首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmacological approaches to repair the injured spinal cord   总被引:9,自引:0,他引:9  
Acute traumatic spinal cord injury (SCI) results in a devastating loss of neurological function below the level of injury and adversely affects multiple systems within the body. The pathobiology of SCI involves a primary mechanical insult to the spinal cord and activation of a delayed secondary cascade of events, which ultimately causes progressive degeneration of the spinal cord. Whereas cell death from the mechanical injury is predominated by necrosis, secondary injury events trigger a continuum of necrotic and apoptotic cell death mechanisms. These secondary events include vascular abnormalities, ischemia-reperfusion, glutamate excitotoxicity and disturbances in ionic homeostasis, oxidative cell injury, and a robust inflammatory response. No gold standard therapy for SCI has been established, although clinical trials with methylprednisolone (NASCIS II and III) and GM-1 ganglioside (Maryland and Sygen) have demonstrated modest, albeit potentially important therapeutic benefits. In light of the overwhelming impact of SCI on the individual, other therapeutic interventions are urgently needed. A number of promising pharmacological therapies are currently under investigation for neuroprotective abilities in animal models of SCI. These include the sodium (Na+) channel blocker riluzole, the tetracycline derivative minocycline, the fusogen copolymer polyethylene glycol (PEG), and the tissue-protective hormone erythropoietin (EPO). Moreover, clinical trials investigating the putative neuroprotective and neuroregenerative properties ascribed to the Rho pathway antagonist, Cethrin (BioAxone Therapeutic, Inc.), and implantation of activated autologous macrophages (ProCord; Proneuron Biotechnologies) in patients with thoracic and cervical SCI are now underway. We anticipate that these studies will harken an era of renewed interest in translational clinical trials. Ultimately, due to the multi-factorial pathophysiology of traumatic SCI, effective therapies will require combined approaches.  相似文献   

2.
Advances in secondary spinal cord injury: role of apoptosis   总被引:28,自引:0,他引:28  
Lu J  Ashwell KW  Waite P 《Spine》2000,25(14):1859-1866
The outcome of spinal cord injury depends on the extent of secondary damage produced by a series of cellular and molecular events initiated by the primary trauma. This article reviews the evidence that secondary spinal cord injury involves the apoptotic as well as necrotic death of neurons and glial cells. Also discussed are the major factors that can contribute to cell death, such as glutamatergic excitotoxicity, free radical damage, cytokines, and inflammation. The development of innovative therapeutic strategies to reduce secondary spinal cord injury depends on an increased understanding of secondary injury mechanisms at the molecular and biochemical level. Such therapeutic interventions may include the use of antiapoptotic drugs, free radical scavengers, and anti-inflammatory agents. These could be targeted to block key reactions on cellular and molecular injury cascades, thus reducing secondary tissue damage, minimizing side effects, and improving functional recovery.  相似文献   

3.
Current developments in spinal cord injury research.   总被引:9,自引:0,他引:9  
BACKGROUND CONTEXT: Recent advances in neuroscience have opened the door for hope toward prevention and cure of the devastating effects of spinal cord injury (SCI). PURPOSE: To highlight the current understanding of traumatic SCI mechanisms, provide information regarding state-of-the-art care for the acute spinal cord-injured patient, and explore future treatments aimed at neural preservation and reconstruction. STUDY DESIGN/SETTING: A selective overview of the literature pertaining to the neuropathophysiology of traumatic SCI is provided with an emphasis on pharmacotherapies and posttraumatic experimental strategies aimed at improved neuropreservation and late neuroregenerative repair. METHODS: One hundred fifty-four peer-reviewed basic science and clinical articles pertaining to SCI were reviewed. Articles cited were chosen based on the relative merits and contribution to the current understanding of SCI neuropathophysiology, neuroregeneration, and clinical SCI treatment patterns. RESULTS: A better understanding of the pathophysiology and early treatment for the spinal cord-injured patient has led to a continued decrease in mortality, decreased acute hospitalization and complication rates, and more rapid rehabilitation and re-entry into society. Progressive neural injury results from a combination of secondary injury mechanisms, including ischemia, biochemical alterations, apoptosis, excitotoxicity, calpain proteases, neurotransmitter accumulation, lipid peroxidation/free radical injury, and inflammatory responses. Experimental studies suggest that the final posttraumatic neurologic deficit is not only a result of the initial impaction forces but rather a combination of these forces and secondary time-dependent events that follow shortly after the initial impact. CONCLUSIONS: Experimental studies continue to provide a better understanding of the complex interaction of pathophysiologic events after traumatic SCI. Future approaches will involve strategies aimed at blocking the multiple mechanisms of progressive central nervous system injury and promoting neuroregeneration.  相似文献   

