首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was designed to evaluate the contribution of nitric oxide (NO) to regional hemodynamics during the early phase of angiotensin II (Ang II)-induced hypertension. The responses of regional blood flow to chronic NO synthase inhibition with N(G)-nitro-L-arginine methyl ester (L-NAME) were assessed using radioactive microspheres in conscious Ang II-infused hypertensive rats. Ang II-infused rats (270 ng/kg/min, subcutaneously for 12 days: n=11) showed higher mean arterial pressure (MAP: 153+/-4 mmHg) and total peripheral resistance (TPR: 1.61+/-0.06 mmHg/min/ml), and lower cardiac output (CO: 102+/-3 ml/min) than vehicle-infused normotensive rats (115+/-2 mmHg, 0.96+/-0.05 mmHg/min/ml and 130+/-7 ml/min, n=11, respectively). The blood flow rates in the brain, spleen, large intestine and skin were significantly reduced in Ang III-infused rats compared with vehicle-infused rats, while those in the lung, heart, liver, kidney, adrenal gland, small intestine, and skeletal muscle were similar. Treating Ang II-infused rats with L-NAME (75 mg/l in drinking water for 10 days, n=11) resulted in higher MAP (166+/-6 mmHg) and TPR (1.89+/-0.18 mmHg/min/ml) and lower CO (87+/-7 m/min) than untreated Ang II-infused rats. L-NAME-treated Ang II-infused rats showed widespread increases in regional vascular resistance and reduced blood flow rates in the kidney (3.81+/-0.27 ml/min/g) and skeletal muscle (0.20+/-0.03 ml/min/g) compared with untreated Ang II-infused rats (6.88+/-0.27 and 0.33+/-0.04 ml/min/g, respectively). However, there were no significant differences in the flow rates of other organs investigated between these animals. An NO donor, (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (FK409: 30 microg/kg/min, i.v.), significantly decreased MAP (110+/-6 mmHg) and TPR (1.23+/-0.18 mmHg/min/ml) without significant changes in CO (89+/-9 ml/min) in L-NAME-treated Ang II-infused rats. Furthermore, FK409 partially reversed blood flow rates in the kidney (4.72+/-0.40 ml/min/g) and skeletal muscle (0.25+/-0.02 ml/min/g)in these animals. These results suggest that NO counteracts, at least in part, the vasoconstrictor effects of elevated Ang II levels in renal and skeletal muscle vascular beds, and is an important modulator in the regulation of blood flow to these organs during the development of Ang II-induced hypertension.  相似文献   

2.
Treatment with cyclosporine A (CysA), a potent immunosuppressive agent, is associated with systemic and renal vasoconstriction, leading to hypertension. The present study was conducted to elucidate the contribution of angiotensin II (Ang II) to CysA-induced hypertension and reactive oxygen species (ROS) generation. CysA (30 mg/kg per day SC), given for 3 weeks in rats, increased systolic blood pressure (SBP) from 119+/-2 to 145+/-3 mm Hg (n=7). Plasma and kidney Ang II levels were significantly higher in CysA-treated rats (136+/-10 fmol/mL and 516+/-70 fmol/g) than in vehicle-treated (1 mL olive oil) rats (76+/-10 fmol/mL and 222+/-21 fmol/g, n=7). CysA treatment increased AT1 receptor protein expression in the aorta (by 251+/-35%), whereas it was reduced in the kidney (by -32+/-4%). Superoxide anion production in aortic segments and kidney thiobarbituric acid-reactive substance (TBARS) contents were higher in CysA-treated rats (26+/-2 counts/min per milligram and 37+/-3 nmol/g) than in vehicle-treated rats (17+/-1 counts/min per milligram and 24+/-3 nmol/g). Concurrent administration of an AT1 receptor antagonist, valsartan (30 mg/kg per day, in drinking water), to CysA-treated rats (n=7) significantly decreased SBP (113+/-4 mm Hg) and prevented increases in vascular superoxide (16+/-2 counts/min per milligram) and kidney TBARS contents (21+/-3 nmol/g). Similarly, treatment with a superoxide dismutase mimetic, 4-hydroxy-2,2,6,6,-tetramethylpiperidine-N-oxyl (Tempol; 3 mmol/L in drinking water, n=7), prevented CysA-induced increases in SBP (115+/-3 mm Hg), vascular superoxide (16+/-1 counts/min per milligram), and kidney TBARS contents (19+/-2 nmol/g). These data suggest that ROS generation induced by augmented Ang II levels contributes to the development of CysA-induced hypertension.  相似文献   

