首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naive peripheral CD4(+)CD25(-) T cells can be converted into Foxp3-expressing regulatory T cells under appropriate stimulation conditions. Considering that continuous exposure to antigens is one of the prerequisites for the differentiation and maintenance of Treg cells, we investigated whether preventing activation-induced cell death while providing continuous TCR stimulation could promote the expression of Foxp3 in murine naive CD4(+) T cells. Among the several anti-apoptotic agents tested, aurintricarboxylic acid (ATA) was found to induce the in vitro conversion of naive CD4(+) T cells into Foxp3(+) Treg cells with suppressive activity. Neutralizing studies with an antibody against transforming growth factor (TGF)-β revealed that ATA requires the presence of TGF-β to induce Foxp3 expression in naive CD4(+)CD25(-) T cells. Although ATA itself did not activate the Smad signaling pathway, it down-regulated the extracellular signal-regulated kinase and mammalian target of rapamycin signaling cascade in activated T cells. Lastly, combined exposure to ATA and TGF-β had a synergistic effect on the rate of induction and maintenance of Foxp3 expression. These results indicate that ATA could be exploited to efficiently prepare inducible regulatory T cells in vitro and may aid in more precisely identifying the specific signaling pathways that drive Foxp3 expression in T cells.  相似文献   

2.
Wang HY  Lee DA  Peng G  Guo Z  Li Y  Kiniwa Y  Shevach EM  Wang RF 《Immunity》2004,20(1):107-118
Regulatory T cells play an important role in the maintenance of immunological self-tolerance by suppressing immune responses against autoimmune diseases and cancer. Little is known, however, about the nature of the physiological target antigens for CD4(+) regulatory T (Treg) cells. Here we report the identification of the LAGE1 protein as a ligand for tumor-specific CD4(+) Treg cell clones generated from the tumor-infiltrating lymphocytes (TILs) of cancer patients. Phenotypic and functional analyses demonstrated that they were antigen-specific CD4(+) Treg cells expressing CD25 and GITR molecules and possessing suppressive activity on the proliferative response of naive CD4(+) T cells to anti-CD3 antibody stimulation. Ligand-specific activation and cell-cell contact were required for TIL102 Treg cells to exert suppressive activity on CD4(+) effector cells. These findings suggest that the presence of tumor-specific CD4(+) Treg cells at tumor sites may have a profound effect on the inhibition of T cell responses against cancer.  相似文献   

3.
Although CD4(+)CD25(+) regulatory T cells (Treg) represent a well-characterized population of T cells with in vitro and in vivo suppressive capacity, the basic mechanisms of suppression are still not understood. The constitutive expression of the high-affinity receptor for IL-2 has raised the question about the role of IL-2 in Treg function. Here, we review recent data indicating that IL-2 is not only necessary for the homeostasis of Treg but is also critical for the activation of Treg function. Since Treg do not produce IL-2 by themselves, their capacity to utilize IL-2 secreted by other T cells appears to be an essential component of Treg biology. This indicates that Treg suppressive activity is controlled by interaction with activated target cells via the soluble mediator IL-2. In Treg, IL-2 has been identified as a potent inducer of the immunosuppressive cytokine IL-10, an important mediator of Treg suppression in vivo. The efficient capture of IL-2 by Treg may, under conditions of limited IL-2 supply, cause IL-2 deprivation of responder T cells. This competition can explain some of the currently discussed discrepancies between in vivo and in vitro activity of Treg.  相似文献   

4.
Costimulatory signals are important for development of effector and regulatory T cells. In this case, CD28 signaling is usually considered inert in the absence of signaling through the TCR. By contrast, mitogenic rat CD28 mAb reportedly expand regulatory T cells without TCR stimulation. We found that a commercially available human CD28 mAb (ANC28) stimulated PBMC without TCR co-ligation or cross-linking; ANC28 selectively expanded CD4(+)CD25(+)FOXP3(-) (Teff) and CD4(+)CD25(+)FOXP3(+) (Treg) cells. ANC28 stimulated the CD45RO(+) CD4(+) (memory) population, whereas CD45RA(+)CD4(+) (naive) cells did not respond. ANC28 also induced inflammatory cytokines. Treg induced by ANC28 retain the Treg phenotype longer than costimulated Treg. Treg induced by ANC28 suppressed CD25(-) T cells through a contact-dependent mechanism. Purity influenced the response of CD4(+)CD25(+ )cells because bead-purified CD4(+)CD25(+ )cells (85-90% pure) responded strongly to ANC28, whereas 98% pure FACS-sorted CD4(+)CD25(bright) (Treg) did not respond. Purified CD4(+)CD25(int) cells responded similarly to the bead-purified CD4(+)CD25(+) cells. Thus, pre-activated CD4(+) T cells (CD25(int)) respond to ANC28 rather than Treg (CD25(bright)). The ability of ANC28 to expand both effectors producing inflammatory cytokines as well as suppressive regulatory T cells might be useful for ex vivo expansion of therapeutic T cells.  相似文献   

