首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
IntroductionInflammatory cytokines are proposed as modulators for the pathogenesis of anxiety and depression (anxiety/depression), and anxiety/depression are frequently existed in non‐small cell lung cancer (NSCLC) survivors. However, no published study has explored the association of inflammation cytokines with anxiety/depression in NSCLC survivors.ObjectivesWe aimed to evaluate serum tumor necrosis factor‐α (TNF‐α), interleukin‐1 beta (IL‐1β), interleukin‐6 (IL‐6), interleukin‐17 (IL‐17) levels, and their correlations with anxiety/depression in NSCLC survivors.MethodsTotally, 217 NSCLC survivors and 200 controls were recruited. Then, inflammatory cytokines in serum samples were detected by enzyme‐linked immunosorbent assay (ELISA). Besides, their anxiety/depression status was assessed by Hospital Anxiety and Depression Scale (HADS).ResultsHADS‐anxiety score, anxiety rate, anxiety severity, HADS‐depression score, depression rate, and depression severity were all increased in NSCLC survivors compared with controls (all P < 0.001). Regarding inflammatory cytokines, TNF‐α, IL‐1β, and IL‐17 levels were higher (all P < 0.01), while IL‐6 (P = 0.105) level was of no difference in NSCLC survivors compared with controls. Furthermore, TNF‐α, IL‐1β, IL‐6, and IL‐17 were all positively associated with HADS‐A score (all P < 0.05), anxiety occurrence (all P < 0.05), HADS‐D score (all P < 0.05), and depression occurrence (all P < 0.05) in NSCLC survivors, while the correlation‐coefficients were weak. Additionally, multivariate logistic regression analyses disclosed that TNF‐α (both P < 0.05) and IL‐1β (both P < 0.001) were independently correlated with increased anxiety and depression risks in NSCLC survivors.ConclusionSerum TNF‐α, IL‐1β, IL‐6, and IL‐17 are related to increased anxiety and depression risks to some extent in NSCLC survivors.  相似文献   

4.
5.
PI3K/Akt信号通路与肝纤维化   总被引:1,自引:0,他引:1  
潘澎  刘绍能 《临床肝胆病杂志》2013,29(5):389-392,396
PI3K/AKT信号通路可以通过调控基因表达,从而在细胞的存活、分化、生长、运动和凋亡等多种生理和病理过程中起到重要作用。尤其在肝纤维化的进展中,此信号通路发挥了重要的调节作用。本文将对目前有关PI3K/AKT信号通路在参与肝纤维化形成中,如何调控细胞外基质的降解、影响HSC的活化及调节肝窦毛细血管化等作用机制作一综述。这些资料不仅可以揭示相关疾病条件下,多个细胞与信号因子之间复杂的相互作用机制,而且能够突出通过阻断PI3K/AKT信号通路可以保护和治疗肝纤维化这一潜在的临床意义。  相似文献   

6.
目的 探讨胰岛素样生长因子(IGF)1对Rh1肉瘤细胞生长活性和PI3 K/Akt/mTOR信号通路的背景变化.方法 常规细胞培养,用无血清培养基消除内源性因子影响27h,再用IGF-1(终浓度为10 ng/ml)刺激72 h,流式细胞仪检测细胞生长活性;另外Western印迹方法观察IGF-1刺激细胞5、10、20、30和60min后Akt(s473)、S6的动态变化.结果 与对照组相比,IGF-1可促进Rh1细胞存活.IGF-1刺激不同时间后S6磷酸化则随着时间的延长逐渐增强;IGF-1亦导致Akt(s473)位点的磷酸化,随时间的延长,磷酸化Akt在5min时达高峰,此后逐渐减弱.结论 Akt、S6等是PI3K/Akt/mTOR信号通路中的重要信号分子,对Rhl细胞而言,在IGF-1刺激下S6有逐渐增强的变化,Akt (s473)位点磷酸化则有减弱的动态变化.  相似文献   

