of corpus callosum, left anterior thalamic radiation, hippocampus, uncinate fasciculus, right corticospinal tract, bilateral cingulate gyri, and inferior longitudinal fasciculus in multiple sclerosis patients. Gray matter volumes were significantly different between the two groups in the right frontal lobe(superior frontal, middle frontal, precentral, and orbital gyri), right parietal lobe(postcentral and inferior parietal gyri), right temporal lobe(caudate nucleus), right occipital lobe(middle occipital gyrus), right insula, right parahippocampal gyrus, and left cingulate gyrus. The voxel sizes of atrophic gray matter positively correlated with fractional anisotropy values in white matter association fibers in the patient group. These findings suggest that white matter fiber bundles are extensively injured in multiple sclerosis patients. The main areas of gray matter atrophy in multiple sclerosis are the frontal lobe, parietal lobe, caudate nucleus, parahippocampal gyrus, and cingulate gyrus. Gray matter atrophy is strongly associated with white matter injury in multiple sclerosis patients, particularly with injury to association fibers.  相似文献   

2.
目的探讨3.0T常规磁共振阴性的药物难治性颞叶癫痫(rTLE-N)与药物控制性颞叶癫痫(cTLE-N)脑灰质体积及脑白质结构网络拓扑属性差异。方法选取2017年3月至2019年8月在广西医科大学第一附属医院就诊的20例rTLE-N、15例cTLE-N完成头颅3DT1及DTI扫描,20例健康对照(HC)也完成此项检查。基于体素的形态学分析(VBM)方法比较3组脑灰质体积差异,基于图论的方法比较3组脑白质结构网络拓扑属性差异。结果①VBM结果:与HC组相比,rTLE-N组在双侧海马、丘脑、颞中回、内侧和旁扣带回,左侧直回、眶内额上回,右侧海马旁回灰质体积减少(P<0.001);cTLE-N组右侧颞中回、眶内额上回灰质体积减少(P<0.001)。与cTLE-N组相比,rTLE-N组在双侧岛叶、中央沟盖,左侧海马旁回、眶内额上回、梭状回、小脑6区,右侧丘脑、枕下回灰质体积减少(P<0.001);②脑白质结构网络拓扑属性结果:3组脑白质结构网络均表现出小世界属性。与HC组比较,rTLE-N组最短路径长度(Lp)增加、局部效率(Eloc)及全局效率(Eg)下降(P<0.05),cTLE-N组Lp增加、Eg下降(P<0.05);与cTLE-N组比较,rTLE-N组Lp增加、Eloc及Eg下降(P<0.05)。结论TLE-N是一种脑网络疾病,但rTLE-N与cTLE-N致痫网络不同,cTLE-N脑灰质萎缩较局限但已出现脑结构网络拓扑属性受损,而rTLE-N涉及多个脑区灰质萎缩且脑结构网络拓扑属性损害更严重。  相似文献   

3.
OBJECTIVE: Magnetic resonance imaging (MRI) studies of schizophrenia reveal temporal lobe structural brain abnormalities in the superior temporal gyrus and the amygdala-hippocampal complex. However, the middle and inferior temporal gyri have received little investigation, especially in first-episode schizophrenia. METHOD: High-spatial-resolution MRI was used to measure gray matter volume in the inferior, middle, and superior temporal gyri in 20 patients with first-episode schizophrenia, 20 patients with first-episode affective psychosis, and 23 healthy comparison subjects. RESULTS: Gray matter volume in the middle temporal gyrus was smaller bilaterally in patients with first-episode schizophrenia than in comparison subjects and in patients with first-episode affective psychosis. Posterior gray matter volume in the inferior temporal gyrus was smaller bilaterally in both patient groups than in comparison subjects. Among the superior, middle, and inferior temporal gyri, the left posterior superior temporal gyrus gray matter in the schizophrenia group had the smallest volume, the greatest percentage difference, and the largest effect size in comparisons with healthy comparison subjects and with affective psychosis patients. CONCLUSIONS: Smaller gray matter volumes in the left and right middle temporal gyri and left posterior superior temporal gyrus were present in schizophrenia but not in affective psychosis at first hospitalization. In contrast, smaller bilateral posterior inferior temporal gyrus gray matter volume is present in both schizophrenia and affective psychosis at first hospitalization. These findings suggest that smaller gray matter volumes in the dorsal temporal lobe (superior and middle temporal gyri) may be specific to schizophrenia, whereas smaller posterior inferior temporal gyrus gray matter volumes may be related to pathology common to both schizophrenia and affective psychosis.  相似文献   