3.
The influence of the HMG-CoA reductase inhibitor simvastatin was assessed on the cardiovascular alterations and production of free radicals associated with chronic angiotensin II (Ang II) infusion. Simvastatin (60 mg/kg per day PO) or placebo were given concomitantly for 10 days in Sprague-Dawley rats infused with Ang II (200 ng/kg per minute SC, osmotic pump). In addition, simvastatin or placebo was also given in vehicle-infused rats. Tail-cuff pressure and albuminuria were measured before and at the end of the treatment period. Cardiac weight, carotid structure, production of reactive oxygen species (ROS, by chemiluminescence) by polymorphonuclear leukocytes and aortic wall as well as protein and lipid oxidation products were determined at the end of the study. Ang II increased tail-cuff pressure by 56+/-12 mm Hg and simvastatin blunted the development of hypertension by approximately 70% (19+/-5 mm Hg). Increases in heart weight index and carotid cross-sectional area induced by Ang II were obliterated by simvastatin (3.18+/-0.09 versus 3.46+/-0.11 mg/g body wt and 0.125+/-0.010 versus 0.177+/-0.010 mm2, respectively). The Ang II-induced increases in leukocyte and aortic production of ROS as well as protein and lipid oxidation products were prevented by simvastatin. No effect of simvastatin was detected in non-Ang II-infused rats. These results indicate that simvastatin prevented the development of hypertension and cardiovascular hypertrophy together with inhibition of the induced angiotensin II production of ROS. Therefore, inhibition of HMG CoA reductase by statins may have a beneficial effect on cardiovascular alterations through its antioxidant action in experimental Ang II-dependent hypertension.  相似文献   

4.
OBJECTIVE: To assess angiotensin II type 2 receptor-mediated responses in thoracic aorta of streptozotocin-induced diabetic rats. METHODS: The concentration-dependent relaxation response (in the presence of an AT1 receptor blocker) to angiotensin II (Ang II) was studied in phenylephrine (PE) or potassium chloride (KCl) precontracted rat thoracic aortic rings isolated from male Sprague-Dawley rats pretreated with streptozotocin (65 mg/kg i.p.) or vehicle 8 weeks prior to the study. RESULTS: Ang II-induced relaxation response (% relaxation), evident only in the presence of an AT1 receptor blocker, was significantly enhanced in aortic rings isolated from diabetic (55%) compared to control (25%) rats. Tempol (100 micromol/l) augmented the relaxation response in aortic rings isolated from diabetic (80%) but not control (28%) rats. N-nitro-l-arginine methyl ester (L-NAME) (100-300 micromol/l) [a nitric oxide (NO) synthase inhibitor] partially inhibited the relaxation response in diabetic (25%) and control (15%) rats. However, l-NAME (100 micromol/l) and glipizide or butanedione monoxime (1 micromol/l) (ATP-sensitive K channel blockers) together completely blocked the relaxation response. [H]Ang II saturation binding at the AT2 receptor was enhanced in aortic membranes from diabetic [maximum binding capacity, (Bmax)=1.14 +/- 0.06 fmol/mg protein] compared to control rats (Bmax=0.75 +/- 0.03 fmol/mg protein), with no change in the dissociation equilibrium constant (Kd) value (2.55 +/- 0.12 versus 2.22 +/- 0.15 nmol/l). CONCLUSIONS: The results suggest enhanced AT2-receptor density and function [mediated by a nitric oxide and ATP-sensitive K channel-dependent relaxation response (in presence of an AT1 receptor blocker)] in thoracic aorta isolated from diabetic rats. This could be a compensatory mechanism, which may be therapeutically exploited.  相似文献   

5.
BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation induced by various growth factors has been implicated in a wide variety of pathological processes, including hypertension, atherosclerosis and restenosis after angioplasty. OBJECTIVES: To investigate the interactions among well-known potent vasoconstrictor substances, endothelin-1 (ET-1), angiotensin II (Ang II), and serotonin (5-HT), on VSMC proliferation. METHODS: Growth-arrested rabbit VSMCs were incubated with different concentrations of ET-1 in the absence or presence of Ang II, 5-HT, or both. VSMC proliferation was examined by increases in incorporation of [3H]thymidine into DNA and in cell number. RESULTS: ET-1, Ang II and 5-HT stimulated DNA synthesis in a dose-dependent manner. ET-1 had a maximal effect at a concentration of 0.5 micromol/l (259% of control), Ang II at 1 micromol/l (173%), and 5-HT at 50 micromol/l (205%). When added together, ET-1 (0.1 micromol/l) and Ang II (1 micromol/l) synergistically induced DNA synthesis (341%). When the vasoconstrictors were tested in combination, even non-mitogenic concentrations of ET-1 (0.01 nmol/l) potentiated 5-HT (5 micromol/l)-induced DNA synthesis (404%). Co-incubation of ET-1 (0.01 micromol/l) with Ang II (1 micromol/l) and 5-HT (5 micromol/l) synergistically induced DNA synthesis (566%). These effects on DNA synthesis were paralleled by an increase in cell number. The ETA/B non-selective receptor antagonist, TAK044 (1 micromol/l) and the ETA receptor antagonist, BQ123 (1 micromol/l), but not the ETB receptor antagonist, BQ788 (1 micromol/l), inhibited the mitogenic effect of ET-1 and its interaction with Ang II or 5-HT. In addition, TAK044 (1 micromol/l) or BQ123 (1 micromol/l) along with the angiotensin II type 1 (AT1) receptor antagonist, candesartan (1 micromol/l), the 5-HT2A receptor antagonist, sarpogrelate (10 micromol/l), or both, inhibited the interactions of ET-1 with Ang II or 5-HT. CONCLUSIONS: Our results suggest that Ang II and 5-HT could potentiate ET-1-induced VSMC proliferation. Inhibition of ETA, AT1, and 5-HT2A may be effective in the treatment of VSMC proliferative disorders associated with hypertension, atherosclerosis and restenosis after angioplasty.  相似文献   

