首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous investigations point to the importance of oxidative imbalance in mediating AD pathogenesis. Accumulated evidence indicates that lipid peroxidation is an early event during the evolution of the disease and occurs in patients with mild cognitive impairment (MCI). Because MCI represents a condition of increased risk for Alzheimer's disease (AD), early detection of disease markers is under investigation. Previously we showed that HNE-modified proteins, markers of lipid peroxidation, are elevated in MCI hippocampus and inferior parietal lobule compared to controls. Using a redox proteomic approach, we now report the identity of 11 HNE-modified proteins that had significantly elevated HNE levels in MCI patients compared with controls that span both brain regions: Neuropolypeptide h3, carbonyl reductase (NADPH), alpha-enolase, lactate dehydrogenase B, phosphoglycerate kinase, heat shock protein 70, ATP synthase alpha chain, pyruvate kinase, actin, elongation factor Tu, and translation initiation factor alpha. The enzyme activities of lactate dehydrogenase, ATP synthase, and pyruvate kinase were decreased in MCI subjects compared with controls, suggesting a direct correlation between oxidative damage and impaired enzyme activity. We suggest that impairment of target proteins through the production of HNE adducts leads to protein dysfunction and eventually neuronal death, thus contributing to the biological events that may lead MCI patients to progress to AD.  相似文献   

2.
Oxidatively modified RNA in mild cognitive impairment   总被引:2,自引:0,他引:2  
Studies show increased oxidative damage in the brains of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI). To determine if RNA oxidation occurs in MCI, sections of hippocampus/parahippocampal gyrus (HPG) from 5 MCI, 5 late stage AD (LAD) and 5 age-matched normal control (NC) subjects were subjected to immunohistochemistry using antibodies against 8-hydroxyguanine (8-OHG) and 1-N2-propanodeoxyguanosine (NPrG). Confocal microscopy showed 8-OHG and NPrG immunostaining was significantly (p<0.05) elevated in MCI and LAD HPG compared with NC subjects and was predominately associated with neurons identified using the MC-1 antibody that recognizes conformational alterations of tau, which are associated with early neurofibrillary tangle formation. Pretreating sections with RNase or DNase-I showed immunostaining for both adducts was primarily associated with RNA. In addition, levels of both adducts in MCI were comparable to those measured in LAD, suggesting RNA oxidation may be an early event in the pathogenesis of neuron degeneration in AD.  相似文献   

3.
Mild cognitive impairment (MCI) is considered to be a transitional stage between normal aging and dementia. In Alzheimer's disease (AD), white matter structural pathology is due to Wallerian degeneration and central angiopathy. However, in MCI patients, the presence and extent of white matter alterations as a possible correlate of impaired memory function and as predictor of subsequent progression to AD is not clarified yet. Diffusion tensor imaging (DTI) reveals the ultrastructural integrity of cerebral white matter tracts. Therefore, it could detect pathological processes that modify tissue integrity in patients with MCI. In our prospective study, conventional and diffusion tensor MR scans were obtained from 14 patients with MCI, 19 patients with AD, and 10 healthy controls. Mean diffusivity (MD) and fractional anisotropy (FA) were measured in temporal, frontal, parietal and occipital white matter regions as well as in the corpus callosum (genu and splenium) and the hippocampus. MCI patients showed higher MD values in the left centrum semiovale (p = 0.013; right: p = 0.026), in the left temporal (p = 0.006), the right temporal (p = 0.014) and the left hippocampal (p = 0.002) region as compared to the control group. FA values of MCI patients and controls did not differ significantly in any region. Compared to controls, AD patients had increased MD values in the left centrum semiovale (p = 0.012), the left parietal (p = 0.001), the right parietal (p = 0.028), the left temporal (p = 0.018), the right temporal (p = 0.011) and the left hippocampal region (p = 0.002). Decreased FA values were measured in the left temporal area (p = 0.017) and in the left hippocampus (p = 0.031) in AD patients compared to controls. FA and MD values did not differ significantly between AD and MCI patients. Elevated MD values indicating brain tissue alterations in MCI patients were found in regions that are typically involved in early changes due to AD, particularly the left hippocampus. The sensitivity of distinguishing MCI patients from controls was 71.4% (with a specificity set at 80%). Therefore, the DTI technique validates the MCI concept, and diffusion tensor MR measurement can be a helpful tool to quantify MCI pathology in vivo.  相似文献   