5.
CD4(+) CD25(+) regulatory T cells are increasingly recognized as central players in the regulation of immune responses. In vitro studies have mostly employed allogeneic or polyclonal responses to monitor suppression. Little is known about the ability of CD4(+) CD25(+) regulatory T cells to suppress antigen-specific immune responses in humans. It has been previously shown that CD4(+) CD25(+) regulatory T cells anergize CD4(+) T cells and turn them into suppressor T cells. In the present study we demonstrate for the first time in humans that CD4(+) CD25(+) T cells are able to inhibit the proliferation and cytokine production of antigen specific CD4(+) and CD8(+) T cells. This suppression only occurs when CD4(+) CD25(+) T cells are preactivated. Furthermore, we could demonstrate that CD4(+) T-cell clones stop secreting interferon-gamma (IFN-gamma), start to produce interleukin-10 and transforming growth factor-beta after coculture with preactivated CD4(+) CD25(+) T cells and become suppressive themselves. Surprisingly preactivated CD4(+) CD25(+) T cells affect CD8(+) T cells differently, leading to reduced proliferation and reduced production of IFN-gamma. This effect is sustained and cannot be reverted by exogenous interleukin-2. Yet CD8(+) T cells, unlike CD4(+) T cells do not start to produce immunoregulatory cytokines and do not become suppressive after coculture with CD4(+) CD25(+) T cells.  相似文献   

6.
CD4(+)Foxp3(+) regulatory T cells (Treg cells) play an important role in maintaining self-tolerance as suppressive/regulatory CD4 T cells. In vitro analyses have revealed the characteristics of Treg cells, that is, hyporesponsiveness when stimulated via TCR in the presence of splenic APC. In this study, we report a new mAb, G3c, which can induce the expansion of Treg cells stimulated with anti-CD3 Ab along with splenic APC, the culture conditions in which Treg cells exhibit hyporesponsiveness. Surprisingly, G3c mAb recognized glucocorticoid-induced TNFR family-related proteins (GITR). G3c mAb had stronger co-stimulatory activity for both Treg cells and responder T cells than another anti-GITR Ab (DTA1) in vitro. The in vivo administration of G3c increased the number of Treg cells and had less effect in inducing anti-tumor immunity in normal mice, although G3c had some anti-tumor effect on non-Treg cells in the absence of Treg cells in vivo, in contrast to the anti-tumor therapeutic effect of DTA1 in normal mice. Therefore, we need to know that the manipulation of immune responses with the use of anti-GITR Abs results from a balance between co-stimulatory effects on Treg cells and on responder cells, and we must aim at a narrow window leading to the therapeutic effects.  相似文献   

7.
CD8(+)CD122(+) regulatory T cells (CD8(+)CD122(+) Treg) are naturally occurring Treg that effectively suppress the proliferation and IFN-gamma production of both CD8(+) and CD4(+) target cells. This study investigated the molecular mechanisms of the recognition of target cells by CD8(+)CD122(+) Treg using an in vitro culture system that reconstitutes the regulatory action of these cells. Naive CD8(+)CD122(+) Treg co-cultured with pre-activated T cells became active Treg that produced IL-10 and suppressed IFN-gamma production from the target T cells. CD8(+)CD122(+) Treg effectively suppressed the IFN-gamma production of the target cells of syngeneic mouse strains but not of allogeneic mouse strains with incompatible MHC. By using MHC-congeneic mouse strains, MHC-restricted suppression by CD8(+)CD122(+) Treg was further confirmed. The blockade of cell surface molecules either on the Treg or on the target cells by specific blocking antibodies indicated that H-2K, H-2D, alphabetaTCR and CD8 were involved in the regulatory action but I-A and Qa-1 were not. These results indicate that CD8(+)CD122(+) Treg recognize already-activated T cells via the interaction of conventional MHC class I-alphabetaTCR and become active regulatory cells that produce IL-10 and suppress the target cells.  相似文献   