4.
Review of current evidence for apoptosis after spinal cord injury   总被引:28,自引:0,他引:28  
The initial mechanical tissue disruption of spinal cord injury (SCI) is followed by a period of secondary injury that increases the size of the lesion. The secondary injury has long been thought to be due to the continuation of cellular destruction through necrotic (or passive) cell death. Recent evidence from brain injury and ischemia suggested that cellular apoptosis, an active form of programmed cell death seen during development, could play a role in CNS injury in adulthood. Here, we review the evidence that apoptosis may be important in the pathophysiology of SCI. There is now strong morphological and biochemical evidence from a number of laboratories demonstrating the presence of apoptosis after SCI. Apoptosis occurs in populations of neurons, oligodendrocytes, microglia, and, perhaps, astrocytes. The death of oligodendrocytes in white matter tracts continues for many weeks after injury and may contribute to post-injury demyelination. The mediators of apoptosis after SCI are not well understood, but there is a close relationship between microglia and dying oligodendrocytes, suggesting that microglial activation may be involved. There is also evidence for the activation of important intracellular pathways known to be involved in apoptosis in other cells and systems. For example, some members of the caspase family of cysteine proteases are activated after SCI. It appears that the evolution of the lesion after SCI involves both necrosis and apoptosis. It is likely that better understanding of apoptosis after SCI will lead to novel strategies for therapeutic interventions that can diminish secondary injury.  相似文献   

5.
Cardiovascular dysfunction is common after cervical spinal cord injury (SCI) in humans. At least three spinal cord elements involved in cardiovascular control have been identified: descending vasomotor pathways (DVPs), sympathetic preganglionic neurons, and spinal afferents. However, little is known about the localization of the DVPs within the human spinal cord, which limits our understanding of the mechanisms of cardiovascular dysfunction after SCI. This study was undertaken to examine the association of cardiovascular abnormalities after SCI in humans with the severity of degeneration and axonal loss within the DVPs. A detailed chart review and histopathological examination of postmortem spinal cord tissue was conducted in individuals with cervical SCI (n = 7) and control individuals with an intact central nervous system (n = 5). Individuals with SCI were divided into group 1 (severe cardiovascular abnormalities) and group 2 (no/minor cardiovascular disturbances). The area of degeneration and the number of preserved axons within different areas of the spinal cord were quantitated using EMPIX imaging software. Two areas of possible localization of DVPs were investigated: area I, within the dorsal aspects of the lateral funiculus; and area II, within the white matter adjacent to the dorsolateral aspect of the lateral horn. Comparison of the extent of axonal degeneration in both SCI groups demonstrated that individuals in group 1 had more extensive axonal degeneration than those in group 2. The number of intact axons within areas I and II in individuals from group 1 was significantly lower than those from group 2 or control cases (p = 0.029; p = 0.028). The most dramatic axonal loss was observed within area I in individuals with cardiovascular dysfunction. We conclude that loss and degeneration of DVPs, which are localized within the dorsolateral aspects of the human spinal cord, contributes to abnormal cardiovascular control after SCI. This information adds to our knowledge of pathobiology of cardiovascular dysfunction after human SCI and may ultimately suggest novel therapeutic strategies as regenerative and reparative approaches become translated to the clinic.  相似文献   