6.
OBJECTIVES : We have previously reported that 5-lipoxygenase-derived products, and particularly the cysteinyl leukotrienes (CysLTs), were involved in angiotensin II (Ang II)-induced contractions in isolated aortas from spontaneously hypertensive rats. DESIGN : The aim of this study was to assess the role of CysLTs in the vascular response to Ang II in an Ang II-dependent model of hypertension, the (mRen-2)27 transgenic rats (TGs). METHODS : Intact aortic rings from TG and normotensive Sprague-Dawley rats (SDs) were suspended in organ chambers for isometric tension development in response to Ang II. In addition, the release of CysLTs in response to Ang II (0.3 micromol/l) was measured by enzyme immunoassay. RESULTS : In isolated aortas from TG rats, pretreatment with the 5-lipoxygenase inhibitor (AA861, 10 micromol/l) or the CysLT1 receptor antagonist (MK571, 1 micromol/l) significantly (P < 0.05) reduced Ang II-induced contractions by 52 and 42%, respectively. In addition, Ang II induced a 2.6-fold increase in CysLT release (pg/mg dry weight tissue: 58.3 +/- 17.9 (Ang II, n = 7) versus 22.5 +/- 5.9 (basal, n = 7) P < 0.05), which was inhibited by the AT1 receptor antagonist losartan (1 micromol/l). In contrast, in aortas from SD rats, pretreatment with AA861 or MK571 did not alter Ang II-induced contraction and CysLT production remained unchanged after exposure to Ang II. CONCLUSION : These data suggest that CysLTs are involved in the contractile responses to Ang II in isolated aortas from TG but not from SD rats.  相似文献   

7.
BACKGROUND: Induction of heme oxygenase-1 (HO-1) attenuates the development of angiotensin II (Ang II)-dependent hypertension in mice. However, the mechanism by which HO-1 lowers blood pressure in this model is not clear. This study was designed to determine whether induction of HO-1 results in an improvement in vascular relaxation in Ang II hypertensive mice. METHODS: Mice were treated with either of the vehicles (control), the HO-1 inducer cobalt protoporphyrin (CoPP;50 mg/kg), Ang II(1 microg/kg/min, 14 days), or Ang II + CoPP. CoPP was administered as a single bolus dose 2 days prior to subcutaneous implantation of the osmotic minipump containing Ang II. Vascular relaxation was examined in isolated carotid arteries precontracted with the thromboxane mimetic U46619 (0.4 microg/ml). RESULTS: Endothelial dependent relaxation to acetylcholine (ACh; 1 micromol/l) was significantly impaired in Ang II-treated mice compared to control mice (56 +/- 3% vs. 40 +/- 4%, P < 0.05, n > or = 6). Similarly, endothelial independent relaxation to sodium nitroprusside (SNP; 1 micromol/l) was significantly impaired in Ang II mice (56 +/- 6% vs. 28 +/- 6%, P < 0.05, n > or = 6). Relaxation in response to the carbon monoxide donor, CORM-A1 (100 micromol/l), was attenuated after Ang II treatment (75 +/- 7% vs. 59 +/- 7%,P < 0.05, n > or = 6). CoPP treatment induced HO-1 but not HO-2 protein in the aorta, as measured by western blot analysis. CoPP treatment had no effect on vascular responses in control mice and did not improve ACh (26 +/- 5%, n = 15), SNP (23 +/- 4%, n = 15), or CORM-A1 (46 +/- 7%, n = 10) dependent relaxation in Ang II treated mice. CONCLUSIONS: These results suggest that induction of HO-1 lowers Ang II-dependent hypertension through a mechanism independent of improved vascular relaxation.  相似文献   

8.
Many effects believed to be because of angiotensin II (Ang II) are attributable to the action of endothelin (ET)-1, which is released/produced by Ang II. We investigated whether Ang II elicits its positive inotropic effect (PIE) by the action of endogenous ET-1, in addition to the role played by reactive oxygen species (ROS) in this mechanism. Cat cardiomyocytes were used for: (1) sarcomere shortening measurements; (2) ROS measurements by epifluorescence; (3) immunohistochemical staining for preproET-1, BigET-1, and ET-1; and (4) measurement of preproET-1 mRNA by RT-PCR. Cells were exposed to 1 nmol/L Ang II for 15 minutes. This low concentration of Ang II increases sarcomere shortening by 29.2+/-3.7% (P<0.05). This PIE was abrogated by Na+/H+ exchanger or Na+/Ca2+ exchanger reverse mode inhibition. The production of ROS increased in response to Ang II treatment (DeltaROS respect to control: 68+/-15 fluorescence units; P<0.05). The Ang II-induced PIE and ROS production were blocked by the Ang II type 1 receptor blocker losartan, the nonselective ET-1 receptor blocker TAK044, the selective ETA receptor blocker BQ-123, or the ROS scavenger N-(2-mercapto-propionyl)glycine. Exogenous ET-1 (0.4 nmol/L) induced a similar PIE and increase in ROS production to those caused by Ang II. Immunostaining for preproET-1, BigET-1, and ET-1 was positive in cardiomyocytes. The preproET-1 mRNA abundance increased from 100+/-4.6% in control to 241.9+/-39.9% in Ang II-treated cells (P<0.05). We conclude that the PIE after exposure to 1 nmol/L Ang II is due to endogenous ET-1 acting through the ETA receptor and triggering ROS production, Na+/H+ exchanger stimulation, and Na+/Ca2+ exchanger reverse mode activation.  相似文献   