4.
The purpose of this study is to use voxel-based analysis to simultaneously elucidate regional changes in gray/white matter volume, mean diffusivity (MD), and fractional anisotropy (FA) in patients with unipolar major depressive disorder. We studied 21 right-handed patients and 42 age- and gender-matched right-handed normal subjects. Local areas showing significant gray matter volume reduction in depressive patients compared with controls were observed in the right parahippocampal gyrus, hippocampus, bilateral middle frontal gyri, bilateral anterior cingulate cortices, left parietal and occipital lobes, and right superior temporal gyrus. Local areas showing an increase of MD in depressive patients were observed in the bilateral parahippocampal gyri, hippocampus, pons, cerebellum, left frontal and temporal lobes, and right frontal lobe. There was no significant difference between the two groups for FA and white matter volume in the entire brain. Although there was no local area where brain volume and MD were significantly correlated with disease severity, FA tended to correlate negatively with total days depressed in the right anterior cingulate and the left frontal white matter. These results suggest that the frontolimbic neural circuit might play an important role in the neuropathology of patients with major depressive disorder.  相似文献   

5.
OBJECTIVE: Imaging studies of schizophrenia have repeatedly demonstrated global abnormalities of cerebral and ventricular volumes. However, pathological changes at more local levels of brain organization have not yet been so clearly characterized because of the few brain regions of interest heretofore included in morphometric analyses as well as heterogeneity of patient samples. METHOD: Dual echo magnetic resonance imaging (MRI) data were acquired at 1.5 T from 27 right-handed patients who met DSM-IV criteria for schizophrenia with enduring negative symptoms and from 27 healthy comparison subjects. Between-group differences in gray and white matter volume were estimated at each intracerebral voxel after registration of the images in standard space. The relationship between clinical symptom scores and brain structure was also examined within the patient group. Spatial statistics and permutation tests were used for inference. RESULTS: Significant deficits of gray matter volume in the patient group were found at three main locations: 1) the left superior temporal gyrus and insular cortex, 2) the left medial temporal lobe (including the parahippocampal gyrus and hippocampus), and 3) the anterior cingulate and medial frontal gyri. The volume of these three regions combined was 14% lower in the patients relative to the comparison subjects. White matter deficits were found in similar locations in the left temporal lobe and extended into the left frontal lobe. The patient group showed a relative excess of gray matter volume in the basal ganglia. Within the patient group, basal ganglia gray matter volume was positively correlated with positive symptom scores. CONCLUSIONS: Anatomical abnormalities in these schizophrenic patients with marked negative symptoms were most evident in left hemispheric neocortical and limbic regions and related white matter tracts. These data are compatible with models that depict schizophrenia as a supraregional disorder of multiple, distributed brain regions and the axonal connections between them.  相似文献   

6.
OBJECTIVE: The goals of the work described here were to determine if hippocampal and extrahippocampal atrophy in children with temporal lobe epilepsy (TLE) follows a pattern similar to that in adult patients, and to assess the clinical and neuropsychological relevance of regional brain atrophy in pediatric TLE. METHODS: Children with symptomatic TLE (n=14: 9 with mesial TLE due to hippocampal atrophy and 5 with TLE due to neocortical lesions), healthy children (n=14), and 9 adults with mesial temporal lobe epilepsy (MTLE) were compared using voxel-based morphometry (VBM) of brain magnetic resonance imaging (MRI). The children underwent a comprehensive neuropsychological battery. RESULTS: Children with MTLE with unilateral hippocampal atrophy (n=9) exhibited a significant reduction in gray matter in the hippocampus ipsilateral to the seizure origin and significant atrophy in the ipsilateral cingulate gyrus and contralateral middle frontal lobe. Children with TLE (n=14) exhibited a significant reduction in the gray matter of the ipsilateral hippocampus and parahippocampal gyrus. There was a correlation between gray matter volume in children with TLE and scores on several neuropsychological tests. Atrophy in pediatric patients with MTLE was less extensive than that in adults, and involved the hippocampi and the frontal cortex. CONCLUSIONS: Similar to adult MTLE, pediatric MTLE is associated with hippocampal and extrahippocampal cell loss. However, children display less intense quantifiable gray matter atrophy, which affects predominantly frontal lobe areas. There was a significant association between volume of gray matter in medial temporal and frontal regions and scores on neuropsychological tests. In childhood, TLE and the concomitant cognitive/behavior disturbances are the result of a damaged neural network.  相似文献   