6.
Most acute spinal cord injuries (SCI) do not involve complete transection of the spinal cord; typically, a rim of white matter survives. The potential for neurological recovery depends on optimal preservation of the ascending and descending white matter axons and their normal myelination. Pharmacologic strategies focus on the control of secondary injury processes, primarily lipid peroxidation (LP), and the salvage of as much white matter as possible. The first effective neuroprotective agent was methylprednisolone (MP), a glucocorticosteroid that in high doses improves neurological recovery in animals and humans following acute SCI. Tirilazad is a more targeted non-glucocorticoid LP inhibitor that has been shown to be neuroprotective and has fewer side effects than MP. Future SCI therapy is likely to encompass various neuroprotective agents, including inhibitors of LP, inhibitors of the nitric oxide-derived reactive oxygen species peroxynitrite, inhibitors of calpain (which is responsible for degrading the spinal cord cytoskeleton), and inhibitors of post-traumatic apoptosis of neurons and myelin-forming oligodendroglia. In addition, neuroprotective strategies will eventually be followed by neurorestorative agents that stimulate the plasticity of surviving neural pathways, and will be used in conjunction with other neurorestorative therapies like cell transplantation and gene therapy techniques.  相似文献   

7.
Abstract

Most acute spinal cord injuries (SCI) do not involve complete transection of the spinal cord; typically, a rim of white matter survives. The potential for neurological recovery depends on optimal preservation of the ascending and descending white matter axons and their normal myelination. Pharmacologic strategies focus on the control of secondary injury processes, primarily lipid peroxidation (LP), and the salvage of as much white matter as possible. The first effective neuroprotective agent was methylprednisolone (MP), a glucocorticosteroid that in high doses improves neurological recovery in animals and humans following acute SCI. Tirilazad is a more targeted non-glucocorticoid LP inhibitor that has been shown to be neuroprotective and has fewer side effects than MP. Future SCI therapy is likely to encompass various neuroprotective agents, including inhibitors of LP, inhibitors of the nitric oxidederived reactive oxygen species peroxynitrite, inhibitors of calpain (which is responsible for degrading the spinal cord cytoskeleton), and inhibitors of post-traumatic apoptosis of neurons and myelin-forming oligodendroglia. In addition, neuroprotective strategies will eventually be followed by neurorestorative agents that stimulate the plasticity of surviving neural pathways, and will be used in conjunction with other neurorestorative therapies like cell transplantation and gene therapy techniques.

J Spinal Cord Med. 2001 ;24:142–146  相似文献   

8.
Li S  Tator CH 《Spinal cord》1999,37(12):820-832
OBJECTIVES: To determine whether MK801, an NMDA receptor antagonist, blocks glutamate excitotoxicity directly or via other mechanisms such as improving blood supply at the injury site in a rat model of spinal cord injury (SCI). In the present study, the effects of pre- and posttreatment with MK801 on axonal function, spinal cord blood flow (SCBF) and cord water content were studied after acute SCI in rats. METHODS: Somatosensory evoked potentials (SSEPs) and cerebellar evoked potentials (CEPs) were used to quantify electrophysiological function, and the hydrogen clearance technique and wet-dry weight measurements were used to measure SCBF and cord water content, respectively. Twenty rats received a 21 g clip compression injury of the cord at T1, and were then randomly and blindly allocated to either MK801 or saline groups. Each rat received an intravenous infusion of drug or saline four times during the experiment (16 min/infusion) with the first infusion (MK801 3 mg/kg) beginning 8 min pre-injury, and the other infusions (MK801 1. 5 mg/kg) at 1 h intervals after injury. Control experiments on uninjured rats were performed in 10 rats using the same procedure as above except the clip compression injury of the cord was omitted. RESULTS: In the MK801 groups with or without SCI, the amplitude of the evoked potential peaks, especially the SSEPs, was significantly lower than in the saline group. There were no differences in SCBF or cord water content between the MK801 and saline groups. CONCLUSION: Pre- and posttreatment with MK801 inhibits evoked potentials, but does not improve SCBF or cord edema after acute compression SCI in rats. For the first time it has been shown that MK801 produced a blockade of glutamate excitatory transmission in afferent pathways after SCI. Further work is required to determine whether this inhibition is reversible and related to neuroprotection and functional recovery after SCI.  相似文献   