4.
Several studies show increased levels of zinc (Zn) in the Alzheimer's disease (AD) brain. More recently, alterations in synaptic Zn and Zn transporter proteins (ZnT) have been implicated in the accumulation of amyloid plaques in an animal model of AD. To determine if alterations in ZnT proteins are present in AD brain, we measured levels of ZnT-1, the protein responsible for export of Zn to the extracellular space in the amygdala (AMY), hippocampus/parahippocampal gyrus (HPG), superior and middle temporal gyrus (SMTG), inferior parietal lobule (IPL), and cerebellum (CER) of 19 AD and 14 age-matched control subjects. To determine if alterations of ZnT-1 occur early in the progression of AD, we analyzed protein levels in the HPG, SMTG and CER of 5 subjects with mild cognitive impairment (MCI), 5 subjects with early AD (EAD) and 4 appropriately age-matched controls. Western blot and dot-blot analysis showed statistically significant (p 0.05) elevations of ZnT-1 in AD AMY, HPG, and IPL and significantly depleted ZnT-1 in AD SMTG compared to age-matched control subjects. We also observed statistically significant elevations of ZnT-1 in the HPG of EAD subjects compared with controls. In contrast to late-stage AD subjects, ZnT-1 levels were significantly decreased in HPG of subjects with MCI and were significantly elevated in the SMTG of both MCI and EAD subjects compared with age-matched controls. Correlation analysis of ZnT-1 levels and senile plaque (SP) and neurofibrillary tangle (NFT) counts in the AMY and CA1 and subiculum of AD HPG showed a significant (p 0.05) positive correlation with SP counts and a trend towards a significant (p = 0.12) positive correlation with NFT counts in AMY. Overall, our results show alterations in one of the key proteins responsible for maintenance of Zn homeostasis early in the progression of AD suggesting that alterations in Zn balance could be involved in the pathogenesis of neuron degeneration and amyloid deposition in AD.  相似文献   

5.
Oxidative stress has been shown to be a triggering event in the pathogenesis of Alzheimer's disease (AD). However, little evidence exists on the role of oxidative imbalance in Mild Cognitive Impairment (MCI), a group with a high risk of progression to AD. We therefore assessed the peripheral blood levels of a broad spectrum of non-enzymatic and enzymatic antioxidant defenses, as well as lipid and protein oxidation markers and nitrogen oxidative species in 85 MCI patients, 42 mild AD patients and 37 age-matched controls. In mild AD patients, the plasma levels of vitamin E were significantly decreased, while the plasma concentration of oxidized glutathione was increased in both MCI and mild AD patients. An increase in plasmatic and erythrocytes oxidative markers was also observed in MCI and mild AD patients as compared to controls. In both patients groups, increased levels of plasma antioxidants were found in females, whereas apolipoprotein E epsilon4 allele carriers showed higher indices of intracellular oxidative markers. Moreover, in MCI patients, cognitive function positively correlates with antioxidant levels. This study shows that most of the oxidative changes found in mild AD patients are already present in the MCI group, and that progression to AD might be accompanied by antioxidant depletion.  相似文献   

6.
The purpose of this study was to investigate cortical dysfunction in Parkinson's disease (PD) patients with amnestic deficit (PD‐MCI). Perfusion single photon emission computed tomography was performed in 15 PD‐MCI patients and compared (statistical parametric mapping [SPM2]) with three groups, i.e., healthy subjects (CTR), cognitively intact PD patients (PD), and common amnestic MCI patients (aMCI). Age, depression, and UPDRS‐III scores were considered as confounding variables. PD‐MCI group (P < 0.05, false discovery rate–corrected for multiple comparisons) showed relative hypoperfusion in bilateral posterior parietal lobe and in right occipital lobe in comparison to CTR. As compared to aMCI, MCI‐PD demonstrated hypoperfusion in bilateral posterior parietal and occipital areas, mainly right cuneus and angular gyrus, and left precuneus and middle occipital gyrus. With a less conservative threshold (uncorrected P < 0.01), MCI‐PD showed hypoperfusion in a left parietal region, mainly including precuneus and inferior parietal lobule, and in a right temporal‐parietal‐occipital region, including middle occipital and superior temporal gyri, and cuneus‐precuneus, as compared to PD. aMCI versus PD‐MCI showed hypoperfusion in bilateral medial temporal lobe, anterior cingulate, and left orbitofrontal cortex. PD‐MCI patients with amnestic deficit showed cortical dysfunction in bilateral posterior parietal and occipital lobes, a pattern that can be especially recognized versus both controls and common aMCI patients, and to a lesser extent versus cognitively intact PD. The relevance of this pattern in predicting dementia should be evaluated in longitudinal studies. © 2008 Movement Disorder Society  相似文献   

