首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Annals of oncology》2010,21(2):255-262
BackgroundThe mechanism of resistance to human epidermal growth factor receptor 2 (HER2)-targeted agents has not been fully understood. We investigated the influence of PIK3CA mutations on sensitivity to HER2-targeted agents in naturally derived breast cancer cells.Materials and methodsWe examined the effects of Calbiochem (CL)-387,785, HER2 tyrosine kinase inhibitor, and trastuzumab on cell growth and HER2 signaling in eight breast cancer cell lines showing HER2 amplification and trastuzumab-conditioned BT474 (BT474-TR).ResultsFour cell lines with PIK3CA mutations (E545K and H1047R) were more resistant to trastuzumab than the remaining four without mutations (mean percentage of control with 10 μg/ml trastuzumab: 58% versus 92%; P = 0.010). While PIK3CA-mutant cells were more resistant to CL-387,785 than PIK3CA-wild-type cells (mean percentage of control with 1 μm CL-387,785: 21% versus 77%; P = 0.001), CL-387,785 retained activity against BT474-TR. Growth inhibition by trastuzumab and CL-387,785 was more closely correlated with changes in phosphorylation of S6K (correlation coefficient, 0.811) than those of HER2, Akt, or ERK1/2. Growth of most HER2-amplified cells was inhibited by LY294002, regardless of PIK3CA genotype.Conclusions:PIK3CA mutations are associated with resistance to HER2-targeted agents. PI3K inhibitors are potentially effective in overcoming trastuzumab resistance caused by PIK3CA mutations. S6K phosphorylation is a possibly useful pharmacodynamic marker in HER2-targeted therapy.  相似文献   

2.
The activation of the PI3K signaling pathway resulting from genetic alterations induces carcinogenesis and resistance to anticancer therapies. Breast cancer is a major malignancy that is associated with dysregulation of the PI3K signaling pathway. PIK3CA mutations and PTEN loss occur in every subtype of breast cancer. PI3K inhibitors are being evaluated in breast cancer after the success of an alpha isoform-specific PI3K inhibitor in estrogen receptor (ER)-positive/HER2-negative metastatic breast cancer. Some preclinical data indicate the potential for PI3K/mTOR targeting in combination with trastuzumab for HER2-positive breast cancer with or without expression of the estrogen receptor. However, the role of this therapy in HER2-positive breast cancer with PIK3CA mutations and/or PTEN loss remains unclear. We examined three HER2-positive, ER-negative breast cancer cell lines to determine the efficacy of a novel alpha isoform-specific PI3K inhibitor in combination with trastuzumab. The results indicated that this combination was effective in PIK3CA-mutant or PTEN-deficient breast cancer cells by inducing apoptosis and inhibiting the expression of downstream proteins. PTEN loss by siRNA modulation in parental HER2-positive cancer cells with PI3K signaling pathway alterations could not confer resistance to alpelisib or GDC-0077 plus trastuzumab. We selected the CK-MB-1 cell line without alterations in the PI3K pathway to demonstrate that PI3K inhibitors plus trastuzumab represented a biomarker-specific treatment. In vivo effects of alpelisib plus trastuzumab were tested and confirmed in a mouse model, showing the combination strategy offered the best opportunity to achieve tumor volume reduction. With known safety profiles, this cytotoxic chemotherapy-free regimen warrants further attention as a biomarker-driven strategy for treating HER2-positive breast cancer.  相似文献   

3.

Introduction

Despite multiple advances in the treatment of HER2+ breast cancers, resistance develops even to combinations of HER2 targeting agents. Inhibition of PI3K pathway signaling is critical for the efficacy of HER2 inhibitors. Activating mutations in PIK3CA can overlap with HER2 amplification and have been shown to confer resistance to HER2 inhibitors in preclinical studies.

Methods

Lapatinib-resistant cells were profiled for mutations in the PI3K pathway with the SNaPshot assay. Hotspot PIK3CA mutations were retrovirally transduced into HER2-amplified cells. The impact of PIK3CA mutations on the effect of HER2 and PI3K inhibitors was assayed by immunoblot, proliferation and apoptosis assays. Uncoupling of PI3K signaling from HER2 was investigated by ELISA for phosphoproteins in the HER2-PI3K signaling cascade. The combination of HER2 inhibitors with PI3K inhibition was studied in HER2-amplified xenograft models with wild-type or mutant PIK3CA.