7.
Tae WS  Kim SH  Joo EY  Han SJ  Kim IY  Kim SI  Lee JM  Hong SB 《Journal of neurology》2008,255(4):561-566
Previous studies on gray matter concentration changes in patients with juvenile myoclonic epilepsy (JME) are inconsistent. To investigate cortical abnormality in JME differently, we measured the cortical thickness in 19 JME patients and 18 normal controls. Results showed that the cortical thicknesses of superior/middle/medial frontal gyri, and superior/middle/ inferior temporal gyri were decreased in JME patients. Moreover, cortical thicknesses of precentral gyrus and medial orbital gyrus of right hemispheres were negatively correlated with disease duration. These findings suggest that JME brains have cortical gray matter atrophy in the frontal and temporal lobes.  相似文献   

8.
A preliminary within-subjects MRI study of seven patients with a diagnosis of bipolar I disorder revealed that, compared to remission, depression was associated with gray matter density increases in subgenual prefrontal cortex, parahippocampal gyrus, and inferior temporal gyri. Decreases were observed in superior and inferior frontal gyri and anterior cingulate.  相似文献   

9.
Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA.  相似文献   

10.
目的 运用MRI及FMRIB software library(FSL)和Freesurfer软件包分析技术,研究遗忘型轻度认知功能损害(amnestic mild cognitive impairment,aMCI)患者全脑皮质结构改变情况.方法 对20例aMCI患者和20名年龄、性别、文化程度相匹配的健康志愿者,应用SEMENTS trio3.0 T MRI仪,采用高分辨扫描技术获取大脑精细结构立体像,然后应用FSL软件和Freesurfer软件包进行数据分析和后处理,计算出全脑不同部位皮质密度和厚度,比较aMCI组与健康对照组皮质结构特征的区别.结果 与健康对照组相比,aMCI组的左侧额叶、顶叶、颞叶皮质密度显著降低,右侧丘脑、颞叶及左侧岛叶皮质密度轻度降低;aMCI组左侧前扣带回[(2.19±0.24)mm]、顶下小叶[(2.27±0.15)mm],双侧海马旁回[(2.03±0.15)、(2.04±0.17)mm]、额上回[(2.42±0.34)、(2.40±0.28)mm]、额中回[(2.31±0.31)、(2.33±0.29)mm]、颞极[(3.41±0.68)、(3.30±0.56)mm]、颞横回[(2.04±0.12)、(2.01±0.11)mm]、中央前回[(2.20±0.11)、(2.31±0.19)mm]、中央后回[(1.88±0.11)、(1.82±0.09)mm]、缘上回[(2.53±0.33)、(2.55±0.23)mm]的皮质厚度显著降低(t=2.13~3.75,P<0.05),其余部位无明显改变(t=0.09~1.88,P>0.05).结论 aMCI患者大脑多个部位存在皮质结构改变,皮质厚度的变薄早于密度的降低.  相似文献   