7.
It is an open issue if vascular and Alzheimer's disease (AD) lesions represent additive factors in the development of mild cognitive impairment (MCI), as a preclinical stage of Alzheimer's disease (AD) at group level. In the present study, we tested the hypothesis that electroencephalographic (EEG) alpha rhythms, which are affected (i.e. decreased in amplitude) by AD processes, are relatively preserved in MCI subjects in whom the cognitive decline is mainly explained by white-matter vascular load. Resting EEG was recorded in 40 healthy elderly (Nold), 80 MCI, and 40 AD subjects. In the MCI subjects, white-matter vascular load was quantified based on MRI (0-30 Wahlund visual rating scale). EEG rhythms of interest were delta (2-4Hz), theta (4-8Hz), alpha 1 (8-10.5Hz), alpha 2 (10.5-13Hz), beta 1 (13-20Hz), and beta 2 (20-30Hz). Low resolution electromagnetic source tomography (LORETA) was used for EEG source analysis. As expected, we observed that alpha 1 sources in parietal, occipital, and temporal areas were lower in amplitude in the AD and MCI subjects than in the Nold subjects, whereas the amplitude of wide delta sources was higher in the AD than in the Nold and MCI subjects. As novel results, the amplitude of parietal, occipital, and temporal alpha 1 sources was higher in the MCI V+ (high vascular load; N=42; MMSE=26) than MCI V- group (low vascular load; N=37; MMSE=26.7). Furthermore, a weak but significant (p<0.05) positive statistical correlation was found between the parietal alpha 1 sources and the score of Wahlund scale across all MCI subjects (i.e. the more severe white-matter lesions, the higher parietal alpha source power). The present results are in line with the additive model of cognitive impairment postulating that this arises as the sum of neurodegenerative and cerebrovascular lesions.  相似文献   

8.
Alzheimer's disease (AD) is the most common form of dementia and is pathologically characterized by senile plaques, neurofibrillary tangles, synaptic disruption and loss, and progressive neuronal deficits. The exact mechanism(s) of AD pathogenesis largely remain unknown. With advances in technology diagnosis of a pre‐AD stage referred to as amnestic mild cognitive impairment (MCI) has become possible. Amnestic MCI is characterized clinically by memory deficit, but normal activities of daily living and no dementia. In the present study, compared to controls, we observed in hippocampus from subjects with MCI a significantly decreased level of PSD95, a key synaptic protein, and also decreased levels of two proteins associated with PSD95, the N‐methyl‐D‐aspartate receptor, subunit 2A (NR2A) and the low‐density lipoprotein receptor‐1 (LRP1). PSD95 and NR2A are involved in long‐term potentiation, a key component of memory formation, and LRP1 is involved in efflux of amyloid beta‐peptide (1‐42). Aβ (1‐42) conceivably is critical to the pathogenesis of MCI and AD, including the oxidative stress under which brain in both conditions exist. The data obtained from the current study suggest a possible involvement of these proteins in synaptic alterations, apoptosis and consequent decrements in learning and memory associated with the progression of MCI to AD. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
In Alzheimer's disease (AD), brain atrophy has been proposed to be left lateralized. Here, we reinvestigated the asymmetry and lateralization (i.e., asymmetry directed toward one hemisphere) of grey-matter (GM) distribution in 35 patients with AD, 24 patients with amnestic mild cognitive impairment (aMCI, a state of increased risk for AD), and 30 age-matched healthy controls (HC). We analyzed GM distribution by applying voxel-based morphometry (VBM) including analyses for asymmetry and lateralization. When comparing MCI with AD patients, VBM revealed GM loss in the entorhinal, temporoparietal, dorsofrontal, and occipital cortices as well as in the precuneus; when comparing HCs with MCI patients, we found similar differences, which were less pronounced especially within the temporoparietal cortex and precuneus. Analyses of regional asymmetry and regional lateralization as well as global lateralization did not yield significant results. However, lobar asymmetry of the temporal, parietal, and occipital lobes increased from HC to AD. Moreover, in aMCI and AD patients, performance of language-based neuropsychological tests correlated with lateralization of GM loss to the left hemisphere. We conclude that, in principle, brain atrophy in AD is asymmetric rather than lateralized. At the individual level however, asymmetry contributes to cognitive deficits.  相似文献   