Results

Here we describe the acquisition of a hotspot PIK3CA mutation in cells selected for resistance to the HER2 tyrosine kinase inhibitor lapatinib. We also show that the gain of function conferred by these PIK3CA mutations partially uncouples PI3K signaling from the HER2 receptor upstream. Drug resistance conferred by this uncoupling was overcome by blockade of PI3K with the pan-p110 inhibitor BKM120. In mice bearing HER2-amplified wild-type PIK3CA xenografts, dual HER2 targeting with trastuzumab and lapatinib resulted in tumor regression. The addition of a PI3K inhibitor further improved tumor regression and decreased tumor relapse after discontinuation of treatment. In a PIK3CA-mutant HER2+ xenograft, PI3K inhibition with BKM120 in combination with lapatinib and trastuzumab was required to achieve tumor regression.

Conclusion

These results suggest that the combination of PI3K inhibition with dual HER2 blockade is necessary to circumvent the resistance to HER2 inhibitors conferred by PIK3CA mutation and also provides benefit to HER2+ tumors with wild-type PIK3CA tumors.  相似文献   

4.

Purpose

Aberrant activation of the PI3K pathway has been implicated in resistance to HER2-targeted therapy, but results of clinical trials are confounded by the co-administration of chemotherapy. We investigated the effect of perturbations of this pathway in breast cancers from patients treated with neoadjuvant anti-HER2-targeted therapy without chemotherapy.

Patients and methods

Baseline tumor samples from patients with HER2-positive breast cancer enrolled in TBCRC006 (NCT00548184), a 12-week neoadjuvant clinical trial with lapatinib plus trastuzumab [plus endocrine therapy for estrogen receptor (ER)-positive tumors], were assessed for PTEN status by immunohistochemistry and PIK3CA mutations by sequencing. Results were correlated with pathologic complete response (pCR).

Results

Of 64 evaluable patients, PTEN immunohistochemistry and PIK3CA mutation analysis were performed for 59 and 46 patients, respectively. PTEN status (dichotomized by H-score median) was correlated with pCR (32% in high PTEN vs. 9% in low PTEN, p = 0.04). PIK3CA mutations were identified in 14/46 tumors at baseline (30%) and did not correlate with ER or PTEN status. One patient whose tumor harbored a PIK3CA mutation achieved pCR (p = 0.14). When considered together (43 cases), 1/25 cases (4%) with a PIK3CA mutation and/or low PTEN expression levels had a pCR compared to 7/18 cases (39%) with wild-type PI3KCA and high PTEN expression levels (p = 0.006).

Conclusion

PI3K pathway activation is associated with resistance to lapatinib and trastuzumab in breast cancers, without chemotherapy. Further studies are warranted to investigate how to use these biomarkers to identify upfront patients who may respond to anti-HER2 alone, without chemotherapy.
  相似文献   

5.

Background

Although trastuzumab improves the outcome of patients with human epidermal growth factor receptor 2 (HER2)-overexpressing gastric or gastroesophageal junction adenocarcinoma (collectively referred to as “gastroesophageal adenocarcinoma”; GEA), no clinical response is observed in a substantial population of patients. A predictive biomarker of trastuzumab response is required. The aim of this study was to evaluate whether the hyperactivation of the downstream phosphatidylinositol 3-kinase pathway, due to phosphatase and tensin homolog (PTEN) loss or PIK3CA mutations, could provide trastuzumab resistance in GEA.

Methods

Expression of HER2 and PTEN, and PIK3CA gene mutations were screened in 264 surgically resected GEA specimens. The effects of PTEN knockdown on the response to trastuzumab on cell viability, HER2 downstream signaling, apoptosis, and cell cycle were evaluated in HER2-overexpressing NCI-N87 gastric adenocarcinoma and OE19 esophageal adenocarcinoma cell lines. Inhibition of xenograft tumor growth by trastuzumab was investigated in OE19 cells with or without PTEN knockdown. The PTEN expression and objective response were analyzed in 23 GEA patients who received trastuzumab-based therapy.

Results

PTEN loss was identified in 34.5 % of HER2-overexpressing GEA patients, whereas PIK3CA mutations were rare (5.6 %). Trastuzumab-mediated growth suppression, apoptosis, and G1 cell cycle arrest were inhibited by PTEN knockdown through Akt activation in NCI-N87 and OE19 cells. PTEN knockdown impaired the antiproliferative effect of trastuzumab in OE19 xenograft models. A clinical response was observed in 50 % of PTEN-positive tumors (9 of 18) but in no tumors with PTEN loss (none of 5).