7.
The formation of ordered cross-β amyloid protein aggregates is associated with a variety of human disorders. While conventional infrared methods serve as sensitive reporters of the presence of these amyloids, the recently discovered amyloid secondary structure of cross-α fibrils presents new questions and challenges. Herein, we report results using Fourier transform infrared spectroscopy and two-dimensional infrared spectroscopy to monitor the aggregation of one such cross-α–forming peptide, phenol soluble modulin alpha 3 (PSMα3). Phenol soluble modulins (PSMs) are involved in the formation and stabilization of Staphylococcus aureus biofilms, making sensitive methods of detecting and characterizing these fibrils a pressing need. Our experimental data coupled with spectroscopic simulations reveals the simultaneous presence of cross-α and cross-β polymorphs within samples of PSMα3 fibrils. We also report a new spectroscopic feature indicative of cross-α fibrils.

Amyloids are elongated fibers of proteins or peptides typically composed of stacked cross β-sheets (1, 2). Self-assembling amyloids are notorious for their involvement in human neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases (1, 2). Phenol soluble modulins (PSMs) are amyloid peptides secreted by the bacteria Staphylococcus aureus (S. aureus) (35). Of the PSM family, PSMα3 is of recent interest due to its unique secondary structure upon fibrillation. Whereas other PSM variants undergo conformational changes with aggregation, the α-helical PSMα3 peptide retains its secondary structure while stacking in a manner reminiscent of β-sheets, forming what has been termed cross-α fibrils (3, 4, 6). Although “α-sheet” amyloid fibrils have been previously observed in two-dimensional infrared (2DIR) (7) and associated with PSMs (8), the novel cross-α fibril is distinct from that class of structures. To avoid confusion between these two similarly named but distinct secondary structures, a comparison between the α-sheet domain in cytosolic phosphatase A2 (9) (Protein Data Bank [PDB] identification:1rlw) (10) and cross-α fibrils adopted by PSMα3 (PDB ID:5i55) (3) has been highlighted in SI Appendix, Fig. S1. Interestingly, shorter terminations of PSMα3 have been shown to exhibit β-sheet polymorphs (11). The proposed cross-α fibril structure of the full-length PSMα3 peptide has been confirmed with X-ray diffraction and circular dichroism (4). The present study aims to further characterize these fibrils with linear and nonlinear infrared spectroscopies.S. aureus is an infectious human pathogen with the ability to form communities of microorganisms called biofilms that hinder traditional treatment methods (1214). PSMs contribute to inflammatory response and play a crucial role in structuring and detaching biofilms (11, 12, 14). While biofilm growth requires the presence of multiple PSMs (14, 15), Andreasen and Zaman have demonstrated that PSMα3 acts as a scaffold, seeding the amyloid formation of other PSMs (5). To effectively inhibit S. aureus biofilm growth, a better understanding of PSMα3 aggregation is needed.The α-helical structure of PSMα3 (12) presents a challenge for probing the vibrational modes and secondary structure of both the monomer and the fibrils. While IR spectroscopy has been used extensively to characterize β-sheets (1619), the spectral features associated with α-helices are difficult to distinguish from those of the random coil secondary structure (20, 21). This limitation has left researchers to date with an incomplete picture of the spectroscopic features unique to cross-α fibers. The present work combines a variety of 2DIR methods to remove these barriers and probe the active infrared vibrational modes of cross-α fibers.The full-length, 22-residue PSMα3 peptide was synthesized and prepared for aggregation studies following reported methods (3, 4, 11). A total of 10 mM PSMα3 was incubated in D2O at room temperature over 7 d. These data were compared to the monomer treated under similar conditions. Monomeric samples were prepared at a significantly lower concentration of 0.5 mM to prevent aggregation. Fiber formation was confirmed by transmission electron microscopy (see SI Appendix, Fig. S2 for details). Fourier transform infrared (FTIR) spectra were taken for both the fibrils in solution as well as the low concentration monomers. Spectroscopic simulations of the PSMα3 monomer and fibers were performed on previously reported PDB structures (PDB identification: 5i55) (3) (Fig. 1).Open in a separate windowFig. 1.PDB structures of PSMα3 (A) monomers and (B) cross-α fibers extended along the screw axis. (C) FTIR spectra of 0.5 mM monomeric PSMα3 (blue) compared to the 10 mM PSMα3 fibril (red) in D2O upon aggregation.  相似文献   