11.
While longitudinal magnetic resonance imaging (MRI) studies have demonstrated progressive gray matter reduction of the superior temporal gyrus (STG) during the early phases of schizophrenia, it remains largely unknown whether other temporal lobe structures also exhibit similar progressive changes and whether these changes, if present, are specific to schizophrenia among the spectrum disorders. In this longitudinal MRI study, the gray matter volumes of the fusiform, middle temporal, and inferior temporal gyri were measured at baseline and follow-up scans (mean inter-scan interval = 2.7 years) in 18 patients with first-episode schizophrenia, 13 patients with schizotypal disorder, and 20 healthy controls. Both schizophrenia and schizotypal patients had a smaller fusiform gyrus than controls bilaterally at both time points, whereas no group difference was found in the middle and inferior temporal gyri. In the longitudinal comparison, the schizophrenia patients showed significant fusiform gyrus reduction (left, − 2.6%/year; right, − 2.3%/year) compared with schizotypal patients (left: − 0.4%/year; right: − 0.2%/year) and controls (left: 0.1%/year; right: 0.0%/year). However, the middle and inferior temporal gyri did not exhibit significant progressive gray matter change in all diagnostic groups. In the schizophrenia patients, a higher cumulative dose of antipsychotics during follow-up was significantly correlated with less severe gray matter reduction in the left fusiform gyrus. The annual gray matter loss of the fusiform gyrus did not correlate with that of the STG previously reported in the same subjects. Our findings suggest regional specificity of the progressive gray matter reduction in the temporal lobe structures, which might be specific to overt schizophrenia within the schizophrenia spectrum.  相似文献   

12.
Cognitive deficits have been well described in adolescents with schizophrenia, but little is known about the neuroanatomical basis of these abnormalities. The authors examined whether neuropsychological deficits observed in adolescents with schizophrenia were associated with cortical gray matter volume deficits. Volumes of the superior frontal gyrus, anterior cingulate gyrus and orbital frontal lobe were outlined manually from contiguous MR images and automatically segmented into gray and white matter in 52 patients and 48 healthy volunteers. Subjects received a comprehensive neuropsychological test battery, assessing five different functional domains: executive, attention, verbal memory, motor and sensory motor. Children and adolescents with schizophrenia were found to have lower total cortical and lower superior frontal gyrus gray matter volumes and lower test scores across all functional domains compared to healthy volunteers. Among patients, the lower total cortical gray matter volume was associated with worse functioning on the attention and motor domains. Our findings point to widespread, perhaps multifocal, pathology as contributing to cognitive dysfunction in adolescents with schizophrenia.  相似文献   

13.
Purpose : In refractory mesial temporal lobe epilepsy (MTLE) extrahippocampal and neocortical abnormalities have been described in patients with or without mesial temporal sclerosis (MTS). Recently we observed gray matter reductions in regions outside the hippocampus in benign MTLE with or without MTS. Cortical thickness has been proposed as a viable methodologic alternative for assessment of neuropathologic changes in extratemporal regions. Herein, we aimed to use this technique to describe cortical abnormalities in patients with benign TLE. Methods : Whole‐brain cortical thickness analysis (FreeSurfer) was performed in 32 unrelated patients with benign TLE [16 patients with signs of MTS on magnetic resonance imaging (MRI), pMTLE; 16 without, nMTLE] and 44 healthy controls. Key Findings : In the pMTLE group, the most significant thinning was found in the sensorimotor cortex bilaterally but was more extensive in the left hemisphere (false discovery rate, p < 0.05). Other areas were localized in the occipital cortex, left supramarginal gyrus, left superior parietal gyrus, left paracentral sulcus, left inferior/middle/superior frontal gyrus, left inferior frontal sulcus, right cingulate cortex, right superior frontal gyrus, right inferior parietal gyrus, right fusiform gyrus, and cuneus/precuneus. In the nMTLE, a similar neurodegenerative pattern was detected, although not surviving correction for multiple comparisons. Direct comparison between pMTLE and nMTLE did not reveal significant changes. Significance : Patients with either benign pMTLE or nMTLE showed comparable cortical thinning, mainly confined to the sensorimotor cortex. This finding that is not appreciated on routine MRI supports the hypothesis that similar to refractory MTLE, even in benign MTLE, pathology in neocortical regions maybe implicated in the pathophysiology of this syndrome.  相似文献   