11.
The goal was to assess regional patterns of metabolite abnormalities in mild cognitive impairment (MCI) and Alzheimer disease (AD) patients using proton magnetic resonance spectroscopy imaging at 1.5 Tesla. Fourteen MCI, 17 AD, and 16 healthy control (HC) subjects were studied. MCI was associated with higher myo-inositol (mIn) concentration in right parietal white matter compared with HC and lower mIn levels in frontal white matter compared with AD. AD was associated with higher mIn concentration in frontal and parietal white matter compared with HC. N-acetylaspartate (NAA) concentration of white matter was similar in all groups, whereas NAA concentration of gray matter showed a trend toward lower values in the right parietal lobe in AD compared with MCI and HC. A mIn increase in white matter in absence of significant NAA reduction suggests that mIn is a more robust and sensitive marker of white matter pathology in AD and MCI than NAA. Furthermore, the dissociation between mIn and NAA alterations in white matter could provide important information regarding the role of glial and neuronal damage in MCI and AD.  相似文献   

12.
The purpose of this study was to assess whether structural brain damage as detected by volumetric magnetization transfer imaging (MTI) is present in mild cognitive impairment (MCI) and Alzheimer's disease (AD) and, if so, whether these abnormalities are global in character or restricted to the temporal lobe. Volumetric MTI analysis of the whole brain and temporal and frontal lobes was performed in 25 patients with probable AD, in 13 patients with MCI, and in 28 controls. Magnetization transfer ratio (MTR) histograms were produced, from which we derived measures for structural brain damage and atrophy. The peak heights of the MTR histograms of MCI and AD patients were lower than those of controls for the whole brain and temporal and frontal lobes, reflecting structural brain damage. AD patients had more atrophy than controls in all regions that were studied. MCI patients differed from controls for temporal lobe atrophy only. Volumetric MTI demonstrates structural changes that are related to cognitive decline in large parts of the brain of AD patients. Moreover, structural changes also were observed in MCI patients, indicating that widespread brain damage can be demonstrated before patients are clinically demented.  相似文献   

13.
Elevated CSF prostaglandin E2 levels in patients with probable AD.   总被引:12,自引:0,他引:12  
OBJECTIVE: To determine CSF eicosanoid concentrations and brain cyclo-oxygenase activity in AD patients and age-matched control subjects. BACKGROUND: Nonsteroidal anti-inflammatory drugs may benefit AD patients by inhibiting cyclo-oxygenases and thereby reducing prostaglandin (PG) production or oxidant stress in the CNS. METHODS: CSF eicosanoid and F2-isoprostane (IsoP) levels were determined in seven probable AD patients and seven age-matched control subjects. Cyclo-oxygenase activity was determined in microsomes prepared from the hippocampus of 10 definite AD patients and 8 age-matched control subjects. All measurements were made using gas chromatography/mass spectrometry. RESULTS: CSF concentrations of prostaglandin (PG) E2 were increased fivefold (p < 0.01) and 6-keto-PGF1alpha was decreased fourfold (p < 0.01) in probable AD patients. There was no change in total CSF eicosanoid concentration in probable AD patients. CSF F2-IsoP, a quantitative marker of lipid peroxidation in vivo, was increased in probable AD patients (p < 0.05). Cyclo-oxygenase activity in the hippocampus from definite AD patients was not different from age-matched control subjects. CONCLUSIONS: These data suggest that cyclo-oxygenase activity may not contribute significantly to CNS oxidative damage in AD. Increased CSF PGE2 concentration in probable AD patients suggest that cyclo-oxygenase inhibitors may benefit AD patients by limiting PG production.  相似文献   