9.
We investigated the role of angiotensin II (Ang II) and endothelin-1 (ET-1) in transgenic (mREN2)27 rats, a model of the monogenic renin-dependent form of severe hypertension and cardiovascular disease. Four-week-old heterozygous male transgenic (mREN2)27 rats (n=24) were matched according to body weight (BW) and blood pressure (BP) and randomly allocated to receive a placebo (group P), the mixed endothelin type A and B receptor antagonist bosentan (100 mg/kg BW PO, group B), the Ang II type 1-specific receptor antagonist irbesartan (50 mg/kg BW PO, group I), or the endothelin type A-selective antagonist BMS-182874 (52 mg/kg BW PO, group BMS). After 4 weeks of treatment, during which BW and BP were measured weekly, animals were euthanized, and the heart, left ventricle, right ventricle, adrenal gland, brain, and kidney were weighed. The plasma levels of adrenocortical steroids were measured by high-performance liquid chromatography. The tension responses of ET-free segments of the thoracic aorta to 5 x 10(-6) mmol/L phenylephrine, 60 mmol/L KCl, and cumulative doses of ET-1 were assessed. The density of ET-1 receptor subtypes in the aorta and vascular structural changes in the mesenteric arterioles (100 to 200 microm ID) were also measured with autoradiography and myography, respectively. Compared with all other groups, group I rats showed significantly (P<0.001) lower systolic BP (group I, 161+/-8 mm Hg; group P, 269+/-23 mm Hg; group B, 275+/-17 mm Hg; and group BMS, 254+/-21 mm Hg), left ventricular weight (2.28+/-0.15 versus 3. 71+/-0.26, 3.38+/-0.27, and 3.96+/-0.51 mg/g BW, respectively), tension responses to vasoconstrictors, and normalized media thickness of the mesenteric arterioles (22.3+/-0.6 versus 25.3+/-0.5, 25.5+/-0.7, and 24.1+/-1.5 microm, respectively). Compared with levels in group P (78+/-25 pmol/mL), plasma aldosterone levels were significantly decreased in group B (51+/-11 pmol/mL) and group I (40+/-16 pmol/mL). Thus, endogenous ET-1 and Ang II contribute to the regulation of aldosterone, but only Ang II is crucial for the development of hypertension and related target organ damage via the Ang II type 1 receptor. Endogenous Ang II does not appear to enhance cardiovascular production of ET-1 in this model of hypertension within the time span of our experiment.  相似文献   

10.
OBJECTIVES: To determine whether 'slow pressor' hypertension from systemic angiotensin (Ang II) infusion was associated with renal vascular structural remodeling of the renal resistance vessels and glomerulus. METHODS: Ang II (4.5-10 ng/kg per min) or vehicle was infused for 10 days. Renal resistance vascular lumen changes were assessed at 10 days as changes in renal pressure flow and pressure-glomerular filtration rate (GFR) and pressure-Na+ excretion in maximally dilated, isotonically perfused kidneys. RESULTS: Low-dose, initially subpressor Ang II infusion for 10 days increased conscious arterial pressure by 27 mmHg compared to vehicle-infused rats (140 +/- 7 and 113 +/- 2 mmHg, respectively). There was no change in the pressure-flow relationship but the slope of the pressure-GFR relationship was reduced in the rats treated with Ang II. These changes are consistent with equal and opposite pre-and post-glomerular effects (i.e., increased pre-glomerular vessel resistance and reduced post-glomerular vessel resistance) and reduced glomerular ultrafiltration coefficient. There was also a significant reduction in pressure-dependent Na+ excretion. CONCLUSIONS: Slow pressor Ang II-induced hypertension was associated with apparent pro-hypertensive changes in the kidney involving pre/post-glomerular vessel remodeling as indicated by an apparent reduction in pre-glomerular lumen dimensions, a reduced glomerular filtration capacity and a reduction in the pressure natriuresis relationship.  相似文献   

