首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的探究二氢杨梅素(dihydromyricetin,DHM)对高脂饮食诱导的肥胖小鼠肝脏脂质蓄积的作用及其机制。方法C57BL/6J小鼠60只,随机分为6组(n=10):①ND组:正常饲料;②ND+L-DHM组:正常饲料+低剂量DHM(125 mg·kg^-1·d^-1);③ND+H-DHM组:正常饲料+高剂量DHM(250 mg·kg^-1·d^-1);④HFD组:高脂饲料;⑤HFD+L-DHM组:高脂饲料+低剂量DHM;⑥HFD+H-DHM组:高脂饲料+高剂量DHM。记录小鼠体重;16周后,测空腹血脂;计算体脂重量;肝脏HE和油红O染色;荧光定量PCR和Western blot检测肝脏SIRT1、AMPK、ACC、FAS、SREBP-1和PPARα、CPT1的表达。结果与ND组相比,HFD组小鼠体重、体脂、血清TG、TC、HDL水平明显增加;肝脏内脂肪蓄积增加,肝脏SREBP-1c、FAS、ACC1表达增加,而PPARα、CPT1、SIRT1和AMPK表达下降。经DHM处理后,HFD小鼠上述指标发生逆转;但ND小鼠上述指标无明显改变。结论DHM可能通过激活SIRT1-AMPK通路抑制脂质合成,促进脂质分解,改善高脂饮食诱导的肥胖小鼠肝脏脂质沉积。  相似文献   

2.
有文献报道, SIRT1-AMPK信号通路可能在DHM改善肝脏细胞甘油三酯蓄积、胰岛素抵抗等作用中发挥作用。为此,本课题拟进一步观察DHM对高脂饮食诱导的肥胖小鼠肝脏脂肪沉积的影响,并探讨其可能机制。C57BL/6J小鼠采用普通饲料和高脂饲料喂养,同时分别用或不用低剂量(125 mg/kg)或高剂量(250 mg/kg)的DHM处理16周。实验期间,每两周检测体重一次。16周后,眼眶静脉取血并处死动物,同时取肩胛下、附睾与腹股沟的脂肪并用电子秤进行称重,并记录脂肪重量。全自动生化分析仪检测:血清甘油三酯(triglyceride,TG)、血清总胆固醇(totalcholesterol,TC)、血清高密度脂蛋白(high-densitylipoprotein,HDL)、血清低密度脂蛋白(low-densitylipoprotein,LDL)。取肝脏甲醛固定、HE和油红O染色检测肝脏脂肪沉积情况;比色法检测肝脏MDA和SOD含量; Realtime PCR检测相关指标的基因表达:IL-6、IL-8、TNF-α、乙酰辅酶A羧化酶(acetyl-Co A carboxylase, ACC)、固...  相似文献   

3.
Zhang C  Chen X  Zhu RM  Zhang Y  Yu T  Wang H  Zhao H  Zhao M  Ji YL  Chen YH  Meng XH  Wei W  Xu DX 《Toxicology letters》2012,212(3):229-240
A link between fructose drinking and nonalcoholic fatty liver disease (NAFLD) has been demonstrated in human and rodent animals. The aim of the present study was to investigate whether endoplasmic reticulum (ER) stress is mediated in the development of fructose-induced NAFLD. Female CD-1 mice were fed with 30% fructose solution for eight weeks. Hepatic lipid accumulation was assessed. Hepatic nuclear sterol regulatory element-binding protein (SREBP)-1c was measured. Results showed that hepatic SREBP-1c was activated in mice fed with fructose solution. Fatty acid synthase (fas) and acetyl-CoA carboxylase (acc), two target genes of SREBP-1c, were up-regulated. Fructose-evoked hepatic SREBP-1c activation seemed to be associated with insulin-induced gene (Insig)-1 depletion. An ER stress and unfolded protein response (UPR), as determined by an increased glucose-regulated protein (GRP78) expression and an increased eIF2α and PERK phosphorylation, were observed in liver of mice fed with fructose solution. Phenylbutyric acid (PBA), an ER chemical chaperone, not only significantly attenuated ER stress, but also alleviated fructose-induced hepatic Insig-1 depletion. PBA inhibited fructose-evoked hepatic SREBP-1c activation and the expression of SREBP-1c target genes, and protected against hepatic lipid accumulation. In conclusion, ER stress contributes, at least in part, to hepatic SREBP-1c activation and lipid accumulation in fructose-evoked NAFLD.  相似文献   