Conclusions

PTEN loss was frequently found in HER2-overexpressing tumors, and was associated with a poor response to trastuzumab-based therapy in patients with GEA.
  相似文献   

6.
《Annals of oncology》2015,26(7):1494-1500
BackgroundAssessment of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) might be an important tool in identifying human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients unlikely to derive benefit from anti-HER2 therapies. However, studies to date have failed to demonstrate its predictive role in any treatment setting.Patients and methodsProspectively collected baseline core biopsies from 429 early-stage HER2-positive breast cancer patients treated with trastuzumab, lapatinib, or their combination in the Neo-ALTTO study were stained using two anti-PTEN monoclonal antibodies (CST and DAKO). The association of PTEN status and PI3K pathway activation (defined as either PTEN loss and/or PIK3CA mutation) with total pathological complete response (tpCR) at surgery, event-free survival (EFS), and overall survival (OS) was evaluated.ResultsPTEN loss was observed in 27% and 29% of patients (all arms, n = 361 and n = 363) for CST and DAKO, respectively. PTEN loss was more frequently observed in hormone receptor (HR)-negative (33% and 36% with CST and DAKO, respectively) compared with HR-positive tumours (20% and 22% with CST and DAKO, respectively). No significant differences in tpCR rates were observed according to PTEN status. PI3K pathway activation was found in 47% and 48% of patients (all arms, n = 302 and n = 301) for CST and DAKO, respectively. Similarly, tpCR rates were not significantly different for those with or without PI3K pathway activation. Neither PTEN status nor PI3K pathway activation were predictive of tpCR, EFS, or OS, independently of treatment arm or HR status. High inter-antibody and inter-observer agreements were found (>90%). Modification of scoring variables significantly affected the correlation between PTEN and HR status but not with tpCR.ConclusionThese data show that PTEN status determination is not a useful biomarker to predict resistance to trastuzumab and lapatinib-based therapies. The lack of standardization of PTEN status determination may influence correlations between expression and relevant clinical end points.Clinical TrialsThis trial is registered with ClinicalTrials.gov: NCT00553358.  相似文献   

7.

Introduction

Inhibitors of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway can overcome endocrine resistance in estrogen receptor (ER) α-positive breast cancer, but companion diagnostics indicating PI3K/AKT/mTOR activation and consequently endocrine resistance are lacking. PIK3CA mutations frequently occur in ERα-positive breast cancer and result in PI3K/AKT/mTOR activation in vitro. Nevertheless, the prognostic and treatment-predictive value of these mutations in ERα-positive breast cancer is contradictive. We tested the clinical validity of PIK3CA mutations and other canonic pathway drivers to predict intrinsic resistance to adjuvant tamoxifen. In addition, we tested the association between these drivers and downstream activated proteins.

Methods

Primary tumors from 563 ERα-positive postmenopausal patients, randomized between adjuvant tamoxifen (1 to 3 years) versus observation were recollected. PIK3CA hotspot mutations in exon 9 and exon 20 were assessed with Sequenom Mass Spectometry. Immunohistochemistry was performed for human epidermal growth factor receptor 2 (HER2), phosphatase and tensin homolog (PTEN), and insulin-like growth factor 1 receptor (IGF-1R). We tested the association between these molecular alterations and downstream activated proteins (like phospho-protein kinase B (p-AKT), phospho-mammalian target of rapamycin (p-mTOR), p-ERK1/2, and p-p70S6K). Recurrence-free interval improvement with tamoxifen versus control was assessed according to the presence or absence of canonic pathway drivers, by using Cox proportional hazard models, including a test for interaction.

Results

PIK3CA mutations (both exon 9 and exon 20) were associated with low tumor grade. An enrichment of PIK3CA exon 20 mutations was observed in progesterone receptor- positive tumors. PIK3CA exon 20 mutations were not associated with downstream-activated proteins. No significant interaction between PIK3CA mutations or any of the other canonic pathway drivers and tamoxifen-treatment benefit was found.

Conclusion

PIK3CA mutations do not have clinical validity to predict intrinsic resistance to adjuvant tamoxifen and may therefore be unsuitable as companion diagnostic for PI3K/AKT/mTOR inhibitors in ERα- positive, postmenopausal, early breast cancer patients.  相似文献   