11.
OBJECTIVE: Angiotensin (Ang) II increases reactive oxygen species (ROS), decreases nitric oxide (NO) bioavailability and promotes cardiovascular remodeling. ROS have been identified as critical second messengers of the trophic responses by Ang II. In rats with Ang II-induced hypertension, we investigated the role of ROS in cardiac hypertrophy as well as the remodeling of aortas and mesenteric (resistance) arteries. METHODS: Sprague-Dawley rats received Ang II (0.7 mg/kg per day by mini-pump, n = 7) or vehicle (n = 7) for 5 days. Endothelium-dependent relaxation to acetylcholine (EDR) in aortas was determined in organ baths and in mesenteric resistance vessels in a pressurized myograph. Superoxide (O2) production was measured by lucigenin chemiluminescence, laser-confocal fluorescence microscopy (LCM) and NADPH oxidase assay. RESULTS: Ang II-treated rats developed hypertension (183 +/- 3 versus 138 +/- 4 mmHg, P < 0.05), increased aortic O2 (50%), aortic hypertrophy (12%) and impaired EDR. Mesenteric arteries manifested impaired EDR, increased NADPH oxidase activity (356%) and eutrophic inward remodeling (decreased lumen diameter and increased wall/lumen ratio). However, although Ang II-treated rats developed cardiac hypertrophy (13%), this was not accompanied by an increase in cardiac O2, as measured by lucigenin, LCM or NADPH oxidase assay. On the other hand, cardiac calcineurin, a molecule that promotes cardiac hypertrophy linked to Ang II, was increased by 40% (52 +/- 8 versus 33 +/- 5 pmol/min per mg protein, P < 0.05). CONCLUSION: These studies demonstrate that the role of ROS in Ang II-induced vascular remodeling differ across vascular territories. Although in conduit and resistance vessels, vascular hypertrophy and endothelial dysfunction are linked to increased ROS production, cardiac hypertrophy is not. Instead, cardiac hypertrophy is associated, at least in part, with an increase in calcineurin. These studies unveil novel mechanisms that may play an important role in the pathogenesis of cardiac and vascular injury in hypertension.  相似文献   

12.
Angiotensin (Ang) II-infused hypertensive rats exhibit increases in renal angiotensinogen mRNA and protein, as well as urinary angiotensinogen excretion in association with increased intrarenal Ang II content. The present study was performed to determine if the augmentation of intrarenal angiotensinogen requires activation of Ang II type 1 (AT1) receptors. Male Sprague-Dawley rats (200 to 220 g) were divided into 3 groups: sham surgery (n=10), subcutaneous infusion of Ang II (80 ng/min, n=11), and Ang II infusion plus AT1 blocker (ARB), olmesartan (5 mg/d, n=12). Ang II infusion progressively increased systolic blood pressure (SBP) compared with sham (178+/-8 mm Hg versus 119+/-4 at day 11). ARB treatment prevented hypertension (113+/-6 at day 11). Twenty-four-hour urine collections were taken at day 12, and plasma and tissue samples were harvested at day 13. The Ang II+ARB group had a significant increase in plasma Ang II compared with Ang II and sham groups (365+/-46 fmol/mL versus 76+/-9 and 45+/-14, respectively). Nevertheless, ARB treatment markedly limited the enhancement of kidney Ang II by Ang II infusion (65+/-17 fmol/g in sham, 606+/-147 in Ang II group, and 288+/-28 in Ang II+ARB group). Ang II infusion significantly increased kidney angiotensinogen compared with sham (1.69+/-0.21 densitometric units versus 1.00+/-0.17). This change was reflected by increased angiotensinogen immunostaining in proximal tubules. ARB treatment prevented this increase (1.14+/-0.12). Urinary angiotensinogen excretion rates were enhanced 4.7x in Ang II group (4.67+/-0.41 densitometric units versus 1.00+/-0.21) but ARB treatment prevented the augmentation of urinary angiotensinogen (0.96+/-0.23). These data demonstrate that augmentation of intrarenal angiotensinogen in Ang II-infused rats is AT1-dependent and provide further evidence that urinary angiotensinogen is closely linked to intrarenal Ang II in Ang II-dependent hypertension.  相似文献   

13.
Angiotensin II receptors in normal and failing human hearts   总被引:6,自引:0,他引:6  
To demonstrate the existence and help clarify the function of angiotensin II (Ang II) receptors in the human heart, we characterized the cardiac Ang II receptor and examined the levels and distribution of ventricular Ang II receptors in normal (n = 6) and failing (n = 14) hearts. Ang II receptors were characterized using the Ang II receptor agonist [125I]Ang II. Cardiac [125I]Ang II-binding sites were of high affinity (Kd, approximately 1 nmol/L) and low capacity (Bmax, approximately 3 fmol/mg membrane protein) and were pharmacologically specific [IC50 values for Ang II, [Sar1,Ile8]Ang II, and Ang III were 1.2, 3.0, and 400 nmol/L, respectively; the inactive Ang II metabolite Ang-(1-5), at a concentration of 1 mumol/L, inhibited [125I]Ang II binding by less than 10%]. These characteristics of cardiac [125I]Ang II-binding sites are similar to those of previously characterized mammalian heart Ang II receptors. In normal adult donor hearts (n = 5), Ang II receptor density in the left ventricle [LV, 2.90 +/- 1.40 (+/- SE) fmol/mg] was similar to that in the right ventricle (RV, 3.82 +/- 1.10 fmol/mg). The ventricular Ang II receptor density in adult patients with idiopathic (LV, 1.77 +/- 0.35 fmol/mg; RV, 1.58 +/- 0.29 fmol/mg; n = 8) or dilated cardiomyopathy (LV, 2.00 +/- 0.58 fmol/mg; RV, 2.56 +/- 0.52 fmol/mg n = 5) was similar to that in the normal heart. Ventricular Ang II receptors, localized by autoradiography using the Ang II receptor antagonist [125I]-[Sar1,Ile8]Ang II, were consistently found in the myocardium, cardiac adrenergic nerves, and coronary vessels of normal and failing ventricles. In human ventricles Ang II receptor levels were not correlated with age. Because ventricular Ang II receptor density in a normal neonatal human heart and that in a heart from an adolescent patient with idiopathic cardiomyopathy were more than 10-fold and more than 5-fold higher, respectively, than in normal adult ventricles, we investigated whether postnatal changes occur in ventricular Ang II receptors in rats. In male and female rats ventricular Ang II receptor density was about 2-fold higher in 1-day-old rats compared to that in 10-day-old or peripubertal rats. These data suggest developmental regulation of ventricular Ang II receptors. Our findings suggest that direct and neural angiotensinergic inputs to the myocardium play a role in the regulation of cardiac function in man and that these inputs are preserved in the failing heart.  相似文献   