4.
Rapamycin (RAPA), an immunosuprpressive drug used extensively to prevent graft rejection in transplant patients, has been reported to inhibit adipogenesis in vitro. In this study, we investigated the anti-obesity effects of RAPA in C57BL/6J mice on a high-fat diet (HFD). Mice treated with RAPA (2 mg/kg per week for 16 weeks) had reduced body weight and epididymal fat pads/body weight, reduced daily food efficiency, and lower serum leptin and insulin levels compared with the HFD control mice. However, RAPA-treated mice were hyperphagic, demonstrating an increase in food intake. Dissection of RAPA-treated mice revealed a marked reduction in fatty liver scores, average fat cell size, and percentage of large adipocytes of retroperitoneal and epididymal white adipose tissue (RWAT and EWAT), compared to the HFD control mice. These results suggest that RAPA prevented the effect of the high-fat diet on the rate of accretion in body weight via reducing lipid accumulation, despite greater food intake. It is likely that RAPA may serve as a potential strategy for body weight control and/or antiobesity therapy.[Supplementary Tables: available only at http://dx.doi.org/10.1254/jphs.08215FP]  相似文献   

5.
The potential for the obese state to alter sensitivity to toxic chemicals is poorly understood. In this study, dose-response effects of the trichothecene deoxynivalenol (DON), a common food-borne mycotoxin, were determined on body weight of diet-induced obese mice. In study 1, the effects of feeding adult female B6C3F1 mice a high-fat diet (HFD; 60% kcal from fat) containing 0, 2, 5, or 10 ppm DON for 10 wk on body weight and adiposity were compared. Mice consuming 5 or 10 ppm DON exhibited a 15 and 24% decrease in weight gain and a 50 and 83% reduction in periuterine fat, respectively. In study 2, mice were fed HFD for 8 wk to induce obesity and the effects of consuming HFD + 0, 2, 5, or 10 ppm DON for 8 wk were then determined. Mice fed 5 or 10 ppm DON exhibited a 16 and 23% weight reduction and a 0 and 40% periuterine fat reduction, respectively. In a follow-up experiment, food consumption was measured prior to and after the transition from HFD to HFD + 10 ppm DON. Exposure to DON was found to lower HFD consumption within 1 d, with significant weight loss in DON-fed mice evident after 6 d. In both studies 1 and 2, consumption of 5 or 10 ppm DON diminished circulating levels of insulin-like growth factor acid-labile subunit. Taken together, DON consumption lowered weight gain and produced weight loss in diet-induced obese mice at higher thresholds than that observed previously in normal B6C3F1 mice.  相似文献   

6.
We investigated the effects of systemic administrations of ginger (Zingiber officinale Roscoe, Zingiberaceae) or its pungent constituent, [6]-gingerol, on resting body temperature in rats. Rats given ginger-containing rat chow for 5 days showed no changes in their day-night cycle of body temperature or physical activity. However, a single intraperitoneal (i.p.) injection of [6]-gingerol (2.5 or 25 mg/kg) induced a rapid, marked drop in body temperature in a dose-related manner, with no change in physical activity. A significant decrease in metabolic rate was observed immediately after an i.p. injection of [6]-gingerol (25 mg/kg), although heat-loss responses underwent no alteration (versus vehicle). These results suggest that in rats: (a) a decrease in metabolic rate is responsible for the [6]-gingerol-induced hypothermia, and (b) [6]-gingerol modulates or interferes with the mechanisms underlying body temperature regulation, while other bioactive constituents of ginger may counteract the hypothermic effect of [6]-gingerol.  相似文献   

