首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Major histocompatibility complex class II (MHC II) and canine distemper virus (CDV) antigen expression were compared by immunohistochemistry in the cerebellar white matter of ten dogs with naturally occurring canine distemper encephalitis. In addition, infiltrating mononuclear cells were characterized by employing poly- and monoclonal antibodies directed against human CD3, canine MHC II, CD5, B cell antigen and CDV-specific nucleoprotein. Positive antigen-antibody reaction was visualized by the avidin-biotin-peroxidase complex method on frozen sections. Histologically, neuropathological changes were categorized into acute, subacute, and chronic. In control brains, MHC II expression was weak and predominantly detected on resident microglia of the white matter and on endothelial, perivascular and intravascular cells. In CDV antigen-positive brains, MHC II was mainly found on microglia and to a lesser extent on endothelial, meningeal, choroid plexus epithelial, ependymal and intravascular cells. In addition, virtually all of the perivascular cells expressed MHC II antigen. CDV antigen was demonstrated most frequently in astrocytes. Of the perivascular lymphocytes, the majority were CD3-positive cells, followed by B cells. Only a small proportion of perivascular cells expressed the CD5 antigen. In addition, B cells and CD3 and CD5 antigen-positive cells were found occasionally in subacute and frequently in chronic demyelinating plaques. In acute encephalitis, CDV antigen exhibited a multifocal or diffuse distribution, and MHC II was moderately up-regulated throughout the white matter and accentuated in CDV antigen-positive plaques. In subacute encephalitis, moderate multifocal CDV antigen and moderate to strong diffuse MHC II-specific staining, especially prominent in CDV antigen-positive lesions, were observed. In chronic encephalitis, CDV antigen expression was restricted to single astrocytes at the edge of the lesions or was absent, while MHC II expression, especially prominent on microglia, was strongly up-regulated throughout the white matter, most pronounced in demyelinated plaques. In summary, in acute and subacute lesions without perivascular cuffs, MHC II expression correlated with the presence of CDV antigen. In contrast, in chronic lesions, MHC II expression on microglial cells was the most prominent despite a few CDV antigen-positive astrocytes, indicating that nonviral antigens may play an important role as triggering molecules for the process of demyelination. Received: 13 September 1995 / Revised: 26 February 1996 / Accepted: 1 April 1996  相似文献   

2.
Astrocytes in multiple sclerosis lack beta-2 adrenergic receptors   总被引:3,自引:0,他引:3  
BACKGROUND: In MS, T cells reactive to myelin proteins can cross the blood-brain barrier and release proinflammatory cytokines, such as interferon gamma. These can induce glial cells to express class II major histocompatibility complex (MHC) molecules, which are required to present myelin antigens to the T cells in order to mount a proper autoimmune response. Both microglia and astrocytes can function as antigen-presenting cells. In contrast to microglia, endogenous suppressors, including norepinephrine, regulate astrocytic class II MHC expression. The effects of norepinephrine are mediated through activation of P2 adrenergic receptors. OBJECTIVE: To investigate P, adrenergic receptors in astrocytes in MS. METHODS: Immunocytochemical techniques were applied in postmortem brain tissue from 10 patients with MS, three patients with a cerebral infarction, and six controls, and in spinal cord from three patients with ALS. RESULTS: beta2 adrenergic receptors were visualized on astrocytes in white matter of controls, and they were prominently expressed in reactive astrocytes at the boundary of cerebral infarctions and in the lateral corticospinal tract in ALS. In MS, beta2 adrenergic receptors could neither be visualized on astrocytes in normal-appearing white matter nor in reactive astrocytes in chronic active and inactive plaques, whereas they were normally present on neurons. MHC class II-positive astrocytes were only visualized in chronic active plaques. CONCLUSIONS: Because astrocytic beta2 adrenergic receptors are involved in suppressing inducibility of MHC class II molecules, we suggest that their lack of expression may play an important role in the induction or perpetuation of autoimmune reactions in MS.  相似文献   