14.
Forty-eight healthy adults aged 65-85 were recruited for structural magnetic resonance scans after an extensive neuropsychological battery that ensured a high degree of variability across the sample in performance on long-term memory tests, and on tests traditionally thought to rely on prefrontal cortex. Gray matter volumes were measured for three gyri in the frontal lobe (superior, middle, inferior), six gyri in the temporal lobe (superior, middle, inferior, fusiform, parahippocampal, and hippocampus), and the occipital lobe. Gray matter volumes declined across the age range evaluated, but with substantial regional variation--greatest in the inferior frontal, superior temporal, and middle temporal gyri but negligible in the occipital lobe. Both memory performance and executive function declined as the number of hyperintense regions in the subcortical white matter increased. Memory performance was also significantly correlated with gray matter volumes of the middle frontal gyrus (MFG), and several regions of temporal neocortex. However, the correlations were all in the negative direction; better memory performance was associated with smaller volumes. Several previous reports of significant negative correlations between gray matter volumes and memory performance are described, so that the possible reasons for this surprising finding are discussed.  相似文献   

15.
The aim of this study was to examine the relationships between educational attainment, regional grey matter volume, and functional working memory-related brain activation in older adults. The final sample included 32 healthy older adults with 8 to 22 years of education. Structural magnetic resonance imaging (MRI) was used to measure regional volume and functional MRI was used to measure activation associated with performing an n-back task. A positive correlation was found between years of education and cortical grey matter volume in the right medial and middle frontal gyri, in the middle and posterior cingulate gyri, and in the right inferior parietal lobule. The education by age interaction was significant for cortical grey matter volume in the left middle frontal gyrus and in the right medial cingulate gyrus. In this region, the volume loss related to age was larger in the low than high-education group. The education by age interaction was also significant for task-related activity in the left superior, middle and medial frontal gyri due to the fact that activation increased with age in those with higher education. No correlation was found between regions that are structurally related with education and those that are functionally related with education and age. The data suggest a protective effect of education on cortical volume. Furthermore, the brain regions involved in the working memory network are getting more activated with age in those with higher educational attainment.  相似文献   

16.
目的探讨强迫症患者脑灰质和白质结构改变是否在同一样本中反映了相同环路的异常。方法对54例强迫症患者(强迫症组)和54名健康对照(对照组)进行3D结构磁共振成像扫描和弥散张量成像扫描。基于SPM分析软件,采用基于体素的形态学分析方法分析强迫症组全脑灰质体积与对照组的差异;基于FSL软件,采用基于纤维束示踪的空间统计学探讨强迫症组各向异性分数(fractional anisotropy,FA)与对照组的差异。结果与对照组相比,强迫症组左侧额中回、左侧前扣带和旁扣带脑回、左侧中央前回及右侧颞下回灰质体积减小(P<0.05,Alphasim校正),胼胝体体部和胼胝体膝部FA值减小(P<0.05,FWE校正)。结论强迫症患者的灰质体积和白质完整性均存在异常,且异常区域多位于皮质-纹状体-丘脑-皮质环路相关脑区,强迫症的灰、白质结构异常可能同时出现。  相似文献   

17.
Voxel-based morphometry is gaining considerable interest for studies examining Parkinson’s disease dementia patients.In this study,12 patients with clinically defined Parkinson’s disease and dementia and 12 non-demented patients with Parkinson’s disease were examined using a T1WI three-dimensional fast spoiled gradient echo sequence.Gray matter data were analyzed using a voxel-based morphometry method and independent sample t-test based on Statistical Parametric Mapping 5 software.Differences in gray matter volume were represented with statistical parametric mapping.Compared with Parkinson’s disease patients without dementia,decreased gray matter volume in Parkinson’s disease dementia patients was observed in the bilateral superior temporal gyrus,bilateral posterior cingulate and left cingulate gyrus,right parahippocampal gyrus and hippocampus,right precuneus and right cuneus,left inferior frontal gyrus and left insular lobe.No increased gray matter volume was apparent.These data indicate that gray matter atrophy in the limbic system and cerebral neocortex is related to the presence of dementia.  相似文献   