7.
The objective of this study was to examine the therapeutic effect of osthol, an active constituent of Cnidium monnieri (L.) Cusson (Apiaceae), in hyperlipidemic fatty liver mice and investigate the potential mechanism of the osthol treatment. A mouse model with hyperlipidemic fatty liver was induced by orally feeding the fat milk for 4 weeks. The experimental mice were then treated with osthol 10-40 mg/kg for 6 weeks. After oral administration, the mice in the model and medicine-treated groups were continuously given the fat milk for 2 weeks again. Whereafter, the lipid levels in serum and liver, hepatic weight coefficient and histopathological evaluation were measured. The sterol regulatory element-binding protein (SREBP)-1c, SREBP-2, fatty acid synthase (FAS), low density lipoprotein (LDL) receptor and cholesterol 7α-hydroxylase (CYP7A) mRNA expressions in liver were examined. The results showed that in the osthol-treated groups, the total cholesterol, triglyceride and free fatty acid levels in serum and liver, and the hepatic weight coefficient were gradually decreased with dose. Importantly, the histopathological evaluation of liver specimens demonstrated that osthol might decrease lipid accumulation. Osthol could increase the mRNA expression of CYP7A and decrease the mRNA expressions of SREBP-1c, SREBP-2, FAS and LDL receptor in liver in fat milk-induced fatty liver mice. These results suggested that osthol might exert the therapeutic effect on fat milk-induced fatty liver in mice, by inhibiting hepatic SREBP-1c/2 mRNA expressions and subsequent modulation of SREBP-1c/2-mediated target genes such as FAS, CYP7A and LDL receptor.  相似文献   

8.
9.
Glucagon Like Peptide-1 (GLP-1) drugs are currently used to treat type-2 diabetes. Safety concerns for increased risk of pancreatitis and pancreatic ductal metaplasia have accompanied these drugs. High fat diet (HFD) is a type-2 diabetes risk factor that may affect the response to GLP-1 drug treatment. The objective of the present study was to investigate the effects of diet and GLP-1 based drugs on the exocrine pancreas in mice. Experiments were designed in a mouse model of insulin resistance created by feeding a HFD or standard diet (STD) for 6 weeks. The GLP-1 drugs, sitagliptin (SIT) and exenatide (EXE) were administered once daily for additional 6 weeks in both mice fed HFD or STD. The results showed that body weight, blood glucose levels, and serum levels of pro-inflammatory cytokines (TNFα, IL-1β, and KC) were significantly greater in HFD mice than in STD mice regardless of GLP-1 drug treatment. The semi-quantitative grading showed that pancreatic changes were significantly greater in EXE and SIT-treated mice compared to control and that HFD exacerbated spontaneous exocrine pancreatic changes seen in saline-treated mice on a standard diet. Exocrine pancreatic changes identified in this study included acinar cell injury (hypertrophy, autophagy, apoptosis, necrosis, and atrophy), vascular injury, interstitial edema and inflammation, fat necrosis, and duct changes. These findings support HFD as a risk factor to increased susceptibility/severity for acute pancreatitis and indicate that GLP-1 drugs cause pancreatic injury that can be exacerbated in a HFD environment.  相似文献   

10.
Arsenic toxicity induces type 2 diabetes via stress mediated pathway. In this study, we attempt to reveal how sodium arsenite (iAs) could induce stress mediated impaired insulin signaling in mice and if an isolated active fraction of ginger, [6]-gingerol could attenuate the iAs intoxicated hyperglycemic condition of mice and bring about improvement in their impaired insulin signaling. [6]-Gingerol treatment reduced elevated blood glucose level and oxidative stress by enhancing activity of super oxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and GSH. [6]-Gingerol also helped in increasing plasma insulin level, brought down after iAs exposure. iAs treatment to primary cell culture of β-cells and hepatocytes in vitro produced cyto-degenerative effect and accumulated reactive oxygen species (ROS) in pancreatic β-cells and hepatocytes of mice. [6]-Gingerol appeared to inhibit/intervene iAs induced cyto-degeneration of pancreatic β-cells and hepatocytes, helped in scavenging the free radicals. The over-expression of TNFα and IL6 in iAs intoxicated mice was down-regulated by [6]-gingerol treatment. iAs intoxication reduced expression levels of GLUT4, IRS-1, IRS-2, PI3K, AKT, PPARγ signaling molecules; [6]-gingerol mediated its action through enhancing the expressions of these signaling molecules, both at protein and mRNA levels. Thus, our results suggest that [6]-gingerol possesses an anti-hyperglycemic property and can improve impaired insulin signaling in arsenic intoxicated mice.  相似文献   