3.
To determine if central nervous system (CNS) microvessel endothelial cells express class II major histocompatibility complex (MHC) molecules in early demyelinating lesions in humans, cerebral white matter (WM) biopsies from patients with acute inflammatory/demyelinating conditions, including 4 with multiple sclerosis (MS), were immunostained for class II MHC and other antigens. Eight of 9 biopsies showed focal MHC class II-positive endothelial cells; there were none in the CNS of 1 of the MS patients at autopsy. There were more vessels with class II-positive endothelial cells in areas with intact WM and gliosis than in areas with active demyelination or control WM; class II-positive endothelial cells in small venules and capillaries were adjacent to transmigrating and perivascular CD4-positive cells. By immunoelectron microscopy, class II molecules were localized to vesicles in endothelial cell cytoplasm, suggesting the potential for antigen processing. Perivascular cells, parenchymal microglia, mononuclear cells and the perinuclear cytoplasm but not the processes of astrocytes were also class II-positive. These data indicate that in acute CNS inflammatory/demyelinating lesions, endothelial cells focally and apparently transiently express class II MHC molecules. This expression implies potential antigen-specific interactions, immunoregulatory or signalling functions in endothelial cells, or it may render them susceptible to CD4-positive cell-mediated cytotoxicity. Thus, class II-positive endothelial cells may have pivotal immunologic roles in initial stages of T cell responses in human CNS WM, particularly in acute MS lesions.  相似文献   

4.
Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system that causes motor, sensory, and cognitive deficits. The present study characterized demyelinated lesions in the cerebral cortex of MS patients. One hundred twelve cortical lesions were identified in 110 tissue blocks from 50 MS patients. Three patterns of cortical demyelination were identified: Type I lesions were contiguous with subcortical white matter lesions; Type II lesions were small, confined to the cortex, and often perivascular; Type III lesions extended from the pial surface to cortical layer 3 or 4. Inflammation and neuronal pathology were studied in tissue from 8 and 7 patients, respectively. Compared to white matter lesions, cortical lesions contained 13 times fewer CD3-positive lymphocytes (195 vs 2,596/mm3 of tissue) and 6 times fewer CD68-positive microglia/macrophages (11,948 vs 67,956/mm3 of tissue). Transected neurites (both axons and dendrites) occurred at a density of 4,119/mm3 in active cortical lesions, 1,107/mm3 in chronic active cortical lesions, 25/mm3 in chronic inactive cortical lesions, 8/mm3 in myelinated MS cortex, and 1/mm3 in control cortex. In active and chronic active cortical lesions, activated microglia closely apposed and ensheathed apical dendrites, neurites, and neuronal perikarya. In addition, apoptotic neurons were increased significantly in demyelinated cortex compared to myelinated cortex. These data support the hypothesis that demyelination, axonal transection, dendritic transection, and apoptotic loss of neurons in the cerebral cortex contribute to neurological dysfunction in MS patients.  相似文献   

5.
Destruction of myelin and oligodendrocytes leading to the formation of large demyelinated plaques is the hallmark of multiple sclerosis (MS) pathology. In a subset of MS patients termed pattern III, actively demyelinating lesions show preferential loss of myelin-associated glycoprotein (MAG) and apoptotic-like oligodendrocyte destruction, whereas other myelin proteins remain well preserved. MAG is located in the most distal periaxonal oligodendrocyte processes and primary "dying back" oligodendrogliopathy may be the initial step of myelin degeneration in pattern III lesions. In the present study, various human white matter pathologies, including acute and chronic white matter stroke, virus encephalitis, metabolic encephalopathy, and MS were studied. In addition to a subset of MS cases, a similar pattern of demyelination was found in some cases of virus encephalitis as well as in all lesions of acute white matter stroke. Brain white matter lesions presenting with MAG loss and apoptotic-like oligodendrocyte destruction, irrespective of their primary disease cause, revealed a prominent nuclear expression of hypoxia inducible factor-1alpha in various cell types, including oligodendrocytes. Our data suggest that a hypoxia-like tissue injury may play a pathogenetic role in a subset of inflammatory demyelinating brain lesions.  相似文献   