14.
We describe here a method of measuring angiotensin peptides and their carboxy-truncated metabolites in human plasma using N-terminal-directed antisera. Antisera raised against N-acetylated angiotensin (Ang) II and N-acetylated Ang III analogues were used to develop two radioimmunoassays. Extracted plasma samples were acetylated prior to separation of cross-reacting angiotensin peptides by high-performance liquid chromatography (HPLC). Fractions were assayed with both antisera to obtain measurements for eight angiotensin peptides. Angiotensin levels measured in normal males were (fmol/ml plasma, mean +/- s.e.m., n = 14): Ang-(1-7) 1.0 +/- 0.2, Ang II 13.9 +/- 2.0, Ang-(1-9) less than 0.4, Ang I 19.5 +/- 2.4, Ang-(2-7) less than 1.1, Ang III 2.9 +/- 1.0, Ang-(2-9) less than 2.1, Ang-(2-10) 2.4 +/- 0.8. Hypertensive patients receiving angiotensin converting enzyme (ACE) inhibitor therapy (n = 8) had an increase in Ang I to 187.3 +/- 107.2 fmol/ml (P = 0.002), and a reduction in Ang II to 4.8 +/- 1.2 fmol/ml (P less than 0.001). Furthermore, these patients showed a ninefold increase in Ang-(1-7) to 9.7 +/- 4.3 fmol/ml (P less than 0.001), indicating a role for prolylendopeptidase in the metabolism of Ang I in vivo. These N-terminal assays have demonstrated that carboxy-truncated metabolites of Ang I and Ang II make little contribution to plasma angiotensin peptides, except during ACE inhibitor therapy. Furthermore, these antisera allow the measurement of Ang I and Ang II in the same radioimmunoassay of fractions from HPLC, providing a highly reliable estimate of the Ang II:Ang I ratio.  相似文献   

15.
OBJECTIVES: To investigate whether imipramine and quinidine, inhibitors of the Na /Mg exchanger, influence development of hypertension in rats infused with angiotensin (Ang) II. METHODS: Sprague-Dawley rats were divided into six groups: (1) control (vehicle); (2) Ang II (150 ng/kg per min subcutaneously); (3) imipramine alone (5 mg/kg per day in drinking water); (4) quinidine alone (5 mg/kg per day in drinking water); (5) Ang II plus imipramine; (6) Ang II plus quinidine. Rats were studied for 3 weeks. To verify that Ang II directly influences Na -dependent Mg exchange, in-vitro studies were performed in vascular smooth muscle cells (VSMCs) derived from mesenteric arteries. RESULTS: Ang II increased systolic blood pressure (SBP) in all groups. The magnitude of the increase was lower ( 0.01) in Ang II groups treated with imipramine (151 +/- 7.4 mmHg) or quinidine (163 +/- 4 mmHg) than in the Ang II only group (205 +/- 4 mmHg). Neither imipramine nor quinidine influenced SBP in vehicle-treated rats. Plasma concentrations of Mg and K were decreased in Ang II rats compared with controls (P < 0.05). Platelet intracellular free Mg concentration was reduced and platelet intracellular free Na concentration was increased in the Ang II group compared with control and treated groups (P < 0.01). These effects were normalized by imipramine and quinidine. Ang II stimulated Na -dependent Mg transport in VSMCs. These actions were abrogated by imipramine and quinidine and in Na -free conditions. CONCLUSIONS: Our data demonstrate that inhibitors of Na -dependent Mg transport attenuate development of hypertension in rats infused with Ang II. These findings suggest a possible role for Na /Mg exchange activity in the pathogenesis of Ang II-dependent hypertension.  相似文献   