11.
Ferulic acid (FA) is a plant phenolic acid that has several pharmacological effects including antihyperglycaemic activity. Thus, the objective of this study is to investigate the effect of FA on glucose and lipid metabolism in high‐fat diet (HFD)‐induced obese mice. Institute for Cancer Research (ICR) mice were fed a HFD (45 kcal% fat) for 16 weeks. At the ninth week of induction, the obese mice were orally administered with daily FA doses of 25 and 50 mg/kg for the next eight weeks. The results show that FA significantly reduced the elevated blood glucose and serum leptin levels, lowered the insulin resistance, and increased the serum adiponectin level. Moreover, serum lipid level, and liver cholesterol and triglyceride accumulations were also reduced. The histological examination showed clear evidence of a decrease in the lipid droplets in liver tissues and smaller size of fat cells in the adipose tissue in the obese mice treated with FA. Interestingly, FA reduced the expression of hepatic lipogenic genes such as sterol regulatory element‐binding protein 1c (SREBP1c), fatty acid synthase (FAS), and acetyl‐CoA carboxylase (ACC). It could also up‐regulate hepatic carnitine palmitoyltransferase 1a (CPT1a) gene and peroxisome proliferator‐activated receptor alpha (PPARα) proteins. The FA treatment was also found to suppress the protein expressions of hepatic gluconeogenic enzymes, phosphoenolpyruvate carboxylase (PEPCK) and glucose‐6‐phosphatase (G6Pase). In conclusion, the findings of this study demonstrate that FA improves the glucose and lipid homeostasis in HFD‐induced obese mice probably via modulating the expression of lipogenic and gluconeogenic genes in liver tissues.  相似文献   

12.
Curcumin is a well‐known component of traditional turmeric (Curcuma longa), which has been reported to prevent obesity and diabetes. However, the effect of curcumin on hepatic lipid metabolism remains unclear. The aim of this study was to examine the effects of curcumin on hepatic steatosis in high‐fat/cholesterol diet (HFD)‐induced obese mice. Male C57BL/6J mice were fed a normal diet (ND), HFD or HFD with 0.15% curcumin (HFD+C) for 11 weeks. We found that curcumin significantly lowered the body‐weight and adipose tissue weight of mice in the HFD+C group compared with the findings for the HFD group (< 0.05). The levels of total cholesterol, fasting glucose and insulin in serum were decreased, and HFD‐induced impairment of insulin sensitivity was improved by curcumin supplementation (< 0.05). Curcumin protected against the development of hepatic steatosis by reducing hepatic fat accumulation. Moreover, curcumin activated AMP‐activated protein kinase (AMPK) and elevated the gene expression of peroxisome proliferator‐activated receptor alpha. By contrast, curcumin suppressed the HFD‐mediated increases in sterol regulatory element‐binding protein‐1, acetyl‐CoA carboxylase 1, fatty acid synthase and cluster of differentiation 36 expression. Taken together, these findings indicate that curcumin attenuates HFD‐induced hepatic steatosis by regulating hepatic lipid metabolism via AMPK activation, suggesting its use as a therapeutic for hepatic steatosis.  相似文献   