8.
Unlike conventional αβ T cells, γδ T cells typically recognize nonpeptide ligands independently of major histocompatibility complex (MHC) restriction. Accordingly, the γδ T cell receptor (TCR) can potentially recognize a wide array of ligands; however, few ligands have been described to date. While there is a growing appreciation of the molecular bases underpinning variable (V)δ1+ and Vδ2+ γδ TCR-mediated ligand recognition, the mode of Vδ3+ TCR ligand engagement is unknown. MHC class I–related protein, MR1, presents vitamin B metabolites to αβ T cells known as mucosal-associated invariant T cells, diverse MR1-restricted T cells, and a subset of human γδ T cells. Here, we identify Vδ1/2 γδ T cells in the blood and duodenal biopsy specimens of children that showed metabolite-independent binding of MR1 tetramers. Characterization of one Vδ3Vγ8 TCR clone showed MR1 reactivity was independent of the presented antigen. Determination of two Vδ3Vγ8 TCR-MR1-antigen complex structures revealed a recognition mechanism by the Vδ3 TCR chain that mediated specific contacts to the side of the MR1 antigen-binding groove, representing a previously uncharacterized MR1 docking topology. The binding of the Vδ3+ TCR to MR1 did not involve contacts with the presented antigen, providing a basis for understanding its inherent MR1 autoreactivity. We provide molecular insight into antigen-independent recognition of MR1 by a Vδ3+ γδ TCR that strengthens an emerging paradigm of antibody-like ligand engagement by γδ TCRs.