8.
CD4+CD25+ T cells as immunoregulatory T cells in vitro   总被引:7,自引:0,他引:7  
We have further characterized the in vitro phenotype and function of anergic and suppressive CD4(+)25(+) T cells. Following TCR ligation, DO.11.10 CD4(+)25(+) T cells suppress the activation of OT-1 CD8(+)25(-) T cells in an antigen nonspecific manner. Although suppression was seen when using a mixture of APC from both parental strains, it was very much more marked when using F1 APC. APC pretreated with, and then separated from CD4(+)25(+) T cells did not have diminished T cell costimulatory function, suggesting that APC are not the direct targets of CD4(+)25(+) T cell regulation. CTLA-4 blockade failed to abrogate suppression by CD4(+)25(+) T cells in mixing experiments. Although CD4(+)25(+) T cells failed to respond following cross-linking of TCR, they could be induced to proliferate following the addition of exogenous IL-2, allowing the generation of a T cell line from CD4(+)25(+) T cells. After the first in vitro restimulation, CD4(+)25(+) T cells were still anergic and suppressive following TCR engagement. However, after three rounds of restimulation, their anergic and suppressive status was abrogated.  相似文献   

9.
The importance of CD4+ CD25+ regulatory T cells (Treg) in maintaining immune homeostasis has been directly demonstrated in vivo by their manipulation in a number of autoimmune disease models in the mouse. In the study of human regulatory cells, we have found that the cells that consistently demonstrate the in vitro regulatory activity most similar to that described for murine cells in vitro are best identified by restricting the isolation of CD25+ CD4 T cells to those cells expressing only the highest levels of CD25, representing approximately 2-3% of total CD4 T cells. Thus, it is the CD4+ CD25high subset that exhibits the in vitro characteristics that are identical to the CD4+ CD25+ regulatory cells initially characterized in mice. Furthermore, the cells expressing medium to low levels of CD25 not only do not exhibit suppressive activity directly ex vivo, but also actually contain a significant proportion of CD62L- CD4 T cells which are believed to be in vivo activated T cells. Due to the inherent difficulties in using CD25 as a marker for the purification of Treg cells, the finding that selection of the CD25high subset of CD4+ CD25+ T cells minimizes the co-isolation of contaminating activated CD4 T cells is important for future studies of these Treg cells in human disease. In order to perform these studies, we first had to establish a highly reproducible 'micro in vitro co-culture' assay system to enable the functional analysis of high-purity, but low-yield regulatory populations derived from FACS sorting. With this system in place, we are poised to dissect the potential heterogeneity of mechanisms employed by highly specific subpopulations of CD4+ CD25+ cells.  相似文献   

10.
CD4(+)CD25(+) regulatory T cells (Tregs) are well known to suppress immunopathology induced in lymphopenic animals following T cell reconstitution, including acute graft-versus-host disease (GVHD) post-bone marrow transplantation. The regulatory potential of this subset in nonlymphopenic hosts and in chronic, Th2-mediated GVHD is less clear. We have generated alloantigen-specific cells from CD4(+)CD25(+) populations stimulated with MHC-disparate dendritic cells and found them to express a stable Treg forkhead box p3(+) phenotype with enhanced suppressive activity mediated by cell contact. When transferred into nonlymphopenic F1 hosts, nonspecific Tregs proliferated as rapidly as CD4(+)CD25(-) cells but displayed distinct growth kinetics in vitro. Tregs, expanded in response to alloantigen in vitro, displayed greatly enhanced suppressive activity, which was partially antigen-specific. They were effective inhibitors of chronic GVHD, blocking donor cell engraftment, splenomegaly, autoantibody production, and glomerulonephritis. CD25(+) and CD25(-) cells were equally susceptible to inhibition by immunosuppressive drugs targeting TCR signaling and rapamycin, but Tregs were resistant to inhibition by dexamethasone. The data indicate that alloantigen-driven expansion, rather than homeostatic proliferation, is key to the effectiveness of CD4(+)CD25(+) Tregs in GVHD and suggest that cellular therapy with alloantigen-induced Tregs in combination with glucocorticoid treatment would be effective in prevention of chronic GVHD after immune reconstitution.  相似文献   