13.
The effect of lignin-derived lignophenols on lipid metabolism in the livers of rats fed a high-fat diet was investigated. Rats fed a diet providing 45% of energy from fat were divided into 2 groups, namely 0% and 0.5% lignophenols-containing diets. The controls were fed a diet providing 10% of energy from fat. Plasma blood parameters, protein expression of acetyl-CoA carboxylase (ACC) and sterol regulatory element-binding protein (SREBP)-1, and SREBP-1c mRNA expression in the livers were examined. The plasma triglyceride levels in the rats fed lignophenols-containing diets were decreased. SREBP-1c mRNA expression in the rats fed lignophenols-containing diets was significantly reduced compared with the rats fed high-fat diets, and phosphorylated ACC protein in the rats fed lignophenols-containing diets was significantly increased. Our results suggested that lignophenols suppress the expression of SREBP-1c mRNA and the phosphorylation of ACC in the liver, and may lead to a decrease in plasma triglyceride levels.  相似文献   

14.
The herbal drug ginger (Zingiber officinale Roscoe) may be effective for treating nausea, vomiting, and gastric hypomotility. In these conditions, cholinergic M (3) receptors and serotonergic 5-HT (3) and 5-HT (4) receptors are involved. The major chemical constituents of ginger are [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol. We studied the interaction of [6]-gingerol, [8]-gingerol, [10]-gingerol (racemates), and [6]-shogaol with guinea pig M (3) receptors, guinea pig 5-HT (3) receptors, and rat 5-HT (4) receptors. In whole segments of guinea pig ileum (bioassay for contractile M (3) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol slightly but significantly depressed the maximal carbachol response at an antagonist concentration of 10 μM. In the guinea pig myenteric plexus preparation (bioassay for contractile 5-HT (3) receptors), 5-HT maximal responses were depressed by [10]-gingerol from 93 ± 3 % to 65 ± 6 % at an antagonist concentration of 3 μM and to 48 ± 3 % at an antagonist concentration of 5 μM following desensitization of 5-HT (4) receptors and blockade of 5-HT (1) and 5-HT (2) receptors. [6]-Shogaol (3 μM) induced depression to 61 ± 3 %. In rat esophageal tunica muscularis mucosae (bioassay for relaxant 5-HT (4) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol (2-6.3 μM) showed no agonist effects. The maximal 5-HT response remained unaffected in the presence of the compounds. It is concluded that the efficiency of ginger in reducing nausea and vomiting may be based on a weak inhibitory effect of gingerols and shogaols at M (3) and 5-HT (3) receptors. 5-HT (4) receptors, which play a role in gastroduodenal motility, appear not to be involved in the action of these compounds.  相似文献   

15.
Excessive ethanol consumption during pregnancy causes fetal alcohol syndrome. We investigated the effect of [6]-gingerol on ethanol-induced embryotoxicity using a whole embryo culture system. The morphological changes of embryos and the gene expression patterns of the antioxidant enzymes cytosolic glutathione peroxidase (cGPx), cytoplasmic Cu/Zn superoxide dismutase (SOD1), and Mn-SOD (SOD2), and SOD activity were examined in the cultured mouse embryos exposed to ethanol (5 μL/3 mL) and/or [6]-gingerol (1×10−8 or 1×10−7 μg/mL) for 2 days. In ethanol-exposed embryos, the standard morphological score of embryos was significantly decreased compared with those of the control (vehicle) group. However, cotreatment of embryos with [6]-gingerol and ethanol significantly improved all of the developmental parameters except crownrump length and head length, compared with those of the ethanol alone group. The mRNA expression levels of cGPx and SOD2, not SOD1, were decreased consistently, SOD activity were significantly decreased compared with the control group. However, the decreases in mRNA levels of antioxidant enzymes and SOD activity were significantly restored to the control levels by [6]-gingerol supplement. These results indicate that [6]-gingerol has a protective effect against ethanol-induced teratogenicity during mouse embryogenesis.  相似文献   