Characterized by both innate and adaptive immune cell functions, γδ T cells are an unconventional T cell subset. While the functional role of γδ T cells is yet to be fully established, they can play a central role in antimicrobial immunity (1), antitumor immunity (2), tissue homeostasis, and mucosal immunity (3). Owing to a lack of clarity on activating ligands and phenotypic markers, γδ T cells are often delineated into subsets based on the expression of T cell receptor (TCR) variable (V) δ gene usage, grouped as Vδ2+ or Vδ2.The most abundant peripheral blood γδ T cell subset is an innate-like Vδ2+subset that comprises ∼1 to 10% of circulating T cells (4). These cells generally express a Vγ9 chain with a focused repertoire in fetal peripheral blood (5) that diversifies through neonatal and adult life following microbial challenge (6, 7). Indeed, these Vγ9/Vδ2+ T cells play a central role in antimicrobial immune response to Mycobacterium tuberculosis (8) and Plasmodium falciparum (9). Vγ9/Vδ2+ T cells are reactive to prenyl pyrophosphates that include isopentenyl pyrophosphate and (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (8) in a butyrophilin 3A1- and BTN2A1-dependent manner (1013). Alongside the innate-like protection of Vγ9/Vδ2+ cells, a Vγ9 population provides adaptive-like immunobiology with clonal expansions that exhibit effector function (14).The Vδ2 population encompasses the remaining γδ T cells but most notably the Vδ1+ and Vδ3+ populations. Vδ1+ γδ T cells are an abundant neonatal lineage that persists as the predominating subset in adult peripheral tissue including the gut and skin (1518). Vδ1+ γδ T cells display potent cytokine production and respond to virally infected and cancerous cells (19). Vδ1+ T cells were recently shown to compose a private repertoire that diversifies, from being unfocused to a selected clonal TCR pool upon antigen exposure (2023). Here, the identification of both Vδ1+ Tnaive and Vδ1+ Teffector subsets and the Vδ1+ Tnaive to Teffector differentiation following in vivo infection point toward an adaptive phenotype (22).The role of Vδ3+ γδ T cells has remained unclear, with a poor understanding of their lineage and functional role. Early insights into Vδ3+ γδ T cell immunobiology found infiltration of Vδ3+ intraepithelial lymphocytes (IEL) within the gut mucosa of celiac patients (24). More recently it was shown that although Vδ3+ γδ T cells represent a prominent γδ T cell component of the gut epithelia and lamina propria in control donors, notwithstanding pediatric epithelium, the expanding population of T cells in celiac disease were Vδ1+ (25). Although Vδ3+ IELs compose a notable population of gut epithelia and lamina propria T cells (∼3 to 7%), they also formed a discrete population (∼0.2%) of CD4CD8 T cells in peripheral blood (26). These Vδ3+ DN γδ T cells are postulated to be innate-like due to the expression of NKG2D, CD56, and CD161 (26). When expanded in vitro, these cells degranulated and killed cells expressing CD1d and displayed a T helper (Th) 1, Th2, and Th17 response in addition to promoting dendritic cell maturation (26). Peripheral Vδ3+ γδ T cells frequencies are known to increase in systemic lupus erythematosus patients (27, 28), and upon cytomegalovirus (29) and HIV infection (30), although, our knowledge of their exact role and ligands they recognize remains incomplete.The governing paradigms of antigen reactivity, activation principles, and functional roles of γδ T cells remain unresolved. This is owing partly due to a lack of knowledge of bona fide γδ T cell ligands. Presently, Vδ1+ γδ T cells remain the best characterized subset with antigens including Major Histocompatibility Complex (MHC)-I (31), monomorphic MHC-I–like molecules such as CD1b (32), CD1c (33), CD1d (34), and MR1 (35), as well as more diverse antigens such as endothelial protein coupled receptor (EPCR) and phycoerythrin (PE) (36, 37). The molecular determinants of this reactivity were first established for Vδ1+ TCRs in complex with CD1d presenting sulfatide (38) and α-galactosylceramide (α-GalCer) (34), which showed an antigen-dependent central focus on the presented lipids and docked over the antigen-binding cleft.In humans, mucosal-associated invariant T (MAIT) cells are an abundant innate-like αβ T cell subset typically characterized by a restricted TCR repertoire (3943) and reactivity to the monomorphic molecule MR1 presenting vitamin B precursors and drug-like molecules of bacterial origin (41, 4446). Recently, populations of atypical MR1-restricted T cells have been identified in mice and humans that utilize a more diverse TCR repertoire for MR1-recognition (42, 47, 48). Furthermore, MR1-restricted γδ T cells were identified in blood and tissues including Vδ1+, Vδ3+, and Vδ5+ clones (35). As seen with TRAV 1-2, unconventional MAITs cells the isolated γδ T cells exhibited MR1-autoreactivity with some capacity for antigen discrimination within the responding compartment (35, 48). Structural insight into one such MR1-reactive Vδ1+ γδ TCR showed a down-under TCR engagement of MR1 in a manner that is thought to represent a subpopulation of MR1-reactive Vδ1+ T cells (35). However, biochemical evidence suggested other MR1-reactive γδ T cell clones would likely employ further unusual docking topologies for MR1 recognition (35).Here, we expanded our understanding of a discrete population of human Vδ3+ γδ T cells that display reactivity to MR1. We provide a molecular basis for this Vδ3+ γδ T cell reactivity and reveal a side-on docking for MR1 that is distinct from the previously determined Vδ1+ γδ TCR-MR1-Ag complex. A Vδ3+ γδ TCR does not form contacts with the bound MR1 antigen, and we highlight the importance of non–germ-line Vδ3 residues in driving this MR1 restriction. Accordingly, we have provided key insights into the ability of human γδ TCRs to recognize MR1 in an antigen-independent manner by contrasting mechanisms.  相似文献   

9.
Aims/IntroductionWe aimed to determine whether glucokinase is required for β‐cell mass expansion induced by high‐starch diet (HSTD)‐feeding, as has been shown in its high‐fat diet‐induced expansion.Materials and MethodsEight‐week‐old male wild‐type (Gck+/+ ) or glucokinase haploinsufficient (Gck+/− ) mice were fed either a normal chow (NC) or an HSTD for 15 weeks. The bodyweight, glucose tolerance, insulin sensitivity, insulin secretion and β‐cell mass were assessed.ResultsBoth HSTD‐fed Gck+/+ and Gck+/− mice had significantly higher bodyweight than NC‐fed mice. Insulin and oral glucose tolerance tests revealed that HSTD feeding did not affect insulin sensitivity nor glucose tolerance in either the Gck+/+ or Gck+/− mice. However, during the oral glucose tolerance test, the 15‐min plasma insulin concentration after glucose loading was significantly higher in the HSTD group than that in the NC group for Gck+/+ , but not for Gck+/− mice. β‐Cell mass was significantly larger in HSTD‐fed Gck+/+ mice than that in NC‐fed Gck+/+ mice. In contrast, the β‐cell mass of the HSTD‐fed Gck+/− mice was not different from that of the NC‐fed Gck+/− mice.ConclusionsThe results showed that HSTD feeding would increase pancreatic β‐cell mass and insulin secretion in Gck+/+ , but not Gck+/− mice. This observation implies that glucokinase in β‐cells would be required for the increase in β‐cell mass induced by HSTD feeding.  相似文献   