14.
The aim of the present study is to evaluate the diagnostic value of diffusion tensor imaging (DTI) for early Alzheimer's disease (AD) in comparison to widely accepted medial temporal lobe (MTL) atrophy measurements. A systematic literature research was performed into DTI and MTL atrophy in AD and mild cognitive impairment (MCI). We included seventy-six studies on MTL atrophy including 8,122 subjects and fifty-five DTI studies including 2,791 subjects. Outcome measure was the effect size (ES) expressed as Hedges g. In volumetric studies, atrophy of the MTL significantly differentiated between AD and controls (ES 1.32-1.98) and MCI and controls (ES 0.61-1.46). In DTI-Fractional anisotropy (FA) studies, the total cingulum differentiated best between AD and controls (ES = 1.73) and the parahippocampal cingulum between MCI and controls (ES = 0.97). In DTI-Mean diffusivity (MD) studies, the hippocampus differentiated best between AD and controls (ES = -1.17) and between MCI and controls (ES = -1.00). We can conclude that in general, the ES of volumetric MTL atrophy measurements was equal or larger than that of DTI measurements. However, for the comparison between controls and MCI-patients, ES of hippocampal MD was larger than ES of hippocampal volume. Furthermore, it seems that MD values have somewhat more discriminative power than FA values with higher ES in the frontal, parietal, occipital and temporal lobe.  相似文献   

15.
In this study we used an in situ approach to identify the oxidized nucleosides 8-hydroxydeoxyguanosine (8OHdG) and 8-hydroxyguanosine (8OHG), markers of oxidative damage to DNA and RNA, respectively, in cases of Alzheimer's disease (AD). The goal was to determine whether nuclear and mitochondrial DNA as well as RNA is damaged in AD. Immunoreactivity with monoclonal antibodies 1F7 or 15A3 recognizing both 8OHdG and 8OHG was prominent in the cytoplasm and to a lesser extent in the nucleolus and nuclear envelope in neurons within the hippocampus, subiculum, and entorhinal cortex as well as frontal, temporal, and occipital neocortex in cases of AD, whereas similar structures were immunolabeled only faintly in controls. Relative density measurement showed that there was a significant increase (p < 0.0001) in 8OHdG and 8OHG immunoreactivity with 1F7 in cases of AD (n = 22) as compared with senile (n = 13), presenile (n = 10), or young controls (n = 4). Surprisingly, the oxidized nucleoside was associated predominantly with RNA because immunoreaction was diminished greatly by preincubation in RNase but only slightly by DNase. This is the first evidence of increased RNA oxidation restricted to vulnerable neurons in AD. The subcellular localization of damaged RNA showing cytoplasmic predominance is consistent with the hypothesis that mitochondria may be a major source of reactive oxygen species that cause oxidative damage in AD.  相似文献   

16.
Increasing evidence indicates that factors such as oxidative stress, plasma homocysteine increase and glutathione depletion, elevated pro-inflammatory cytokines and advanced glycation end products can play a role in Alzheimer's disease (AD) pathogenesis. The receptor for advanced glycation end products (RAGE) is a cell surface receptor that has been implicated in neurodegeneration, and a soluble isoform of RAGE (sRAGE) has the ability to prevent the adverse effects of RAGE signaling by acting as a decoy. Twenty-five patients with AD, 26 with mild cognitive impairment (MCI) and 44 age-matched control subjects were studied. All subjects were classified according to their clinical, cognitive and positron emission tomography study. Serum levels of sRAGE and TNF-alpha receptor II were not significantly different in AD or MCI patients compared to controls. Total plasma levels of glutathione and its metabolite cysteinglycine were decreased in AD and MCI patients compared to the control group. In addition, AD patients presented significantly increased plasma homocysteine compared to those in MCI patients and controls. We found significant positive correlations between sRAGE and glutathione, cysteinglycine and cysteine levels. Moreover, a significant negative correlation between the total score of cognitive impairment and homocysteine levels, and significant positive correlations with glutathione, cysteinglycine and cysteine levels were observed. These findings indicate that plasma aminothiol compounds are associated with AD and MCI patients and with their cognitive status.  相似文献   

17.