16.
The role of vitamin D in maintaining calcium homoeostasis and bone mineralization is well‐established. The aim of the current investigation was to evaluate the effect of calcitriol treatment on inflammation, insulin resistance and liver changes induced by increased body‐weight. Four groups of mice (n = 11 each) were maintained on either low‐fat diet (LFD) or high‐fat diet (HFD) with and without 1α, 25‐dihydroxyvitamin D3 (calcitriol) for 16 weeks. Body‐weight of animals was recorded at the start of the study and every 4 weeks thereafter. At the end of the experiment, blood samples were collected for the determination of biochemical parameters, and liver tissues were harvested for the histopathological evaluation. A significant gradual decrease in weight was observed in HFD‐fed mice treated with calcitriol compared with a steady increase in controls (< 0.01). Furthermore, calcitriol treatment reduced concentrations of various inflammatory markers including TNF‐α, CRP and IL‐6 (< 0.05). Treated animals also exhibited lower levels of C‐peptide and insulin (539.4 ng/ml versus 718.9 ng/ml and 0.77 ng/ml versus 1.7 ng/ml, respectively; < 0.05), which are consistent with improved insulin resistance. Liver histology and ultrastructural studies showed a marked accumulation of fat droplets in approximately 60–70% of hepatocytes of mice fed on HFD, while calcitriol administration rendered the whole structure more normal. Overall, our data signify an important effect of calcitriol on inflammation under HFD conditions and a protective effect on the liver structure.  相似文献   

17.
OBJECTIVE Reverse cholesterol transport(RCT) is a pivotal pathway involved in transporting excess cholesterol from peripheral tissues to the liver for excretion in the bile and eventual y the feces. In the present study we identified the naturally occurring alkaloid evodiamine as alipid-lowing inducer by facilitating RCT in highfat diet(HFD)-fed mice. METHODS Hep G2 cells were first exposed to 0.6 m M FFA(palmitic acid/oleic acid, 1:2)for 24 h to induce the liversteatosis before treated with or without evodiamine foran additional 24 h. Atorvastatin was used as apositive control. Intracellular lipid deposition was analyzed by Oil Red O staining. Male ICR mice were fed HFD initially for 4 weeks to induce hyperlipidemia. After induction of hyperlipidemia, evodiamine was intragastrically administered in the dose of 10 mg · kg~(-1) per day for 4 weeks to the mice. The levels of triglyceride(TG), total cholesterol(TC), high-density lipoprotein cholesterol(HDL-C) and low-density lipoprotein cholesterol(LDL-C)in the serum were determinedto evaluate the metabolic lipid profiles in the HFD-fed mice. Hematoxylin and eosin(H&E) staining was performed for fat accumulation examination. Western blotting and quantitative real time polymerase chain reaction(q RT-PCR) were used to assess the expression of proteins and m RNAs correlated with RCT in the liver and small intestine, including ATP-binding cassette transporter A1(ABCA1), ABCG1, ABCG5,ABCG8, scavenger receptor class B type 1(SR-B1) and Niemann-Pick type C1 Like 1(NPC1L1). RESULTS Oil Red O staining revealed that evodiamine markedly attenuated hepatic fat accumulation caused by FFA in HepG2 cells. In HFD-fed mice, evodiamine significantly reduced serum TG, TC and LDL-C but not HDL-C. Besides, evodiamine significantly decreased hepatic lipid accumulation revealed by H&E staining. Moreover, evodiamine increased ABCG1 expression in the liver and raised NPC1L1 expression in the small intestine. CONCLUSION Evodiamine improves lipid metabolic profile in HFD-fed mice by increasing expression of ABCG1 in liver and NPC1L1 in the small intestine.  相似文献   

18.
The present study examined the anti-obesity effects of pine needle extract (PNE) in 3T3-L1 preadipocytes and in vivo studies. PNE treatment suppressed both glycerol-3-phosphate dehydrogenase activity and expression of peroxisome proliferator-activated receptor (PPAR) gamma in cultured 3T3-L1 adipocytes. To investigate the effect of PNE on obesity in rats fed high-fat diet, four types of diet, which included a normal diet (ND), high-fat diet (HFD), ND+PNE, and HFD+PNE diets, were fed to the rats ad libitum for 6 weeks. The PNE supplement significantly decreased body weight gain and visceral fat mass compared to the HFD group. The total cholesterol, TG, and leptin levels in the plasma were significantly reduced by PNE supplementation compared with those of the HFD group. Histological findings in liver tissue showed that PNE supplementation alleviated steatosis induced by HFD. In conclusion, PNE treatment suppressed differentiation of 3T-L1 adipocytes, in part by down-regulating expression of PPAPgamma mRNA, and reduced adipose tissue mass, hyperlipidemia, and hepatic steatosis in obese rats fed HFD. Therefore, pine needle water extract may be considered for use in therapy to control obesity.  相似文献   