11.
The immune system has evolved numerous mechanisms of peripheral T cell immunoregulation, including a network of regulatory T (Treg) cells, to modulate and down-regulate immune responses at various times and locations and in various inflammatory circumstances. Amongst these, naturally occurring CD4(+)CD25(+) Treg cells (nTreg) represent a major lymphocyte population engaged in the dominant control of self-reactive T responses and maintaining tolerance in several models of autoimmunity. CD4(+)CD25(+) Treg cells differentiate in the normal thymus as a functionally distinct subpopulation of T cells bearing a broad T cell receptor repertoire, endowing these cells with the capacity to recognize a wide range of self and nonself antigen specificities. The generation of CD4(+)CD25(+) Treg cells in the immune system is genetically controlled, influenced by antigen recognition, and various signals, in particular, cytokines such as interleukin-2 and transforming growth factor-beta1, control their activation, expansion, and suppressive effector activity. Functional abrogation of these cells in vivo or genetic defects that affect their development or function unequivocally promote the development of autoimmune and other inflammatory diseases in animals and humans. Recent progress has shed light on our understanding of the cellular and molecular basis of CD4(+)CD25(+) Treg cell-mediated immune regulation. This article discusses the relative contribution of CD4(+)CD25(+) nTreg cells in the induction of immunologic self-tolerance and provides a comprehensive overview of recent finding regarding the functional properties and effector mechanism of these cells, as revealed from various in vitro and in vivo models.  相似文献   

12.
There are reports suggesting an influence of CD4(+)CD25(+) T regulatory cells (Treg) on cytotoxic lymphocytes. The aim of the study was to evaluate such an influence. Cytotoxic activity was examined in the cultures of peripheral blood mononuclear cells (PBMC) as well as in the cultures of separate T CD8(+) or NK cells mixed with Treg and other subpopulations of PBMC. We found that the production of IFNgamma, perforin and cytotoxic activity of T CD8(+) or NK cells were decreased in the presence of Treg, however, the percentage of conjugates formed by cytotoxic cells with target cells during cytotoxic reaction was decreased only in the cultures of T CD8(+) cells. Inhibition of the cytotoxic reactions in the presence of Treg cells was found to be associated with the generation of conglomerates formed by CD4(+)CD25(+) and the cytotoxic cells, as observed under the fluorescence microscope. Treg produced IL10 when mixed with the cytotoxic lymphocytes, however, an addition of anti-IL10 mAb into the cultures did not affect the results. It is concluded that Treg were able to inhibit both T CD8+ and NK lymphocyte cytotoxic activities in a direct cell-to-cell interaction. Treg decreased the number of T CD8+ cells attached to the target cells, while the mechanism underlying a decrease in NK cytotoxicity remained unclear.  相似文献   

13.
Peptide immunotherapy is being explored to modulate varied disease states; however, the mechanism of action remains poorly understood. In this study, we investigated the ability of a subcutaneous peptide immunization schedule to induce of CD4(+) CD25(+) T regulatory cells. DO11.10 T cell receptor (TCR) transgenic mice on a Rag 2(-/-) background were injected subcutaneously with varied doses of purified ovalbumin (OVA(323-339)) peptide daily for 16 days. While these mice have no CD4(+) CD25(+) T regulatory cells, following this injection schedule up to 30% of the CD4(+) cells were found to express CD25. Real-time quantitative polymerase chain reaction (QPCR) analysis of the induced CD4(+) CD25(+) T cells revealed increased expression of forkhead box P3 (FoxP3), suggesting that these cells may have a regulatory function. Proliferation and suppression assays in vitro utilizing the induced CD4(+) CD25(+) T cells revealed a profound anergic phenotype in addition to potent suppressive capability. Importantly, co-injection of the induced CD4(+) CD25(+) T cells with 5,6-carboxy-succinimidyl-fluorescence-ester (CFSE)-labelled naive CD4(+) T cells (responder cells) into BALB/c recipient mice reduced proliferation and differentiation of the responder cells in response to challenge with OVA(323-339) peptide plus adjuvant. We conclude that repeated subcutaneous exposure to low-dose peptide leads to de novo induction of CD4(+) CD25(+) FoxP3(+) T regulatory cells with potent in vitro and in vivo suppressive capability, thereby suggesting that one mechanism of peptide immunotherapy appears to be induction of CD4(+) CD25(+) Foxp3(+) T regulatory cells.  相似文献   