Background

Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a well-documented risk factor for synucleinopathies such as Parkinson disease (PD) and dementia with Lewy bodies (DLB). Moreover, approximately 50% of iRBD patients have mild cognitive impairment (MCI). The purpose of our study was to investigate waking electroencephalogram (EEG) abnormalities specific to iRBD patients with MCI.

Methods

Forty-two polysomnographically confirmed iRBD patients, including 23 iRBD [+]MCI patients 19 patients without MCI (iRBD [−]MCI), and 37 healthy subjects participated in the study. All participants underwent a complete neuropsychologic assessment for MCI diagnosis and a waking quantitative EEG recording.

Results

iRBD [+]MCI patients had a higher slow-to-fast frequency ratio than iRBD [−]MCI patients and controls in the parietal, temporal, and occipital regions. iRBD [+]MCI patients also had higher relative θ power in the parietal, temporal, and occipital regions and lower relative α power in the occipital region compared to iRBD [−]MCI patients and controls. Moreover, iRBD [+]MCI patients had higher relative θ power in the frontal and central areas and lower relative β power in the central, parietal, and temporal regions compared to controls. The dominant occipital frequency also was slower in iRBD [+]MCI patients compared to controls. No between-group differences were observed between iRBD [−]MCI patients and controls.

Conclusion

In iRBD patients, only those with concomitant MCI showed waking EEG slowing in the posterior cortical regions, providing a potential marker for an increased risk for developing DLB or PD.  相似文献   

18.
1. 1. Free inositol levels in occipital and parietal cortex of Alzheimer's Disease (AD) patients were reported to be significantly elevated by 10–35% compared with matched controls, studied by magnetic resonance spectroscopy (MRS) during life.
2. 2. An MRS study of post mortem samples failed to demonstrate a significant difference between AD and controls.
3. 3. The present study shows non-significant trends of 13% increase in frontal cortex and 5% and 21% decrease in occipital cortex and cerebellum respectively, in post mortem brain specimens of AD patients measured gas chromatographically (GC).
  相似文献   

19.
轻度认知障碍患者视空间功能的fMRI研究   总被引:9,自引:0,他引:9  
目的 :探索早期诊断Alzheimer病的方法。 方法 :对轻度认知障碍 (MCI)患者和正常对照各 9名在fMRI下进行指针位置辨别的视空间功能测试。结果 :MCI患者比正常对照的反应时间延长 ,正确率降低 ,脑激活图显示MCI患者比正常对照在双侧顶叶 ,颞枕交界处和视觉皮层的激活强度显著减弱 (P <0 .0 5 ) ,范围减小 ,而在右侧额中回的激活代偿性增强。结论 :MCI患者视空间功能受损 ,这可通过fMRI来加以检测。  相似文献   

20.
Mild cognitive impairment (MCI) is generally referred to the transitional zone between normal cognitive function and early dementia or clinically probable Alzheimer's disease (AD). Oxidative stress plays a significant role in AD and is increased in the superior/middle temporal gyri of MCI subjects. Because AD involves hippocampal-resident memory dysfunction, we determined protein oxidation and identified the oxidized proteins in the hippocampi of MCI subjects. We found that protein oxidation is significantly increased in the hippocampi of MCI subjects when compared to age- and sex-matched controls. By using redox proteomics, we determined the oxidatively modified proteins in MCI hippocampus to be alpha-enolase (ENO1), glutamine synthetase (GLUL), pyruvate kinase M2 (PKM2) and peptidyl-prolyl cis/trans isomerase 1 (PIN1). The interacteome of these proteins revealed that these proteins functionally interact with SRC, hypoxia-inducible factor 1, plasminogen (PLG), MYC, tissue plasminogen activator (PLAT) and BCL2L1. Moreover, the interacteome indicates the functional involvement of energy metabolism, synaptic plasticity and mitogenesis/proliferation. Therefore, oxidative inactivation of ENO1, GLUL and PIN1 may alter these cellular processes and lead to the development of AD from MCI. We conclude that protein oxidation plays a significant role in the development of AD from MCI and that the oxidative inactivation of ENO1, GLUL, PKM2 and PIN1 is involved in the progression of AD from MCI. The current study provides a framework for future studies on the development of AD from MCI relevant to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号