10.
There is emerging evidence that α1‐blockers can be safely used in the treatment of hypertension. These drugs can be used in almost all hypertensive patients for blood pressure control. However, there are several special indications. Benign prostatic hyperplasia is a compelling indication of α1‐blockers, because of the dual treatment effect on both high blood pressure and lower urinary tract symptoms. Many patients with resistant hypertension would require α1‐blockers as add‐on therapy. Primary aldosteronism screen is a rapidly increasing clinical demand in the management of hypertension, where α1‐blockers are useful for blood pressure control in the preparation for the measurement of plasma aldosterone and renin. Nonetheless, α1‐blockers have to be used under several considerations. Among the currently available agents, only long‐acting α1‐blockers, such as doxazosin gastrointestinal therapeutic system 4–8 mg daily and terazosin 2–4 mg daily, should be chosen. Orthostatic hypotension is a concern with the use of α1‐blockers especially in the elderly, and requires careful initial bedtime dosing and avoiding overdosing. Fluid retention is potentially also a concern, which may be overcome by combining an α1‐blocker with a diuretic.  相似文献   

11.
12.
Glycated hemoglobin (HbA1c) is an important method for monitoring blood glucose and diagnosing diabetes. High‐performance liquid chromatography is more commonly used in the laboratory for the detection of HbA1c. Although HbA1c detected by high‐performance liquid chromatography is susceptible to abnormal hemoglobin, there are few reports that it is affected by α‐thalassemia. Previous reports have generally concluded that α‐thalassemia does not affect or lower HbA1c. Here, we report a case of discordantly high HbA1c inconsistent with fasting blood glucose. Finally, the patient was diagnosed with α‐thalassemia and insulin resistance. α‐Thalassemia might lead to a discordantly high HbA1c result, which could be attributed to elevated hemoglobin H. In this case, glycated albumin might accurately reflect the real average level of blood glucose. When finding discordant HbA1c, patients should be advised to undergo thalassemia and hemoglobinopathy screening by diabetologists/endocrinologists or primary care physicians to avoid a missed diagnosis of hematopathy.  相似文献   

13.
14.
Diabetes mellitus is etiologically classified into type 1, type 2 and other types of diabetes. Despite distinct etiologies and pathogenesis of these subtypes, many studies have suggested the presence of shared susceptibilities and underlying mechanisms in β‐cell failure among different types of diabetes. Understanding these susceptibilities and mechanisms can help in the development of therapeutic strategies regardless of the diabetes subtype. In this review, we discuss recent evidence indicating the shared genetic susceptibilities and common molecular mechanisms between type 1, type 2 and other types of diabetes, and highlight the future prospects as well.  相似文献   

15.
The low seroprevalent human adenovirus type 26 (HAdV26)-based vaccine vector was the first adenovirus-based vector to receive marketing authorization from European Commission. HAdV26-based vaccine vectors induce durable humoral and cellular immune responses and, as such, represent a highly valuable tool for fighting infectious diseases. Despite well-described immunogenicity in vivo, the basic biology of HAdV26 still needs some refinement. The aim of this study was to determine the pro-inflammatory cytokine profile of epithelial cells infected with HAdV26 and then investigate the underlying molecular mechanism. The expression of studied genes and proteins was assessed by quantitative polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay. Confocal microscopy was used to visualize HAdV26 cell uptake. We found that HAdV26 infection in human epithelial cells triggers the expression of pro-inflammatory cytokines and chemokines, namely IL-6, IL-8, IL-1β, and TNF-α, with the most pronounced difference shown for IL-6. We investigated the underlying molecular mechanism and observed that HAdV26-induced IL-6 gene expression is αvβ3 integrin dependent and NF-κB mediated. Our findings provide new data regarding pro-inflammatory cytokine and chemokine expression in HAdV26-infected epithelial cells, as well as details concerning HAdV26-induced host signaling pathways. Information obtained within this research increases our current knowledge of HAdV26 basic biology and, as such, can contribute to further development of HAdV26-based vaccine vectors.  相似文献   