6.
7.
As there is evidence that in multiple sclerosis T-cell activation occurs in the central nervous system rather than outside, the inflammatory lesion may be extended through antigen presentation by cells at the edge of the plaque. In this study we present an immunocytochemical report on CNS tissue from an active case of MS, with an analysis of the distribution of CD4 and CD8 binding T cells and the expression of class I and II MHC determinants in plaques and white matter. Perivascular cuffs of early lesions, as judged by hypercellularity and minimal demyelination, contained activated T (Tac+) cells, which reacted with an anti-IL-2 monoclonal antibody. Thus sufficient T-cell growth factor would appear to be present to fuel the immune reaction in a growing lesion. The preponderance of T cells of the cytotoxic/suppressor (CD8) phenotype in the CNS parenchyma was found in conjunction with widespread staining of class I MHC antigen, a prerequisite for activity of cytotoxic T cells. Potential antigen presenting cells were demonstrated in MS plaques with a monoclonal antibody against the cytoplasmic, invariant chain of class II MHC. Macrophages and astrocytes, contributed to the staining in the hypercellular plaque border while the distribution of class II+ microglia in white matter suggest they may also be of importance in local antigen presentation.  相似文献   

8.
CD44 antigen (CD44), the principle cell surface receptor for hyaluronate, is up-regulated in the human demyelinating disease multiple sclerosis on fibrous astrocytes. As astrocytes are the main target cell of canine distemper virus (CDV), the consequences of a CDV infection on the CD44 expression and distribution in brains with spontaneous demyelinating canine distemper encephalitis (CDE) were of interest. Thirteen acute, 35 subacute, and 11 chronic plaques of nine dogs with immunohistologically confirmed CDE and brains of control dogs were included in the study. For light microscopy, 5-μm-thick serial sections were stained with H & E and incubated with monoclonal antibodies (mAbs) against CD44 and canine distemper virus nucleoprotein and polyclonal antibodies (pAbs) against glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP). For immunoelectron microscopy, 90-nm-thick sections were double stained with anti-GFAP and anti-CD44 mAbs to specify CD44-expressing structures. In controls, CD44 was diffusely distributed in the white matter and single meningeal cells exhibited a marginal expression of the antigen. In acute and more prominently in subacute demyelinating encephalitis, there was a plaque-associated up-regulation of CD44 which paralleled GFAP. In chronic demyelinating lesions, a reduction of CD44 associated with a loss of GFAP-positive astrocytes was noted. Additionally, in chronic plaques, CD44 was expressed on the cell membrane of perivascular mononuclear cells. Immunoelectron microscopically, in controls, CD44 was rarely demonstrated on astrocytic cell processes. In contrast, in brains with CDE CD44 was found on the cell membrane of broadened astrocytic cell processes. In summary, CD44 is up-regulated on astrocytes in the early phase of CDE and seems to represent a marker for the activation of immune cells in the late phase of the infection. Received: 4 March 1999 / Revised: 9 June 1999 / Accepted: 28 June 1999  相似文献   

9.
Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the Central Nervous System which is characterized by multifocal demyelinated lesions dispersed throughout the brain. Although white matter lesions have been the most extensively studied, cortical demyelinaton lesions are also detected in MS brains. Cuprizone (CPZ)-induced demyelination in rodents has been widely used as a model for MS. Most of these studies focus on oligodendrocyte-rich structures, such as the corpus callosum (CC) and the cerebellar peduncles. However, it has been recently described that CPZ administration in mice also produces cortical demyelination, resembling some of the lesions found in MS patients. In this work we used CPZ-demyelinating model in Wistar rats to study demyelination in cortical forebrain areas. At the ultrastructural level, demyelination in the cortex was observed before detectable myelin loss in the subcortical white matter. During the course of CPZ intoxication Myelin Basic Protein immunodetection was decreased in cortical layers I-III due to a reduction in the number of cortical oligodendrocytes (OL). Oligodendroglial loss in CPZ-intoxicated rats correlated with an increase in the number of Glial Fibrillary Acidic Protein positive astrocytes and a shift in the location of Carbonic Anhydrase II from OL to astrocytes. After removal of CPZ from the diet, we evaluate intranasal Thyroid hormone (TH) effects on the progression of cortical lesions. As previously reported in the CC, TH treatment also accelerates remyelination rate in the cortex compared to rats undergoing spontaneous remyelination. Our results suggest that manipulation of TH levels could be considered as a strategy to promote remyelination process in the cortex and to prevent neuronal irreversible damage in patients suffering from MS.  相似文献   