14.
A CD4(+) T cell subpopulation defined by the expression levels of a particular cell surface molecule (e.g. CD5, CD45RB, CD25, CD62L or CD38) bears an autoimmune-preventive activity in various animal models. Here we show that the expression of CD25 is highly specific, when compared with other molecules, in delineating the autoimmune-preventive immunoregulatory CD4(+) T cell population. Furthermore, although CD25 is an activation marker for T cells, the following findings indicate that immunoregulatory CD25(+)CD4(+) T cells are functionally distinct from activated or anergy-induced T cells derived from CD25(-)CD4(+) T cells. First, the former are autoimmune-preventive in vivo, naturally unresponsive (anergic) to TCR stimulation in vitro and, upon TCR stimulation, able to suppress the activation/proliferation of other T cells, whereas the latter scarcely exhibit the in vivo autoimmune-preventive activity or the in vitro suppressive activity. Second, such activated or anergy-induced CD25(-) spleen cells produce various autoimmune diseases when transferred to syngeneic athymic nude mice, whereas similarly treated normal spleen cells, which include CD25(+)CD4(+) T cells, do not. Third, upon polyclonal T cell stimulation, CD25(+)CD4(+) T cells express CD25 at higher levels and more persistently than CD25(-)CD4(+) T cell-derived activated T cells; moreover, when the stimulation is ceased, the former revert to the original levels of CD25 expression, whereas the latter lose the expression. These results collectively indicate that naturally anergic and suppressive CD25(+)CD4(+) T cells present in normal naive mice are functionally and phenotypically stable, distinct from other T cells, and play a key role in maintaining immunologic self-tolerance.  相似文献   

15.
CD4+ T regulatory cells (Tregs) are activated during auto-immune, injury, and inflammatory responses, however, the molecular events that trigger Treg activation are poorly understood. The purpose of this study was to investigate whether Tregs (FoxP3+ CD4+ T cells) and non-Treg CD4+ T cells might display differences in T cell receptor (TCR) dependent signaling responses following in vitro or in vivo stimulation. This study used phospho-flow cytometry as a tool to profile the kinetics and extent of TCR signaling (ZAP-70 and PKC-θ phosphorylation and expression) in Tregs and non-Tregs. We found that in vitro stimulation with anti-CD3ε induces early and transient activation of ZAP-70 and PKC-θ in both Tregs and non-Tregs. However, the response in Tregs was more rapid and higher in magnitude than responses seen in non-Tregs. In contrast, bacterial superantigen or antigen-specific TCR stimulation did not significantly activate these signaling pathways in Tregs or non-Tregs. Additional experiments tested the kinetics of in vivo TCR signaling in Tregs and non-Tregs in mice challenged with bacterial superantigen. The results of these experiments showed that superantigen rapidly activated ZAP-70 and PKC-θ in lymph node Tregs, but not in non-Tregs. In summary, we demonstrate the versatility of using phospho-flow cytometry to measure cell signaling in CD4+ T cells. The results of these in vitro and in vivo studies demonstrate that Tregs and non-Treg CD4+ T cells show marked differences in their reactivity to TCR-dependent stimulation and contribute new insights into basic mechanisms that lead to Treg activation.  相似文献   

16.
17.
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is constitutively expressed on CD25(+)CD4(+) regulatory T cells (Treg) and is suggested to play a role in Treg-mediated suppression. However, the results of analysis with anti-CTLA-4 have been controversial. We addressed this issue by analyzing mice over-expressing or deficient in CTLA-4. For over-expression, CTLA-4 transgenic mice expressing a full-length (FL) or a truncated (TL) mutant of CTLA-4 were analyzed. FL T cells expressed similar levels of CTLA-4 to Treg, whereas TL T cells expressed much higher levels on the cell surface. The number of Treg in both mice was decreased, although Foxp3 expression was not altered. Treg from both mice exerted suppressive activity, whereas CD25(-) T cells from FL mice showed no suppression. Furthermore, CD25(+)CD4 thymocytes from young CTLA-4-deficient mice were analyzed and found to exhibit suppressive activity. These results indicate that Treg exert in vitro suppressive activity independent of CTLA-4 expression.  相似文献   