9.
内皮素受体拮抗剂对损伤脊髓早期保护作用   总被引:5,自引:0,他引:5  
目的评价非选择性内皮素(ET)受体拮抗剂PD145065对损伤脊髓的保护作用,证实ET参与脊髓损伤(SCI)后继发损伤的假设并探讨其作用机制。方法压迫法致伤大鼠脊髓(50g,1min)。损伤前10min鞘内注射PD145065或生理盐水,观察脊髓血流(SCBF)、丙二醛(MDA)、细胞内钙([Ca2+]i)、伊文思兰(EB)及水含量变化。结果伤区SCBF在伤后5min即有明显下降,为基线的(75.23±9.21)%,2h降为(57.06±7.35)%;伤区邻近血流下降较慢,伤后30min降为(79.82±7.98)%。伤区及邻近区伤后4h?SCBF都未恢复。伤段脊髓组织中MDA、[Ca2+]i、EB和水含量均高于假手术组(P<0.05)。PD145065明显改善了伤区SCBF,消除了伤区邻近段SCBF的下降。PD145065预处理组脊髓中MDA、[Ca2+]i、EB和水含量均低于生理盐水组(P<0.05)。结论PD145065对损伤脊髓早期有明显保护作用,ET及其受体可能通过多种途径参与SCI后的继发损伤。临床应用ET受体拮抗剂对SCI可能有治疗作用。  相似文献   

10.
Protection against the progression of secondary injury appears to be an effective therapeutic strategy in spinal cord injury (SCI). Evidence indicates that nicotine can induce potent neuroprotective effects against injury to spinal cord neurons. Therefore, the present study was focused on the effects of nicotine on the behavioral and morphological recovery associated with SCI. Adult male Long-Evans rats were subjected to a moderate contusion model of SCI and received subcutaneous injections of nicotine for 14 days at the dose of 0.35 or 7 mg/kg/day. The rats were examined using the BBB locomotor rating scale for 6 weeks. At the end of the BBB recording, spinal cords were examined for the volumetric tissue sparing of gray and white matters. All SCI rats demonstrated a loss of hindlimb function followed by a recovery phase that peaked at 2-3 weeks after the trauma. Compared to untreated SCI rats, chronic nicotine administration appeared to improve the recovery of the locomotor functions. Indeed, nicotine-treated animals scored consistently higher on the BBB scale indicating that the treatment altered animal behavior. However, when taking under consideration correction factors for multiple comparisons, these data did not reach significance at overall experimental levels of significance 0.05. Nevertheless, nicotine administration was effective in sparing tissue at injury epicenter and a lower dose of nicotine also resulted in significant sparing of white matter of the injured spinal cord. These results suggest that agonists of neuronal nicotinic receptors can be attractive candidates for SCI therapy.  相似文献   

11.
Experimental strategies that focus on ventral white matter (VWM) preservation during the hyperacute phase hold great potential for our improved understanding of functional recovery following traumatic spinal cord injury (SCI). Critical comparisons of human SCI to rapidly accumulating data derived from rodent models are limited by a basic lack of in vivo measures of subclinical pathophysiologic changes and white matter damage in the spinal cord. Spinal cord edema and intraparenchymal hemorrhage demonstrated with routine MR sequences have limited value for predicting functional outcomes in SCI animal models and in human patients. We recently demonstrated that in vivo derived diffusion tensor imaging (DTI) parameters are sensitive and specific biomarkers for spinal cord white matter damage. In this study, non-invasive in vivo DTI was utilized to evaluate the white matter of C57BL/6 mice 3 h after mild (0.3 mm), moderate (0.6 mm), or severe (0.9 mm) contusive SCI. In the hyperacute phase, relative anisotropy maps provided excellent gray-white matter contrast in all degrees of injury. In vivo DTI-derived measurements of axial diffusion differentiated between mild, moderate, and severe contusive SCI with good histological correlation. Cross-sectional regional measurements of white matter injury severity between dorsal columns and VWM varied with increasing cord displacement in a pattern consistent with spinal cord viscoelastic properties.  相似文献   