16.
17.
18.
Alzheimer's disease (AD) is the most prevalent age‐related neurodegenerative disease, pathologically characterized by the accumulation of amyloid beta (Aβ) aggregation in the brain, and is considered to be the primary cause of cognitive dysfunction. Aβ aggregates lead to synaptic disorder, tau hyperphosphorylation, and neurodegeneration. In this study, the underlying neuroprotective mechanism of melatonin against Aβ1‐42‐induced neurotoxicity was investigated in the mice hippocampus. Intracerebroventricular (i.c.v.) Aβ1‐42‐injection triggered memory impairment, synaptic disorder, hyperphosphorylation of tau protein, and neurodegeneration in the mice hippocampus. After 24 hr of Aβ1‐42 injection, the mice were treated with melatonin (10 mg/kg, intraperitonially) for 3 wks, reversed the Aβ1‐42‐induced synaptic disorder via increasing the level of presyanptic (Synaptophysin and SNAP‐25) and postsynaptic protein [PSD95, p‐GluR1 (Ser845), SNAP23, and p‐CREB (Ser133)], respectively, and attenuated the Aβ1‐42‐induced memory impairment. Chronic melatonin treatment attenuated the hyperphosphorylation of tau protein via PI3K/Akt/GSK3β signaling by activating the p‐PI3K, p‐Akt (Ser 473) and p‐GSK3β (Ser9) in the Aβ1‐42‐treated mice. Furthermore, melatonin decreased Aβ1‐42‐induced apoptosis through decreasing the overexpression of caspase‐9, caspase‐3, and PARP‐1 level. Additionally, the evaluation of immunohistochemical analysis of caspase‐3, Fluorojade‐B, and Nissl staining indicated that melatonin prevented neurodegeneration in Aβ1‐42‐treated mice. Our results demonstrated that melatonin has neuroprotective effect against Aβ1‐42‐induced neurotoxicity through decreasing memory impairment, synaptic disorder, tau hyperphosphorylation, and neurodegeneration via PI3K/Akt/GSK3β signaling in the Aβ1‐42‐treated mouse model of AD. On the basis of these results, we suggest that melatonin could be an effective, promising, and safe neuroprotective candidate for the treatment of progressive neurodegenerative disorders, such as AD.  相似文献   

19.
[目的]探讨PI3K/Akt信号通路对肝癌细胞系HepG2中肿瘤干细胞比例及干细胞特性的影响.[方法]使用PI3K/Akt通路抑制剂处理HepG2细胞后,使用流式技术分析HepG2细胞系中的侧群(SP)细胞的变化.软琼脂克隆形成实验检测PI3K/Akt抑制剂对HepG2细胞中SP细胞和非SP细胞成克隆能力的影响.[结果]HepG2细胞中存在SP细胞,经过LY294002处理后,SP细胞比例下降.LY294002可以显著降低SP细胞的软琼脂成克隆能力,对非SP细胞的软琼脂成克隆能力影响不明显.[结论]HepG2细胞中的SP细胞具有干细胞特性,PI3K/Akt信号通路对HepG2细胞中SP细胞的维持起重要作用,抑制PI3K/Akt信号通路后HepG2细胞中的SP细胞比例明显减低,并能显著抑制SP细胞的增殖速度、软琼脂成克隆能力,增加SP细胞对化疗药物的敏感性,为更加深入地了解肝癌干细胞的特性以及探索针对肿瘤干细胞的治疗提供理论依据.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号