18.
"Suppressor T cells" were historically defined within the CD8(+) T-cell compartment and recent studies have highlighted several naturally occurring CD8(+) Foxp3(-) Treg populations. However, the relevance of CD8(+) Foxp3(+) T cells, which represent a minor population in both thymi and secondary lymphoid organs of nonmanipulated mice, remains unclear. We here demonstrate that de novo Foxp3 induction in peripheral CD8(+) Foxp3(-) T cells is counter-regulated by DC-mediated co-stimulation via CD80/CD86. CD8(+) Foxp3(+) T cells fail to develop in TCR-transgenic mice with Rag1(-/-) background, similar to classical CD4(+) Foxp3(+) Tregs. Notably, both naturally occurring and induced CD8(+) Foxp3(+) T cells express bona fide Treg markers including CD25, GITR, CTLA4 and CD103, and show defective IFN-γ production upon restimulation when compared with their CD8(+) Foxp3(-) counterparts. However, utilizing DEREG transgenic mice for the isolation of Foxp3(+) cells by eGFP reporter expression, we demonstrate that induced CD8(+) Foxp3(+) T cells similar to activated CD8(+) Foxp3(-) T cells only mildly suppress T-cell proliferation and IFN-γ production. We therefore categorize CD8(+) Foxp3(+) T cells as a tightly controlled population sharing certain developmental and phenotypic properties with classical CD4(+) Foxp3(+) Tregs, but lacking potent suppressive activity.  相似文献   

19.
Transforming growth factor beta (TGF-beta) has been shown to be a central immunomodulator used by leishmaniae to escape effective mechanisms of protection in human and murine infections with these parasites. However, all the information is derived from studies of established infection, while little is known about TGF-beta production in response to Leishmania stimulation in healthy subjects. In this study, TGF-beta1 production was demonstrated in peripheral blood mononuclear cells from healthy subjects never exposed to leishmaniae in response to live Leishmania guyanensis, and the TGF-beta1-producing cells were described as a distinct subpopulation of CD4(+) CD25(+) regulatory T cells. The suppressive properties of CD4(+) CD25(+) T cells were demonstrated in vitro by their inhibition of production of interleukin 2 (IL-2) and IL-10 by CD4(+) CD25(-) T cells in the presence of either anti-CD3 or L. guyanensis. Although neutralization of TGF-beta1 did not reverse the suppressive activity of CD4(+) CD25(+) T cells activated by anti-CD3, it reversed the suppressive activity of CD4(+) CD25(+) T cells activated by L. guyanensis. Altogether our data demonstrated that TGF-beta1 is involved in the suppressive activity of L. guyanensis-stimulated CD4(+) CD25(+) T cells from healthy controls.  相似文献   

20.
A progressive decline in the integrity of the immune system is one of the physiologic changes during aging. The frequency of autoimmune diseases or immune disorders increases in the aging population, but the state of regulatory T (Treg) cells in aged individuals has not been well determined. In the present study, we investigated the levels, phenotypes, and function of CD4(+)CD25(+) Treg cells in Balb/c mice, which were older than 20 months. Significantly enhanced percentages of CD4(+)CD25(+) Treg cells in the periphery (blood, spleen, and lymph nodes) of the aged mice were observed. These Treg cells showed modified Vbeta family distribution, reduced levels of CD45 receptor B and CD62 ligand molecules, as well as normal levels of forkhead box p3. However, when the inhibiting function of Treg cells was assayed in the in vitro assays and in a delayed-type hypersensitivity (DTH) model, CD4(+)CD25(+) Treg cells of aged mice displayed significantly lower inhibiting ability on alloantigen-induced DTH reaction or cytokine productions (IL-2 and IFN-gamma) but not cell proliferation of effector T cells, as compared with CD4(+)CD25(+) Treg cells of young mice. In addition, the percentages of CD4(+)CD8(-)CD25(+) Treg cells in the thymi of aged mice increased significantly, but their total cell numbers decreased markedly in these mice. Our present studies indicated collectively that the percentages, phenotypes, the size of TCR repertoire, and function of CD4(+)CD25(+) Treg cells were altered significantly with aging in mice. The functional defects of CD4(+)CD25(+) Treg cells may shed light on the role of CD4(+)CD25(+) Treg cells in the increased sensitivity to autoimmune diseases of aged populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号