10.
It is known that the pleiotropic cytokine transforming growth factor beta (TGF-beta) has a regulatory role in the process of tissue repair and remodelling following injury. As reports on these molecules in multiple sclerosis (MS) lesion with different lesional activity are rare, we studied the cellular localization of TGF-beta1, -beta2, and -beta3 isoforms, and TGF-beta receptor type I (TGF-betaR-I) and TGF-betaR-II expression by immunohistochemistry on postmortem brain tissue from MS and normal control cases. To validate the TGF-beta staining results we demonstrated that cultured human adult astrocytes that produce biological active TGF-beta2, and to a lesser extent TGF-beta1, were immunoreactive for all 3 TGF-beta isoforms. Moreover, at mRNA level TGF-beta1 was detected in MS and normal control brain tissue. In normal control brain tissue, TGF-beta isoforms were expressed in ramified microglia and TGF-beta2, and -beta3 on neuronal cells in the gray matter TGF-betaR-I and TGF-betaR-II expression was found on endothelial cells, astrocytes, microglia, and neurons. In active demyelinating MS lesions a strong to intense immunoreactivity was detected for all 3 TGF-beta isoforms in perivascular and parenchymal (foamy) macrophages and in hypertrophic astrocytes. Strong immunoreactivity for TGF-betaR-I and TGF-betaR-II was found on macrophages in both parenchymal and perivascular areas and on hypertrophic astrocytes and endothelial cells in active demyelinating MS lesions. In chronic active and inactive MS lesions, all 3 TGF-beta isoforms and their receptors were strongly expressed in hypertrophic astrocytes. Our findings strongly suggest that the expression of the various TGF-beta isoforms and their receptor types found in MS lesions with different cellular activity participate in reactive processes leading to the formation of chronic MS lesions.  相似文献   

11.
Despite intensive research, the cause and a cure of multiple sclerosis (MS) have remained elusive and many aspects of the pathogenesis are not understood. Immunohistochemical experiments have shown that astrocytic beta(2)-adrenergic receptors are lost in MS. Because norepinephrine mediates important supportive and protective actions of astrocytes via activation of these beta(2)-adrenergic receptors, we postulate that this abnormality may play a prominent role in the pathogenesis of MS. First, it may allow astrocytes to act as facultative antigen-presenting cells, thereby initiating T-cell mediated inflammatory responses that lead to the characteristic demyelinated lesions. Second, it may contribute to inflammatory injury by stimulating the production of nitric oxide and proinflammatory cytokines, and reducing glutamate uptake. Third, it may lead to apoptosis of oligodendrocytes by reducing the astrocytic production of trophic factors, including neuregulin, nerve growth factor and brain-derived neurotrophic factor. Fourth, it may impair astrocytic glycogenolysis, which supplies energy to axons, and this may represent a mechanism underlying axonal degeneration that is hold responsible for the progressive chronic disability.  相似文献   

12.
Summary The distribution of canine distemper virus in the central nervous system was examined in 11 dogs with demyelinating encephalitis by the direct fluorescent antibody technique on paraffin sections of brain and spinal cord. In the grey matter there was a good correlation between the presence and severity of lesions and presence and amount of viral antigen. Large concentrations of virus were found in neurons and their processes. In most demyelinating lesions only small amounts of viral antigen were found, mostly located in astrocytes. The potential importance of the role of the astrocyte in demyelination in canine distemper virus infection is stressed.  相似文献   