8.
《Annals of oncology》2019,30(6):927-933
BackgroundHER2-positive (+) breast cancers, defined by HER2 overexpression and/or amplification, are often addicted to HER2 to maintain their malignant phenotype. Yet, some HER2+ tumors do not benefit from anti-HER2 therapy. We hypothesize that HER2 amplification levels and PI3K pathway activation are key determinants of response to HER2-targeted treatments without chemotherapy.Patients and methodsBaseline HER2+ tumors from patients treated with neoadjuvant lapatinib plus trastuzumab [with endocrine therapy for estrogen receptor (ER)+ tumors] in TBCRC006 (NCT00548184) were evaluated in a central laboratory for HER2 amplification by fluorescence in situ hybridization (FISH) (n = 56). HER2 copy number (CN) and FISH ratios, and PI3K pathway status, defined by PIK3CA mutations or PTEN levels by immunohistochemistry were available for 41 tumors. Results were correlated with pathologic complete response (pCR; no residual invasive tumor in breast).ResultsThirteen of the 56 patients (23%) achieved pCR. None of the 11 patients with HER2 ratio <4 and/or CN <10 achieved pCR, whereas 13/45 patients (29%) with HER2 ratio ≥4 and/or CN ≥10 attained pCR (P = 0.0513). Of the 18 patients with tumors expressing high PTEN or wild-type (WT) PIK3CA (intact PI3K pathway), 7 (39%) achieved pCR, compared with 1/23 (4%) with PI3K pathway alterations (P = 0.0133). Seven of the 16 patients (44%) with HER2 ratio ≥4 and intact PI3K pathway achieved pCR, whereas only 1/25 (4%) patients not meeting these criteria achieved pCR (P = 0.0031).ConclusionsOur findings suggest that there is a clinical subtype in breast cancer with high HER2 amplification and intact PI3K pathway that is especially sensitive to HER2-targeted therapies without chemotherapy. A combination of HER2 FISH ratio and PI3K pathway status warrants validation to identify patients who may be treated with HER2-targeted therapy without chemotherapy.  相似文献   

9.

Background.

The CHER-LOB randomized phase II study showed that the combination of lapatinib and trastuzumab plus chemotherapy increases the pathologic complete remission (pCR) rate compared with chemotherapy plus either trastuzumab or lapatinib. A biomarker program was prospectively planned to identify potential predictors of sensitivity to different treatments and to evaluate treatment effect on tumor biomarkers.

Materials and Methods.

Overall, 121 breast cancer patients positive for human epidermal growth factor 2 (HER2) were randomly assigned to neoadjuvant chemotherapy plus trastuzumab, lapatinib, or both trastuzumab and lapatinib. Pre- and post-treatment samples were centrally evaluated for HER2, p95-HER2, phosphorylated AKT (pAKT), phosphatase and tensin homolog, Ki67, apoptosis, and PIK3CA mutations. Fresh-frozen tissue samples were collected for genomic analyses.

Results.

A mutation in PIK3CA exon 20 or 9 was documented in 20% of cases. Overall, the pCR rates were similar in PIK3CA wild-type and PIK3CA-mutated patients (33.3% vs. 22.7%; p = .323). For patients receiving trastuzumab plus lapatinib, the probability of pCR was higher in PIK3CA wild-type tumors (48.4% vs. 12.5%; p = .06). Ki67, pAKT, and apoptosis measured on the residual disease were significantly reduced from baseline. The degree of Ki67 inhibition was significantly higher in patients receiving the dual anti-HER2 blockade. The integrated analysis of gene expression and copy number data demonstrated that a 50-gene signature specifically predicted the lapatinib-induced pCR.

Conclusion.

PIK3CA mutations seem to identify patients who are less likely to benefit from dual anti-HER2 inhibition. p95-HER2 and markers of phosphoinositide 3-kinase pathway deregulation are not confirmed as markers of different sensitivity to trastuzumab or lapatinib.

Implications for Practice:

HER2 is currently the only validated marker to select breast cancer patients for anti-HER2 treatment; however, it is becoming evident that HER2-positive breast cancer is a heterogeneous disease. In addition, more and more new anti-HER2 treatments are becoming available. There is a need to identify markers of sensitivity to different treatments to move in the direction of treatment personalization. This study identified PIK3CA mutations as a potential predictive marker of resistance to dual anti-HER2 treatment that should be further studied in breast cancer.  相似文献   

10.
《Clinical breast cancer》2020,20(4):e439-e449
The phosphatidylinositol-3-kinase (PI3K) pathway is frequently dysregulated in human breast cancer. Approximately 30% of all patients with breast cancer will carry mutations of the PIK3CA gene, which encodes the PI3K catalytic subunit isoform p110α. Mutations in PIK3CA have been associated with resistance to endocrine therapy, HER2-directed therapy, and cytotoxic therapy. Early trials of pan-PI3K inhibitors showed little treatment benefit as monotherapy owing to disease resistance arising through enhanced estrogen receptor pathway signaling. Combining PI3K inhibition with endocrine therapy can help overcome resistance. Clinical trials of pan-PI3K inhibitors combined with endocrine therapy demonstrated modest clinical benefits but challenging toxicity profiles, facilitating the development of more selective PI3K-targeting agents. More recent trials of isoform-specific PI3K inhibitors in patients with PIK3CA mutations have shown promising clinical efficacy with a predictable, manageable safety profile. In the present review, we discuss the clinical relevance of mutations of PIK3CA and their potential use as a biomarker to guide treatment choices in patients with HR+ HER2 advanced breast cancer.  相似文献   