12.
大鼠脊髓损伤中的细胞凋亡及甲基强的松龙的干预作用   总被引:16,自引:6,他引:10  
目的:探讨脊髓损伤(SCI)继发损伤机制,研究损伤脊髓细胞的凋亡及其意义,观察甲基强的松龙(MP)对细胞凋亡的影响。方法:使用改良Allen法制作大鼠急性SCI模型,实验分3组,假损伤(脊髓未受打击),损伤组及MP治疗组,采用HE,荧光Hoechst 33342,TUNEL(末端脱氧核苷转移酶介导的脱氧尿苷三磷酸生物素缺口末端标记技术)等技术观察SCI后4h,8h,3d,7d,14d,21d及28d时损伤中心及邻近节段脊髓细胞的凋亡,治疗组损伤后30min给予大剂量MP,比较MP治疗组与损伤组脊髓细胞凋亡的变化,同时平行观察大鼠神经学和组织学恢复情况及两组神经丝蛋白(NF)含量的变化。结果:假损伤组各检测方法未见脊髓细胞凋亡,损伤组大鼠急性SCI后1d开始出现脊髓细胞凋亡,3d达高峰,自损伤中心向头尾端递减分布,持续21d,MP治疗组在伤后3d及7d凋亡脊髓细胞较损伤组显著减少,神经学恢复及组织学评分较损伤组有显著性提高,结论:凋亡是SCI后脊髓神经元死亡的一种重要方式,在继发性损伤中起极为重要的作用。MP的治疗作用可能与其干预SCI后细胞凋亡有关。  相似文献   

13.
Primary insults to the brain can initiate glutamate release that may result in excitotoxicity followed by neuronal cell death. This secondary process is mediated by both N-methyl-D-aspartate (NMDA) and non-NMDA receptors in vivo and requires new gene expression. Neuronal cyclooxygenase-2 (COX2) expression is upregulated following brain insults, via glutamatergic and inflammatory mechanisms. The products of COX2 are bioactive prostanoids and reactive oxygen species that may play a role in neuronal survival. This study explores the role of neuronal COX2 in glutamate excitotoxicity using cultured cerebellar granule neurons (day 8 in vitro). Treatment with excitotoxic concentrations of glutamate or kainate transiently induced COX2 mRNA (two- and threefold at 6 h, respectively, p < 0.05, Dunnett) and prostaglandin production (five- and sixfold at 30 min, respectively, p < 0.05, Dunnett). COX2 induction peaked at toxic concentrations of these excitatory amino acids. Surprisingly, NMDA, L-quisqualate, and trans-ACPD did not induce COX2 mRNA at any concentration tested. The glutamate receptor antagonist NBQX (5 microM, AMPA/kainate receptor) completely inhibited kainate-induced COX2 mRNA and partially inhibited glutamate-induced COX2 (p < 0.05, Dunnett). Other glutamate receptor antagonists, such as MK-801 (1 microM, NMDA receptor) or MCPG (500 microM, class 1 metabotropic receptors), partially attenuated glutamate-induced COX2 mRNA. These antagonists all reduced steady-state COX2 mRNA (p < 0.05, Dunnett). To determine whether COX2 might be an effector of excitotoxic cell death, cerebellar granule cells were pretreated (24 h) with the COX2-specific enzyme inhibitor, DFU (5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl) phenyl-2((5)H)-furanone) prior to glutamate challenge. DFU (1 to 1000 nM) completely protected cultured neurons from glutamate-mediated neurotoxicity. Approximately 50% protection from NMDA-mediated neurotoxicity, and no protection from kainate-mediated neurotoxicity was observed. Therefore, glutamate-mediated COX2 induction contributes to excitotoxic neuronal death. These results suggest that glutamate, NMDA, and kainate neurotoxicity involve distinct excitotoxic pathways, and that the glutamate and NMDA pathways may intersect at the level of COX2.  相似文献   

14.
OBJECTIVES: In order to clarify the role of glutamate in the micturition reflex and in glutamatergic and glycinergic neuronal activity, we examined the effects of intrathecal (IT) injection of glutamate or MK-801 (an N-methyl-D-aspartate receptor antagonist) on bladder activity and on the glutamate and glycine levels in the lumbosacral cord of female rats with or without acute lower thoracic spinal cord injury (SCI). METHODS: Under urethane anesthesia, isovolumetric cystometry was performed in rats with or without SCI before and after IT injection of glutamate or MK-801 at the lumbosacral cord level. The glutamate and glycine levels of the whole lumbosacral cord were measured after IT injection of glutamate or MK-801 in both groups. RESULTS: In intact rats, IT glutamate (100 microg) prolonged the interval between bladder contractions and decreased the amplitude of contractions. IT MK-801 (3-100 microg) also prolonged the interval between bladder contractions and decreased the amplitude in intact rats. In SCI rats, cystometry demonstrated the disappearance of bladder contractions, and the glycine level in the lumbosacral cord was elevated. In intact rats, IT glutamate (0.3-100 microg) increased the glycine level in the lumbosacral cord. On the other hand, IT MK-801 (3-100 microg) decreased both glutamate and glycine levels in intact and SCI rats. CONCLUSIONS: These results suggest that glutamatergic neurons have stimulatory projections to both glutamatergic and glycinergic neurons in the lumbosacral cord, and that glutamatergic neurons inhibit the micturition reflex by stimulating glycinergic neurons.  相似文献   