13.
To initiate the inflammatory cascade leading to demyelination in multiple sclerosis (MS) T cells have to recognize their specific myelin antigen, which needs to be presented in the context of major histocompatibility (MHC) class II molecules expressed on antigen presenting cells. Whether astrocytes can express MHC class II molecules in vivo is a controversial issue. We performed double labeling immunohistochemistry in postmortem samples from nine patients with MS, three patients with a cerebral infarction and six controls. Astrocytes in controls, in normal appearing white matter in MS, and at the boundary of infarctions were MHC class II negative. In contrast, a subset of astrocytes in active chronic plaques immunostained for MHC class II, indicating potential antigen presenting interactions of astrocytes in MS.  相似文献   

14.
15.
Voltage-gated K(+) (Kv) channels play critical roles not only in regulating synaptic transmission and intrinsic excitability of neurons, but also in controlling the function and proliferation of other cells in the central nervous system (CNS). The non-specific Kv channel blocker, 4-AminoPyridine (4-AP) (Dalfampridine, Ampyra?), is currently used to treat multiple sclerosis (MS), an inflammatory demyelinating disease. However, little is known how various types of Kv channels are altered in any inflammatory demyelinating diseases. By using established animal models for MS, experimental autoimmune encephalomyelitis (EAE), we report that expression and distribution patterns of Kv channels are altered in the CNS correlating with EAE severity. The juxtaparanodal (JXP) targeting of Kv1.2/Kvβ2 along myelinated axons is disrupted within demyelinated lesions in the white matter of spinal cord in EAE. Moreover, somatodendritic Kv2.1 channels in the motor neurons of lower spinal cord significantly decrease correlating with EAE severity. Interestingly, Kv1.4 expression surrounding lesions is markedly up-regulated in the initial acute phase of both EAE models. Its expression in glial fibrillary acidic protein (GFAP)-positive astrocytes further increases in the remitting phase of remitting-relapsing EAE (rrEAE), but decreases in late chronic EAE (chEAE) and the relapse of rrEAE, suggesting that Kv1.4-positive astrocytes may be neuroprotective. Taken together, our studies reveal myelin-dependent and -independent alterations of Kv channels in the progression of EAE and lay a solid foundation for future study in search of a better treatment for MS.  相似文献   

16.
Brain tissues from 6 patients with concentric sclerosis (Baló) were examined by in situ hybridization, immunocytochemistry, morphometry, and histological methods. The patients were 24 to 48 years old and had progressive cerebral symptoms and signs that lasted 15 to 100 days. Large demyelinative lesions, most frequent in the frontal white matter, contained alternating bands of demyelinated and partly myelinated white matter that were arranged in concentric or mosaic patterns. In the areas of demyelination, axons were relatively well preserved and there were perivascular inflammatory infiltrates. In 2 specimens, lesions contained regions with the characteristic appearance of actively demyelinating multiple sclerosis plaques. Oligodendroglial densities were highest in normal-appearing white matter, lower in partially myelinated areas, and lowest in demyelinated areas, which also contained many hypertrophic astrocytes closely associated with oligodendroglia. Messenger RNA levels for myelin-related proteins followed the same pattern; they were lowest in demyelinated areas, higher in partially myelinated areas, and highest in normal-appearing white matter beyond lesion margins. Our findings suggest that concentric sclerosis is a variant of multiple sclerosis, that oligodendroglial loss is important in the pathogenesis of demyelination, and that partially myelinated areas probably represent stages of ongoing myelin breakdown rather than remyelination of previously demyelinated areas.  相似文献   