11.
《Annals of oncology》2016,27(8):1519-1525
BackgroundThe predictive value of PIK3CA mutations in HER2 positive (HER2+) breast cancer treated with neoadjuvant anti-HER2 and chemotherapy has been reported, but the power for subgroup analyses was lacking.Patients and methodsWe combined individual patient data from five clinical trials evaluating PIK3CA mutations and associations with pathological complete response (pCR), disease-free survival (DFS) and overall survival (OS). Patients received either trastuzumab (T), lapatinib (L) or the combination T/L in addition to a taxane-based chemotherapy. PIK3CA was genotyped in tumour biopsies taken before therapy.ResultsA total of 967 patients were included in this analysis; the median follow-up is 47 months. Overall, the pCR rate was significantly lower in the PIK3CA mutant compared with the wild-type group (16.2% versus 29.6%; P < 0.001). Within the hormone-receptor positive (HR+) subgroup, the PIK3CA mutant group had a pCR rate of only 7.6% compared with 24.2% in the wild-type group (P < 0.001). In contrast, in the HER2+/HR– group, there was no difference in pCR (27.2% versus 36.4%; P = 0.125) according to PIK3CA mutation status (interaction test P = 0.036). According to treatment arm, the pCR rate for mutant versus wild-type was 20.3% versus 27.1% for T (P = 0.343), 11.3% versus 16.9% for L (P = 0.369) and 16.7% versus 39.1% for T/L (P < 0.001). In the HR+ T/L group, the pCR rate was 5.5% versus 33.9% (interaction between HR and PIK3CA genotype P = 0.008). DFS and OS were not significantly different by mutation status, though the incidence rate of events was low. However, HR+/PIK3CA mutant patients seemed to have significantly worse DFS {hazard ratio (HR) 1.56 [95% confidence interval (CI) 1.00–2.45], P = 0.050; Pinteraction = 0.021}. T/L tended to improve DFS compared with T in the wild-type cohort, especially in the HR– group [HR 0.72, 95% CI (0.41–1.25), P = 0.242].ConclusionOverall PIK3CA mutant/HER2+ tumours had significantly lower pCR rates compared with wild-type tumours, however mainly confined to the HR+/PIK3CA mutant population. No definite conclusions can be drawn regarding survival.  相似文献   

12.

Background:

Trastuzumab resistance hampers its well-known efficacy to control HER2-positive breast cancer. The involvement of PI3K/Akt pathway in this mechanism is still not definitively confirmed.

Methods:

We selected 155 patients treated with trastuzumab after development of metastasis or as adjuvant/neoadjuvant therapy. We performed immunohistochemistry for HER2, ER/PR, epidermal growth factor 1-receptor (EGFR), α-insulin-like growth factor 1-receptor (IGF1R), phosphatase and tensin homologue (PTEN), p110α, pAkt, pBad, pmTOR, pMAPK, MUC1, Ki67, p53 and p27; mutational analysis of PIK3CA and PTEN, and PTEN promoter hypermethylation.

Results:

We found 46% ER/PR-positive tumours, overexpression of EGFR (15%), α-IGF1R (25%), p110α (19%), pAkt (28%), pBad (22%), pmTOR (23%), pMAPK (24%), MUC1 (80%), PTEN loss (20%), and PTEN promoter hypermethylation (20%). PIK3CA and PTEN mutations were detected in 17% and 26% tumours, respectively. Patients receiving adjuvant trastuzumab with α-IGF1R or pBad overexpressing tumours presented shorter progression-free survival (PFS) (all P⩽0.043). Also, p110α and mTOR overexpression, liver and brain relapses implied poor overall survival (OS) (all P⩽0.041). In patients with metastatic disease, decreased PFS correlated with p110α expression (P=0.024), whereas for OS were the presence of vascular invasion and EGFR expression (P⩽0.019; Cox analysis).