18.
Wang Z  Yan C  Zhao C  Qi Z  Zhou W  Lu J  He Y  Li K 《Human brain mapping》2011,32(10):1720-1740
We used resting-state functional MRI to investigate spatial patterns of spontaneous brain activity in 22 healthy elderly subjects, as well as 16 mild cognitive impairment (MCI) and 16 Alzheimer's disease (AD) patients. The pattern of intrinsic brain activity was measured by examining the amplitude of low-frequency fluctuations (ALFF) of blood oxygen level dependent signal during rest. There were widespread ALFF differences among the three groups throughout the frontal, temporal, and parietal cortices. Both AD and MCI patients showed decreased activity mainly in the medial parietal lobe region and lentiform nucleus, while there was increased activity in the lateral temporal regions and superior frontal and parietal regions as compared with controls. Compared with MCI, the AD patients showed decreased activity in the medial prefrontal cortex and increased activity in the superior frontal gyrus and inferior and superior temporal gyri. Specifically, the most significant ALFF differences among the groups appeared in the posterior cingulate cortex, with a reduced pattern of activity when comparing healthy controls, MCI, and AD patients. Additionally, we also showed that the regions with ALFF changes had significant correlations with the cognitive performance of patients as measured by mini-mental state examination scores. Finally, while taking gray matter volume as covariates, the ALFF results were approximately consistent with those without gray matter correction, implying that the functional analysis could not be explained by regional atrophy. Together, our results demonstrate that there is a specific pattern of ALFF in AD and MCI, thus providing insights into biological mechanisms of the diseases.  相似文献   

19.
OBJECTIVE: The middle temporal gyrus and inferior temporal gyrus subserve language and semantic memory processing, visual perception, and multimodal sensory integration. Functional deficits in these cognitive processes have been well documented in patients with schizophrenia. However, there have been few in vivo structural magnetic resonance imaging (MRI) studies of the middle temporal gyrus and inferior temporal gyrus in schizophrenia. METHOD: Middle temporal gyrus and inferior temporal gyrus gray matter volumes were measured in 23 male patients diagnosed with chronic schizophrenia and 28 healthy male subjects by using high-spatial-resolution MRI. For comparison, superior temporal gyrus and fusiform gyrus gray matter volumes were also measured. Correlations between these four regions and clinical symptoms were also investigated. RESULTS: Relative to healthy subjects, the patients with chronic schizophrenia showed gray matter volume reductions in the left middle temporal gyrus (13% difference) and bilateral inferior temporal gyrus (10% difference in both hemispheres). In addition, the patients showed gray matter volume reductions in the left superior temporal gyrus (13% difference) and bilateral fusiform gyrus (10% difference in both hemispheres). More severe hallucinations were significantly correlated with smaller left hemisphere volumes in the superior temporal gyrus and middle temporal gyrus. CONCLUSIONS: These results suggest that patients with schizophrenia evince reduced gray matter volume in the left middle temporal gyrus and bilateral reductions in the inferior temporal gyrus. In conjunction with findings of left superior temporal gyrus reduction and bilateral fusiform gyrus reductions, these data suggest that schizophrenia may be characterized by left hemisphere-selective dorsal pathophysiology and bilateral ventral pathophysiology in temporal lobe gray matter.  相似文献   

20.
Neurological soft signs (NSS) - i.e. discrete deficits of sensory and motor function - are frequently found in schizophrenia and vary with psychopathological symptoms in the course of the disorder. Hence, persistence of NSS herald chronicity in first episode schizophrenia. To investigate the cerebral correlates of persisting NSS over time, 20 patients with first-episode schizophrenia underwent T1 magnetic resonance imaging (MRI) after remission of the acute symptoms and after 1 year of follow-up. NSS were rated on the Heidelberg Scale. Twenty age- and gender-matched control subjects were scanned once. Longitudinal gray matter (GM) changes were measured by using tensor based morphometry (TBM). At follow-up, patients demonstrated significantly decreased NSS scores. For further analysis, the patient sample was dichotomized into patients with decreasing NSS scores and patients with persistently increased scores, respectively. While patients with decreasing NSS exhibited only localized changes within the left frontal lobe, cerebellum, and cingulate gyrus, patients with persistently increased scores showed pronounced GM reductions of the sub-lobar claustrum, cingulate gyrus, cerebellum, frontal lobe, and middle frontal gyrus. Results were confirmed after correction for multiple comparisons. These findings support the hypothesis that persisting NSS refer to progressive cerebral changes in first-episode schizophrenia. Since NSS can be assessed in any clinical environment, this association facilitates the prospect that NSS can help to establish prognosis in first-episode patients with schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号