17.
Progressive multifocal leukoencephalopathy (PML) is caused by JC virus (JCV) infection of the central nervous system (CNS) in immunosuppressed patients. The immunopathogenesis of this chronic encephalitis is unknown. Because major histocompatibility (MHC) class I and class II antigens are important in modulating the immune response and viral clearance, we examined the tissue expression of MHC molecules in relation to CNS damage and presence of virus. By immunocytochemical staining, both MHC class I and class II antigens were expressed at high levels within PML lesions. Beta-2 microglobulin (beta-2m) was present on endothelial cells and JCV-infected oligodendroglia within the lesions. Also, many astrocytes with bizarre morphology expressed MHC class I antigens. In histologically normal regions of PML brains expression of beta-2m was noted only on endothelial cells. Expression of MHC class II also was focused within demyelinating lesions and was restricted to macrophages/microglia and occasional endothelial cells. When compared to other viral encephalitides (e.g. human immunodeficiency virus) these findings suggest that intra-CNS immune response to JCV is appropriate for antigenic presentation; however, the absence of responsive systemic T-cells may lead to chronic viral infection with progressive neuropathology.  相似文献   

18.
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system which leads to destruction of myelin sheaths. The patterns of cell proliferation in the early course of the disease are largely unknown. The present study used immunohistochemical identification of proliferating glial cells in stereotactic brain biopsy material of eight patients with early chronic MS. Double-labelling with the proliferation marker MIB-1 detected proliferating oligodendrocytes (MOG), astrocytes (GFAP) and microglia/macrophages (Ki-M1P). The majority of proliferating cells were macrophages/microglia when compared with oligodendrocytes ( P >0.005) or astrocytes ( P >0.0005); only a minor proportion of microglia/macrophages, however, proliferated in situ . Astrocytic and oligodendroglial proliferation was sparse to absent and showed significant variations between different patients. There were statistically significant differences when comparing the amount of proliferation between lesions of different demyelinating activity: highest numbers of proliferating cells were found in early active lesions compared with demyelinated and early remyelinated lesions ( P >0.05) or the periplaque white matter ( P >0.01). MOG-positive oligodendrocytes proliferated occasionally in the early stages of lesion formation; this proliferation occurred in four cases but was independent of the stage of the disease. Since MOG is expressed by mature oligodendrocytes, and not by immature precursors, this might suggest a potential role for the proliferation of mature surviving oligodendrocytes with subsequent remyelination.  相似文献   

19.
An interaction between antimyelin T cells and antigen-presenting glial cells is a crucial step in the cascade of immune events that lead to the inflammatory lesions in multiple sclerosis (MS). One of the most debated and controversial issues is whether microglial cells or astrocytes are the key players in initiating the (auto)immune reactions in the central nervous system in MS. Many investigators consider microglia to be the responsible intrinsic immunoeffector cells. In this review, we speculate that in MS astrocytes may serve as primary (facultative) antigen-presenting cells due to a failure of noradrenergic suppression of class II major histocompatibility complex molecules, which is caused by a loss of beta(2)-adrenergic receptors. If this hypothesis is correct, pharmacologic suppression of the antigen-presenting capacities of astrocytes may be a potential therapy for MS.  相似文献   

20.
In multiple sclerosis (MS), gray matter pathology is characterized by less pronounced inflammation when compared with white matter lesions. Although regional differences in the cytoarchitecture may account for these differences, the amount of myelin debris in the cortex during a demyelinating event might also be contributory. To analyze the association between myelin debris levels and inflammatory responses, cortical areas with distinct and sparse myelination were analyzed for micro‐ and astrogliosis before and after cuprizone‐induced demyelination in mice. In postmortem tissue of MS patients, leucocortical lesions were assessed for the type and level of inflammation in the cortical and white matter regions of the lesion. Furthermore, mice were injected intracerebrally with myelin‐enriched debris, and the inflammatory response analyzed in white and grey matter areas. Our studies show that the magnitude of myelin loss positively correlates with microgliosis in the cuprizone model. In MS, the number of MHC class II expressing cells is higher in the white compared with the grey matter part of leucocortical lesions. Finally, direct application of myelin debris into the corpus callosum or cortex of mice induces profound and comparable inflammation in both regions. Our data suggest that myelin debris is an important variable in the inflammatory response during demyelinating events. Whether myelin‐driven inflammation affects neuronal integrity remains to be clarified. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号