Conclusion:

Our results support that trastuzumab resistance mechanisms are related with deregulation of PTEN/PI3K/Akt/mTOR pathway, and/or EGFR and IGF1R overexpression in a subset of HER2-positive breast carcinomas.  相似文献   

13.
Background Eribulin is a microtubule-targeting agent approved for the treatment of advanced or metastatic breast cancer (BC) previously treated with anthracycline- and taxane-based regimens. PIK3CA mutation is associated with worse response to chemotherapy in oestrogen receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2−) metastatic BC. We aimed to evaluate the role of phosphoinositide 3-kinase (PI3K)/AKT pathway mutations in eribulin resistance.Methods Resistance to eribulin was evaluated in HER2− BC cell lines and patient-derived tumour xenografts, and correlated with a mutation in the PI3K/AKT pathway.Results Eleven out of 23 HER2− BC xenografts treated with eribulin exhibited disease progression. No correlation with ER status was detected. Among the resistant models, 64% carried mutations in PIK3CA, PIK3R1 or AKT1, but only 17% among the sensitive xenografts (P = 0.036). We observed that eribulin treatment induced AKT phosphorylation in vitro and in patient tumours. In agreement, the addition of PI3K inhibitors reversed primary and acquired resistance to eribulin in xenograft models, regardless of the genetic alterations in PI3K/AKT pathway or ER status. Mechanistically, PI3K blockade reduced p21 levels likely enabling apoptosis, thus sensitising to eribulin treatment.Conclusions PI3K pathway activation induces primary resistance or early adaptation to eribulin, supporting the combination of PI3K inhibitors and eribulin for the treatment of HER2− BC patients.Subject terms: Breast cancer, Tumour biomarkers, Predictive markers, Cancer therapeutic resistance  相似文献   

14.
HER2 signaling network and its complex relationship with the PI3K-AKT-mTOR pathway explain the acquired resistance to anti-HER2 therapy observed in clinics. Such complexity has been clinically evident from the limited efficacy of data in the BOLERO-1 and BOLERO-3 trials, which tested combinations of trastuzumab (T), everolimus, and chemotherapy in women with HER2+ advanced BC. In the following MARIANNE trial also, a combination of T-DM1 plus pertuzumab delivered a non-inferior but yet not superior PFS compared to trastuzumab plus a taxane. Algorithmic inhibition of PI3K/mTOR along with T or T-DM1 is, therefore, an attractive drug combination, and we tested the combination(s) in HER2+ BC, especially in T-resistant and PIK3CA mutated conditions. GDC-0980, a dual pan-PI3K/mTOR inhibitor alone or in combination with T or T-DM1, was examined in a panel of HER2+ T-sensitive (BT474, SKBR3), HER2+ T-resistant (BT474HerR), HER2+/PIK3CA mutant (HCC1954, MDA-MB453), and HER2+/PTEN mutant (HCC1569) BC cell lines. GDC-0980 re-sensitized trastuzumab-resistant, PIK3CA mutant, or PTEN mutant cells to T and acted additively with T. Importantly, this activity was more when GDC-0980 is combined with T-DM1. The combination (with T or with T-DM1) was then tested in the HER2+/T-sensitive, HER2+/T-resistant, and HER2+/PIK3CA mutated BC xenograft models for the anti-tumor effect. Along with its anti-tumor effect, GDC-0980 effectively decreased tumor angiogenesis (CD31 staining). Maximum anti-tumor (from tumor growth inhibition to tumor regression) efficiency was observed in all three xenograft models when T-DM1 was combined with GDC-0980. The anti-proliferative effects of GDC-0980 as evidenced by a decreased p-AKT (Ser473, The308), p-P70S6K, p-S6RP, and p-4EBP1, along with blockade of clonogenic 3D growth was accompanied by the initiation of apoptotic activity (annexin V, CASPASE3, cleaved PARP1 and mitochondrial depolarization); and was significantly superior when GDC-0980 combined with T-DM1. Interestingly, both trastuzumab and T-DM1 induce PD-L1 expression in HER2 amplified BC cells. Our data provide evidence that an oncogenic mutation of PIK3CA and HER2-amplification may represent biomarkers to identify patients who may benefit most from the use of GDC-0980 and an opportunity to include immunotherapy in the combination of anti-HER2 therapy.  相似文献   

15.
The EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance and metastasis. The expression of this pathway is frequently altered in breast cancer due to mutations at or aberrant expression of: HER2, ERalpha, BRCA1, BRCA2, EGFR1, PIK3CA, PTEN, TP53, RB as well as other oncogenes and tumor suppressor genes. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway and upstream HER2 has been associated with breast cancer initiating cells (CICs) and in some cases resistance to treatment. The anti-diabetes drug metformin can suppress the growth of breast CICs and herceptin-resistant HER2+ cells. This review will discuss the importance of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway primarily in breast cancer but will also include relevant examples from other cancer types. The targeting of this pathway will be discussed as well as clinical trials with novel small molecule inhibitors. The targeting of the hormone receptor, HER2 and EGFR1 in breast cancer will be reviewed in association with suppression of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway.  相似文献   

16.

Objectives:

We evaluated the role of PIK3CA-mutations as mechanism of resistance to trastuzumab in primary HER2/neu-amplified uterine-serous-carcinoma (USC) cell lines.