19.
Resveratrol is a natural polyphenolic stilbene derivative found in a variety of edible fruits, including nuts, berries, and grape skin. Although resveratrol has been suggested to improve thermogenesis in the brown adipose tissues of obese animals, there have been no reports on the anti-adipogenic and anti-inflammatory effects of resveratrol in the white adipose tissues of obese animals. The primary aim of this study was to investigate whether resveratrol attenuates high-fat diet (HFD)-induced adipogenesis and inflammation in the epididymal fat tissues of mice and to explore the underlying mechanisms involved in this attenuation. In comparison with HFD-fed mice, mice fed with a 0.4% resveratrol-supplemented diet (RSD) showed significantly lower body weight gain (−48%), visceral fat-pad weights (−58%), and plasma levels of triglyceride, FFA, total cholesterol, glucose, tumor necrosis factor (TNF) α, and monocyte chemoattractant protein-1 (MCP1). Resveratrol significantly reversed the HFD-induced up-regulation of galanin-mediated signaling molecules (GalR1/2, PKCδ, Cyc-D, E2F1, and p-ERK) and key adipogenic genes (PPARγ2, C/EBPα, SREBP-1c, FAS, LPL, aP2, and leptin) in the epididymal adipose tissues of mice. Furthermore, resveratrol significantly attenuated the HFD-induced up-regulation of pro-inflammatory cytokines (TNFα, IFNα, IFNβ, and IL-6) and their upstream signaling molecules (TLR2/4, MyD88, Tirap, TRIF, TRAF6, IRF5, p-IRF3, and NF-κB) in the adipose tissues of mice. The results of this study suggest that resveratrol inhibits visceral adipogenesis by suppressing the galanin-mediated adipogenesis signaling cascade. It may also attenuate cytokine production in the adipose tissue by repressing the TLR2- and TLR4-mediated pro-inflammatory signaling cascades in HFD-fed mice.  相似文献   

20.
This study investigated if the protective effect of taurine against high fat diet‐induced hepatic steatosis involves modulating the hepatic activity of 5' AMP‐activated protein kinase (AMPK) and levels/activity of the sterol regulatory element‐binding proteins‐1/2 (SREBP1/2). Rats were divided into four groups (n = 12/group) as (a) STD, fed standard diet (3.85 kcal/g); (b) STD + taurine (500 mg/kg); (c) HFD, fed HFD (4.73 kcal/g); and (d) HFD + taurine. All treatments were conducted for 12 weeks. Independent of food intake or modulating glucose or insulin levels, taurine administration to STD and HFD‐fed rats significantly lowered weekly weight gain and the accumulation of the retroperitoneal, visceral and subcutaneous fats. In both groups, taurine also reduced serum and hepatic levels of triglycerides and cholesterol and reduced hepatic mRNA and protein levels of fatty acid synthase (FAS), acetyl CoA carboxylase‐1 (ACC‐1), HMG‐CoA‐reductase and HMG‐CoA synthetase. In control rats only, taurine reduced hepatic levels of mature forms of sterol regulatory element‐binding proteins (SREBP)‐1/2. In HFD‐fed rats, taurine reduced SREBP‐1/2 precursor and mature forms in the livers of HFD‐fed rats. Besides, taurine significantly increased levels of glutathione (GSH), the activity of superoxide dismutase (SOD), and the activity of AMPK and its downstream β‐oxidation genes including peroxisome proliferator‐activated receptor‐α (PPAR‐α) and carnitine palmitoyltransferase (CPT‐1) in the livers of both the control and HFD‐fed rats. In conclusion, taurine protects against HFD‐induced hepatic steatosis stimulating antioxidant levels, and concomitant stimulating hepatic β‐oxidation and suppressing lipid synthesis, mediated by activation of AMPK and suppression of SREBP‐1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号