16.
-Recent studies have indicated that angiotensin II (Ang II) can stimulate oxidative stress. The present study was conducted to assess the contribution of oxygen radicals to hypertension and regional circulation during Ang II-induced hypertension. With radioactive microspheres, the responses of systemic and regional hemodynamics to the membrane-permeable, metal-independent superoxide dismutase mimetic 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl (tempol) were assessed in conscious Ang II-infused hypertensive rats. Ang II-infused rats (80 ng/min SC for 12 days: n=25) showed higher mean arterial pressure (MAP: 161+/-4 mm Hg) and total peripheral resistance (TPR: 1.59+/-0.08 mm Hg. min(-1). mL(-1)) than vehicle-infused normotensive rats (116+/-3 mm Hg and 0.95+/-0.04 mm Hg. min(-1). mL(-1), respectively; n=23). The blood flow rates in the brain, spleen, large intestine, and skin were significantly reduced in Ang II-infused rats compared with vehicle-infused rats, whereas rates in the lung, heart, liver, kidney, stomach, small intestine, mesenterium, skeletal muscle, and testis were similar. Vascular resistance was significantly increased in every organ studied except the lung, in which the resistance was similar. Tempol (216 μmol/kg IV) significantly reduced MAP by 30+/-4% from 158+/-7 to 114+/-5 mm Hg and TPR by 35+/-6% from 1.57+/-0.17 to 0.95+/-0.04 mm Hg. min(-1). g(-1) in Ang II-infused rats (n=9) but had no effect on these parameters in vehicle-infused rats (n=8). In Ang II-infused rats, tempol did not affect regional blood flow but significantly decreased vascular resistance in the brain (29+/-6%), heart (31+/-6%), liver (37+/-7%), kidney (30+/-7%), small intestine (38+/-6%), and large intestine (47+/-7%). Ang II-infused hypertensive rats showed doubled vascular superoxide production (assessed with lucigenin chemiluminescence), which was normalized by treatment with tempol (3 mmol/L, n=7). Further studies showed that the NO synthase inhibitor, N:(omega)-nitro-L-arginine methyl ester (11 μmol. kg(-1). min(-1) IV, n=11) markedly attenuated the systemic and regional hemodynamic responses of tempol in Ang II-infused rats. These results suggest that in this model of hypertension, oxidative stress may have contributed to the alterations in systemic blood pressure and regional vascular resistance through inactivation of NO.  相似文献   

17.
Studies were performed to test the hypothesis that reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK) contribute to the pathogenesis of aldosterone/salt-induced renal injury. Rats were given 1% NaCl to drink and were treated with one of the following combinations for 6 weeks: vehicle (0.5% ethanol, SC, n=6); aldosterone (0.75 microg/H, SC, n=8); aldosterone plus a selective mineralocorticoid receptor antagonist; eplerenone (0.125% in chow, n=8); aldosterone plus an antioxidant; and tempol (3 mmol/L in drinking solution, n=8). The activities of MAPKs, including extracellular signal-regulated kinases (ERK)1/2, c-Jun-NH2-terminal kinases (JNK), p38MAPK, and big-MAPK-1 (BMK1) in renal cortical tissues were measured by Western blot analysis. Aldosterone-infused rats showed higher systolic blood pressure (165+/-5 mm Hg) and urinary excretion of protein (106+/-24 mg/d) than vehicle-infused rats (118+/-3 mm Hg and 10+/-3 mg/d). Renal cortical mRNA expression of p22phox, Nox-4, and gp91phox, measured by real-time polymerase chain reaction, was increased in aldosterone-infused rats by 2.3, 4.3, and 3.0-fold, respectively. Thiobarbituric acid-reactive substances (TBARS) content in renal cortex was also higher in aldosterone (0.23+/-0.02) than vehicle-infused rats (0.09+/-0.01 nmol/mg protein). ERK1/2, JNK, and BMK1 activities were significantly elevated in aldosterone-infused rats by 3.3, 2.3, and 3.0-fold, respectively, whereas p38MAPK activity was not changed. Concurrent administration of eplerenone or tempol to aldosterone-infused rats prevented the development of hypertension (127+/-2 and 125+/-5 mm Hg), and the elevations of urinary excretion of protein (10+/-2 and 9+/-2 mg/day) or TBARS contents (0.08+/-0.01 and 0.11+/-0.01 nmol/mg protein). Furthermore, eplerenone and tempol treatments normalized the activities of ERK1/2, JNK, and BMK1. These data suggest that ROS and MAPK play a role in the progression of renal injury induced by chronic elevations in aldosterone.  相似文献   