Methods:

Fifteen whole-exome-sequenced USC cell lines were tested for HER2/neu-amplification and PIK3CA-mutations. Four HER2/neu-amplified USC (2-harbouring wild-type-PIK3CA-genes and 2-harbouring oncogenic-PIK3CA-mutations) were evaluated in in vitro dose-titration-proliferation-assays, cell-viability and HER2 and S6-protein-phosphorylation after exposure to trastuzumab. USC harbouring wild-type-PIK3CA were transfected with plasmids encoding oncogenic PIK3CA-mutations (i.e., H1047R/R93Q) and exposed to trastuzumab. Finally, trastuzumab efficacy was tested by using two USC xenograft mouse models.

Results:

Seven out of fifteen (46%) of the USC cell lines were HER2/neu-amplified by fluorescence in situ hybridisation. Within these tumours four out of seven (57%) were found to harbour oncogenic PIK3CA-mutations vs two out of eight (25%) of the HER2/neu not amplified cell lines (P=0.01). HER2/neu-amplified/PIK3CA-mutated USC were highly resistant to trastuzumab when compared with HER2/neu-amplified/wild-type-PIK3CA cell lines (P=0.02). HER2/neu-amplified/PIK3CA wild-type cell lines transfected with oncogenic PIK3CA-mutations increased their resistance to trastuzumab (P<0.0001). Trastuzumab was effective in reducing tumour growth (P=0.001) and improved survival (P=0.0001) in mouse xenografts harbouring HER2-amplified/PIK3CA wild-type USC but not in HER2-amplified/PIK3CA-mutated tumours.

Conclusions:

Oncogenic PIK3CA mutations are common in HER2/neu-amplified USC and may constitute a major mechanism of resistance to trastuzumab treatment.  相似文献   

17.
Inhibition of the phosphatidylinositol‐3‐kinase (PI3K) signaling pathway is a cancer treatment strategy that has entered into clinical trials. We performed a meta‐analysis on the frequency of prominent genetic (PIK3CA mutation, PIK3CA amplification and PTEN deletion) and protein expression (high PI3K, PTEN loss and high pAkt) aberrations in the PI3K pathway in gastric cancer (GC) and colorectal cancer (CRC). We also performed laboratory analysis to investigate the co‐occurrence of these aberrations. The meta‐analysis indicated that East Asian and Caucasian GC patients differ significantly for the frequencies of PIK3CA Exon 9 and 20 mutations (7% vs. 15%, respectively), PTEN deletion (21% vs. 4%) and PTEN loss (47% vs. 78%), while CRC patients differed for PTEN loss (57% vs. 26%). High study heterogeneity (I2 > 80) was observed for all aberrations except PIK3CA mutations. Laboratory analysis of tumors from East Asian patients revealed significant differences between GC (n = 79) and CRC (n = 116) for the frequencies of PIK3CA amplification (46% vs. 4%) and PTEN loss (54% vs. 78%). The incidence of GC cases with 0, 1, 2 and 3 concurrent aberrations was 14%, 52%, 27% and 8%, respectively, while for CRC it was 10%, 60%, 25% and 4%, respectively. Our study consolidates knowledge on the frequency, co‐occurrence and clinical relevance of PI3K pathway aberrations in GC and CRC. Up to 86% of GC and 90% of CRC have at least one aberration in the PI3K pathway, and there are significant differences in the frequencies of these aberrations according to cancer type and ethnicity.  相似文献   

18.
PIK3CA mutations are frequently diagnosed in diverse cancers and may predict response to PI3K/AKT/mTOR inhibitors. It remains unclear whether they are associated with other characteristics. We analyzed characteristics and outcome of 90 consecutive patients with diverse advanced tumors and PIK3CA mutations and 180 wild-type PIK3CA controls matched by tumor type, gender, and age referred to the Clinical Center for Targeted Therapy. PIK3CA and MAPK mutations (KRAS, NRAS, and BRAF) were analyzed using polymerase chain reaction-based DNA sequencing. The most frequent PIK3CA mutations were E545K (31/90, 34%), E542K (16/90, 18%) in exon 9, and H1047R (20/90, 22%) in exon 20. PIK3CA mutations compared to wild-type PIK3CA were associated with simultaneous KRAS (p=0.047) and MAPK mutations (p=0.03), but only MAPK mutations were confirmed as having an independent association in multivariate analysis. Rates of lung, bone, liver and brain metastases were similar in PIK3CA-mutant and wild-type patients. Patients with PIK3CA mutations treated on trials with PI3K/AKT/mTOR inhibitors had a higher partial/complete response (PR/CR) rate than wild-type PIK3CA patients treated with their best phase I therapy (10/56, 18% vs. 12/152, 8%; p=0.045), but not a prolonged progression-free survival. Patients with H1047R PIK3CA mutations had a higher PR/CR rate with PI3K/AKT/mTOR inhibitors compared to wild-type PIK3CA patients treated with their best phase I therapy (6/16, 38% vs. 12/152, 8%; p=0.003). In conclusion, PIK3CA mutations in diverse cancers were not associated with clinical characteristics, but were correlated with MAPK mutations. PIK3CA mutations, especially, H1047R, were associated with attaining a PR/CR to PI3K/AKT/mTOR pathway inhibitors.  相似文献   