15.
After spinal cord injury (SCI), the inability of supraspinal neurons to regenerate or reform functional connections is likely due to proteins in the surrounding microenvironment restricting regeneration. EphAs are a family of receptor tyrosine kinases that are involved in axonal guidance during development. These receptors and their ligands, the Ephrins, act via repulsive mechanisms to guide growing axons towards their appropriate targets and allow for the correct developmental connections to be made. In the present study, we investigated whether EphA receptor expression changed after a thoracic contusion SCI. Our results indicate that several EphA molecules are upregulated after SCI. Using semiquantitative RT-PCR to investigate mRNA expression after SCI, we found that EphA3, A4, and A7 mRNAs were upregulated. EphA3, A4, A6, and A8 receptor immunoreactivity increased in the ventrolateral white matter (VWM) at the injury epicenter. EphA7 had the highest level of immunoreactivity in both control and injured rat spinal cord. EphA receptor expression in the white matter originated from glial cells as coexpression in both astrocytes and oligodendrocytes was observed. In contrast, gray matter expression was localized to neurons of the ventral gray matter (motor neurons) and dorsal horn. After SCI, specific EphA receptor subtypes are upregulated and these increases may create an environment that is unfavorable for neurite outgrowth and functional regeneration.  相似文献   

16.
Calcium influx and elevation of intracellular free calcium (Ca2+i), with subsequent activation of degenerative enzymes is hypothesized to cause cell injury and death after trauma. We examined the effects of traumatic compressive injury on (Ca2+)i dynamics in spinal cord white matter. We conducted electrophysiological studies with ryanodine and inositol (1,4,5)-triphosphate (IP3) receptor agonists and antagonists in an in vitro model of spinal cord injury (SCI). A 25-30-mm length of dorsal column was isolated from the spinal cord of adult rats, pinned in an in vitro recording chamber (37 degrees C) and injured with a modified clip (2-g closing force) for 15 sec. The functional integrity of the dorsal column was monitored electrophysiologically by quantitatively measuring the compound action potential (CAP) with glass microelectrodes. The CAP decreased to 55.2+/-6.8% of control (p < 0.05) after spinal cord injury (SCI). Chelation of Ca2+i with BAPTA-AM (a high-affinity calcium chelator) promoted significantly greater recovery of CAP amplitude (83.2+/-4.2% of control; p < 0.05) after injury. Infusion of caffeine (1 and 10 mM) exacerbated CAP amplitude decline (45.1+/-5.9% of control; p < 0.05; 44.6+/-3.1% of control; p < 0.05) postinjury. Blockade of Ca2+i release through ryanodine-sensitive receptors (RyRs) with dantrolene (10 microM) and ryanodine (50 microM), conferred significant (p < 0.05) improvement in CAP amplitude after injury. On the other hand, blockade of Ca2+i with inositol (1,4,5)-triphosphate receptor (IP3Rs) blocker 2APB (10 microM) also conferred significant improvement in CAP amplitude after injury (82.9+/-7.9%; p < 0.05). In conclusion, the injurious effects of Ca2+i in traumatic central nervous system (CNS) white matter injury appear to be mediated both by RyRs and through IP3Rs calcium-induced calcium release receptors (CICRs).  相似文献   