18.
We have reported that the induction of diabetes in N(omega)-nitro-L-orginine methyl ester (L-NAME)-infused rats causes significant hypertension that is associated with increased plasma renin activity. This study tested the role of angiotensin II (Ang II) by clamping it chronically at baseline levels. The clamp consisted of an intravenous infusion of enalapril (10 mg/kg/d), which decreased mean arterial pressure (MAP) by approximately 20 mm Hg after 3 days, and adding chronic Ang II at 4 ng/kg/min, which restored MAP to normal. Chronic L-NAME infusion increased MAP to 127 +/- 1 and 132 +/- 2 mm Hg in normal and clamped rats, respectively, and induction of diabetes (streptozotocin) increased MAP progressively in normal rats to 161 +/- 8 mm Hg by day 12, whereas MAP in the clamped rats decreased progressively to 98 +/- 5 mm Hg by day 12. In non-L-NAME rats, MAP averaged 95 +/- 1 and 91 +/- 1 mm Hg for normal and clamped groups, respectively, before diabetes, and MAP was 10 to 13 mm Hg lower in the clamped versus normal rats midway through the diabetic period. This suggests that Ang II is important for maintaining blood pressure at the onset of diabetes, possibly to compensate for renal volume losses. Angiotensin II also is required for the hypertension caused by induction of diabetes in rats with chronic blockade of nitric oxide synthesis, but whether this is due to increased volume sensitivity in L-NAME-treated, vasoconstricted rats remains to be determined.  相似文献   

19.
This study tested the hypothesis that afferent arteriolar responses to purinoceptor activation are attenuated, and Ca2+ signaling mechanisms are responsible for the blunted preglomerular vascular reactivity in angiotensin II (Ang II) hypertension. Experiments determined the effects of ATP, the P2X1 agonist beta,gamma-methylene ATP or the P2Y agonist UTP on arteriolar diameter using the juxtamedullary nephron technique and on renal myocyte intracellular Ca2+ concentration ([Ca2+]i) using single cell fluorescence microscopy. Six or 13 days of Ang II infusion significantly attenuated the vasoconstrictor responses to ATP and beta,gamma-methylene ATP (P<0.05). During exposure to ATP (1, 10, and 100 micromol/L), afferent diameter declined by 17+/-2%, 29+/-3%, and 30+/-2% in normal control rats and 8+/-3%, 7+/-3%, and 22+/-3% in kidneys of Ang II-infused rats (13 days). Renal myocyte intracellular calcium responses to ATP or beta,gamma-methylene ATP were also decreased in Ang II hypertensive rats. In myocytes of control rats, peak increases in [Ca2+]i averaged 107+/-21, 170+/-38, and 478+/-79 nmol/L at ATP concentrations of 1, 10, and 100 micromol/L, respectively. Ang II infusion for 13 days decreased the peak responses to ATP (1, 10, and 100 micromol/L) to 65+/-13, 102+/-20, and 367+/-73 nmol/L, respectively. The peak increases in [Ca2+]i in response to beta,gamma-methylene ATP were also reduced in Ang II hypertensive rats. However, angiotensin hypertension did not change the UTP-mediated vasoconstrictor responses or the myocyte calcium responses to UTP. These results indicate that the impaired autoregulatory response observed in Ang II-dependent hypertension can be attributed to impairment of P2X1 receptor-mediated signal transduction.  相似文献   

20.
OBJECTIVE: We recently reported that treatment of uremic rats with reduced renal mass with the angiotensin II (Ang II) subtype 1 receptor (AT1) antagonist losartan reduces endothelin-1 (ET-1) levels in blood vessels and in glomeruli. Although this suggests an important role for Ang II in the modulation of ET-1 production, the concomitant decrease in blood pressure may also be involved. The present study was designed to investigate whether the modulation of ET-1 production in uremic rats is related to tissue-specific effects of AT1 receptor blockade or to the antihypertensive effect of losartan. DESIGN: One week after renal mass reduction, uremic rats were treated with the conventional triple therapy (TRx) [reserpine (5 mg/l), hydralazine (80 mg/l) and hydrochlorothiazide (25 mg/l)] or losartan (20 mg/kg per day) for 6 weeks. Immunoreactive-ET-1 (ir-ET-1) levels in plasma and urine, as well as in vascular and renal tissues were measured by a specific radioimmunoassay after sample extraction and purification. RESULTS: Before treatment, systolic blood pressure was significantly higher in uremic animals compared to sham-operated controls (165+/-4 versus 123+/-2 mmHg, respectively; P < 0.01). Treatment with the TRx or with losartan normalized systolic blood pressure in uremic rats, whereas it was further increased in untreated uremic animals. At week 6, serum creatinine, proteinuria and urinary ET-1 and transforming growth factor-beta1 (TGF-beta1) excretion, as well as vascular and glomerular ET-1 content were increased in uremic rats compared to the controls (P < 0.01). Treatment of uremic rats with the TRx or with losartan reduced ET-1 content in the thoracic aorta and the mesenteric arterial bed (P < 0.01). However, losartan, but not the TRx, significantly attenuated the rise of serum creatinine, proteinuria and urinary ET-1 and TGF-beta1 excretion, as well as ET-1 content in glomeruli of uremic rats. Compared with the controls, renal preproET-1 mRNA expression was also significantly higher in uremic rats. Treatment of uremic rats with losartan prevented renal preproET-1 mRNA overexpression, indicating that changes in glomerular ET-1 content and urinary ET-1 excretion were related to modulation of renal ET-1 production. CONCLUSIONS: These findings indicate that the effect of losartan on ET-1 production in peripheral blood vessels may be mediated, in part, by the reduction of blood pressure. In contrast, the reduction of renal ET-1 production is mediated by tissue-specific effects of AT1 receptor blockade, and may contribute to the renal protective effects of losartan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号