19.
《Annals of oncology》2016,27(11):2059-2066
BackgroundApproximately 40% of hormone receptor-positive, HER2-negative breast cancers (BCs) are associated with activating mutations of the phosphatidylinositol 3-kinase (PI3K) pathway. Pictilisib, a potent and highly specific class I pan-PI3K inhibitor, demonstrated preclinical activity in BC cell lines and may potentiate the effect of taxanes, benefiting patients with or without aberrant activation of the PI3K pathway. PEGGY (NCT01740336), a randomised, placebo-controlled phase II trial, examined whether pictilisib augments the anti-tumour activity of paclitaxel in patients with hormone receptor-positive, HER2-negative locally recurrent or metastatic BC (mBC). We report results from the protocol-specified interim analysis.Patients and methodsOne hundred and eighty-three eligible patients were randomised (1:1) to receive paclitaxel (90 mg/m2 weekly for 3 weeks in every 28-day cycle) with either 260 mg pictilisib or placebo (daily on days 1–5 every week). The primary end point was progression-free survival (PFS) in the intention-to-treat (ITT) population and patients with PIK3CA-mutated tumours. Secondary end points included overall response rate (ORR), duration of response, and safety.ResultsIn the ITT population, the median PFS was 8.2 months with pictilisib (n = 91) versus 7.8 months with placebo (n = 92) [hazard ratio (HR) for progression or death, 0.95; 95% confidence interval (CI) 0.62–1.46; P = 0.83]. In patients with PIK3CA-mutated tumours, the median PFS was 7.3 months for pictilisib (n = 32) versus 5.8 months with placebo (n = 30) (HR, 1.06; 95% CI 0.52–2.12; P = 0.88). ORR was similar between treatment arms. The safety profile of pictilisib was consistent with previous reports, with no new safety signals. Proportions of patients with grade ≥3 adverse events (AEs), serious AEs, and dose reductions/discontinuations due to AEs were higher with pictilisib.ConclusionsPEGGY did not meet its primary end point, revealing no significant benefit from adding pictilisib to paclitaxel for patients with hormone receptor-positive, HER2-negative locally recurrent or mBC.Clinical trial numberNCT01740336.  相似文献   

20.
《Annals of oncology》2015,26(7):1333-1340
BackgroundAdjuvant trastuzumab in combination with chemotherapy improves survival of women with HER2-positive early breast cancer. In this study, we compared 12 versus 6 months of adjuvant trastuzumab.Patients and methodsAxillary node-positive or high-risk node-negative women with HER2-positive early breast cancer were randomized to receive 12 or 6 months of adjuvant trastuzumab concurrently with dose-dense, granulocyte colony-stimulating factor (G-CSF)-supported docetaxel (75 mg/m2 every 14 days for four cycles). All patients received upfront dose-dense, G-CSF-supported FEC (5-fluorouracil 700 mg/m2, epirubicin 75 mg/m2, cyclophosphamide 700 mg/m2 every 14 days for four cycles). Randomization was carried out before commence of chemotherapy. The primary end point was the 3-year disease-free survival (DFS).ResultsA total of 481 patients were randomized to receive 12 months (n = 241) or 6 months (n = 240) of adjuvant trastuzumab. Chemotherapy was completed in 99% and 98% of patients, while trastuzumab therapy in 100% and 96% of patients in the 12- and 6-month groups, respectively. After 47 and 51 months of median follow-up, there were 17 (7.1%) and 28 (11.7%) disease relapses in the 12- and 6-month groups (P = 0.08). The 3-year DFS was 95.7% versus 93.3% in favor of the 12-month treatment group (hazard ratio = 1.57; 95% confidence interval 0.86–2.10; P = 0.137). There was no difference in terms of overall survival and cardiac toxicity between the two groups.ConclusionsOur study failed to show noninferiority for the 6-month arm. The results further support the current standard of care that is administration of adjuvant trastuzumab for 12 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号