17.
18.
Kontinen VK  Meert TF 《Anesthesia and analgesia》2002,95(4):997-1001, table of contents
Inotropic glutamate receptors in the spinal cord (N-methyl-D-aspartic acid [NMDA], alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA], and kainate receptors) seem to play a key role in acute pain transmission and the neuronal plasticity in chronic pain states. Vocalization responses produced by activation of these receptors on the pain pathways can be quantified semiautomatically and thus could be used as a research tool. We studied vocalization responses induced by intrathecal administration of various agonists acting at the glutamate receptors in normal rats and in the presence of peripheral inflammation and a chronic constriction injury model of neuropathic pain. The nonselective endogenous agonist, glutamate, and the NMDA receptor glycine site agonist D-serine did not produce vocalization, whereas selective agonists acting at AMPA, NMDA, and kainate receptors produced dose-related vocalization responses. The vocalization response evoked by the administration of AMPA was significantly increased in the neuropathic pain model. In conclusion, spinal administration of ionotropic glutamate receptor agonists produce short-lasting, dose-related vocalization responses that can be used as a basic research and screening tool for analgesic studies. However, peripheral inflammation or nerve injury did not substantially alter vocalization responses overall, possibly indicating that the vocalization test is not a good tool for studying the role of excitatory amino acids in these pathological pain conditions. IMPLICATIONS: Vocalization responses evoked by spinal administration of ionotropic glutamate receptor agonists can be used for experimental analgesic studies. However, pathological pain models did not substantially alter vocalization responses, possibly indicating that this test is not suitable for studying the role of spinal excitatory amino acids in central sensitization.  相似文献   

19.
Spinal cord trauma is a prominent cause of mortality and morbidity. In developed countries a spinal cord injury (SCI) occurs every 16 min. SCI occurs due to tissue destruction, primarily by mechanical and secondarily ischemic. Primary damage occurs at the time of the injury. It cannot be improved. Following the primary injury, secondary harm mechanisms gradually result in neuronal death. One of the prominent causes of secondary harm is energy deficit, emerging from ischemia, whose main cause in the early stage, is impaired perfusion. Due to the advanced techniques in spinal surgery, SCI is still challenging for surgeons. Spinal cord doesn’t have a self-repair property. The main damage occurs at the time of the injury primarily by mechanical factors that cannot be improved. Secondarily mechanisms take part in the following sections. Spinal compression and neurological deficit are two major factors used to decide on surgery. According to advanced imaging techniques the classifications systems for spinal injury has been changed in time. Aim of the surgery is to decompress the spinal channel and to restore the spinal alinement and mobilize the patient as soon as possible. Use of neuroprotective agents as well as methods to achieve cell regeneration in addition to surgery would contribute to the solution.  相似文献   

20.
Symptoms of neuropathic spinal cord injury (SCI) pain include cutaneous hypersensitivity and spontaneous pain below the level of the injury. Riluzole, an FDA-approved drug for the treatment of amyotrophic lateral sclerosis, has been demonstrated to attenuate neural excitotoxicity by blocking the effects of the excitatory amino acid glutamate on glutamate receptors and by inhibiting voltage-gated Na(+) and Ca(2+) channels. Neuropathic pain in rat models of SCI is thought to be mediated by dysfunctional ion channels and glutamate receptors expressed on CNS neurons. Thus riluzole's mechanism of action could be relevant in treating neuropathic SCI pain. The current study evaluated the antinociceptive potential of riluzole in rats following a SCI. Four weeks after a brief compressive injury to the mid-thoracic spinal cord, rats displayed significantly decreased hind paw withdrawal thresholds, suggestive of below-level cutaneous hypersensitivity. A single systemic dose of riluzole (8?mg/kg) injected intraperitoneally (i.p.) reversed cutaneous hypersensitivity in SCI rats. To identify riluzole's CNS site of action, riluzole was injected intrathecally (i.t.) and intracerebroventricularly (i.c.v.) in SCI rats. Significant antinociceptive effects were obtained following i.c.v., but not i.t., injection. Systemic riluzole was also antinociceptive in uninjured rats, increasing the latency to respond to an acute noxious thermal stimulus in the tail flick test. Unlike in SCI rats, however, riluzole was not effective when administered directly into the CNS, indicating a peripherally mediated antinociceptive mechanism. Although riluzole appears to have a general antinociceptive effect, the site of action may be model dependent. In total, these data indicate that riluzole may be an effective clinical analgesic for the treatment of below-level neuropathic SCI pain. Although the exact mechanism of action is not clear, there is a predominant supraspinal component of riluzole-induced antinociception in SCI rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号