首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extensive expression profiling studies have shown that sporadic breast cancer is composed of five clinically relevant molecular subtypes. However, although BRCA1-related tumours are known to be predominantly basal-like, there are few published data on other classes of familial breast tumours. We analysed a cohort of 75 BRCA1, BRCA2 and non-BRCA1/2 breast tumours by gene expression profiling and found that 74% BRCA1 tumours were basal-like, 73% of BRCA2 tumours were luminal A or B, and 52% non-BRCA1/2 tumours were luminal A. Thirty-four tumours were also analysed by single nucleotide polymorphism–comparative genomic hybridization (SNP-CGH) arrays. Copy number data could predict whether a tumour was basal-like or luminal with high accuracy, but could not predict its mutation class. Basal-like BRCA1 and basal-like non-BRCA1 tumours were very similar, and contained the highest number of chromosome aberrations. We identified regions of frequent gain containing potential driver genes in the basal (8q and 12p) and luminal A tumours (1q and 17q). Regions of homozygous loss associated with decreased expression of potential tumour suppressor genes were also detected, including in basal tumours (5q and 9p), and basal and luminal tumours (10q). This study highlights the heterogeneity of familial tumours and the clinical consequences for treatment and prognosis.  相似文献   

2.
The CCND1 gene, a key cell-cycle regulator, is often altered in breast cancer, but the mechanisms underlying CCND1 dysregulation and the clinical significance of CCND1 status are unclear. We used real-time quantitative PCR and RT-PCR assays based on fluorescent TaqMan methodology to quantify CCND1 gene amplification and expression in a large series of breast tumours. CCND1 overexpression was observed in 44 (32.8%) of 134 breast tumour RNAs, ranging from 3.3 to 43.7 times the level in normal breast tissues, and correlated significantly with positive oestrogen receptor status (P=0.0003). CCND1 overexpression requires oestrogen receptor integrity and is exacerbated by amplification at 11q13 (the site of the CCND1 gene), owing to an additional gene dosage effect. Our results challenge CCND1 gene as the main 11q13 amplicon selector. The relapse-free survival time of patients with CCND1-amplified tumours was shorter than that of patients without CCND1 alterations, while that of patients with CCND1-unamplified-overexpressed tumours was longer (P=0.011). Only the good prognostic significance of CCND1-unamplified-overexpression status persisted in Cox multivariate regression analysis. This study confirms that CCND1 is an ER-responsive or ER-coactivator gene in breast cancer, and points to the CCND1 gene as a putative molecular marker predictive of hormone responsiveness in breast cancer. Moreover, CCND1 amplification status dichotomizes the CCND1-overexpressing tumors into two groups with opposite outcomes.  相似文献   

3.
4.
Loss of heterozygosity (LOH) was analysed in 84 primary tumours from sporadic, familial and hereditary breast cancer using five microsatellite markers spanning the chromosomal region 13q12-q13 which harbours the BRCA2 breast cancer susceptibility gene, and using one other marker located within the RBI tumour-suppressor gene at 13q14. LOH at the BRCA2 region was found in 34% and at RBI in 27% of the tumours. Selective LOH at BRCA2 occurred in 7% of the tumours, whereas selective LOH at RBI was observed in another 7%. Moreover, a few tumours demonstrated a restricted deletion pattern, suggesting the presence of additional tumour-suppressor genes both proximal and distal of BRCA2. LOH at BRCA2 was significantly correlated to high S-phase values, low oestrogen and progesterone receptor content and DNA non-diploidy. LOH at BRCA2 was also associated, albeit non-significantly, with large tumour size and the ductal and medullar histological types. No correlation was found with lymph node status, patient age or a family history of breast cancer. A highly significant and independent correlation existed between LOH at BRCA2 and early recurrence and death. LOH at RBI was not associated with the above mentioned factors or prognosis. The present study does not provide conclusive evidence that BRCA2 is the sole target for deletions at 13q12-q13 in breast tumours. However, the results suggest that inactivation of one or several tumour-suppressor genes in the 13q12-q13 region confer a strong tumour growth potential and poor prognosis in both familial and sporadic breast cancer.  相似文献   

5.
DNA amplification at band q13 of chromosome 11 is common in breast cancer, and CCND1 and EMS1 remain the strongest candidate genes. However, amplification patterns are consistent with the existence of four cores of amplification, suggesting the involvement of additional genes. Here we present evidence strongly suggesting the involvement of the recently characterized EMSY gene in the formation of the telomeric amplicon. EMSY maps at 11q13.5, 100 kb centromeric to the GARP gene, which has been mapped within the core of the distal amplicon. The EMSY protein was shown to interact with BRCA2 and has a role in chromatin remodeling. This makes EMSY a strong candidate oncogene for the 11q13.5 amplicon. DNA amplification was studied in a total of 940 primary breast tumors and 39 breast cancer cell lines. Amplification profiles were consistent with the EMSY-GARP locus being amplified independently of CCND1 and/or EMS1. EMSY RNA expression levels were studied along with those of five other genes located at 11q13.5 by real-time quantitative PCR in the 39 cell lines and a subset of 65 tumors. EMSY overexpression correlated strongly with DNA amplification in both primary tumors and cell lines. In a subset of 296 patients, EMSY amplification was found by both uni- and multivariate analyses to correlate with shortened disease-free survival. These data indicate that EMSY is a strong candidate oncogene for the 11q13.5 amplicon.  相似文献   

6.
Melchor L  Benítez J 《Carcinogenesis》2008,29(8):1475-1482
Do breast cancer tumours have a common cell origin? Do different breast cancer molecular phenotypes arise from distinct cell types? The studies we have performed during the last few years in familial breast tumours (BRCA1, BRCA2 and non-BRCA1/2) widen questions about the development of sporadic breast cancer to hereditary breast cancer. Array-comparative genomic hybridisation (CGH) studies show universal genomic aberrations in both familial and sporadic breast cancer subtypes that may be selected in the breast tumour development. The inactivation of BRCA1 seems to play a critical role in oestrogen receptor (ER)-negative cancer stem cells (CSCs), driving the tumour development mostly towards a basal-like or, in some cases, to a luminal B phenotype, but other carcinogenetic events are proposed to explain the remaining tumour subtypes. The existence of common genomic alterations in basal-like, ERBB2 and luminal B breast tumours may suggest a common cell origin or clonal selection of these tumour subtypes, arising from an ER-negative CSC or from a progenitor cell (PC). Finally, specific genomic aberrations in ER-positive tumours could provide cellular proliferation advantages when the cells are exposed to oestrogen. We propose a combination of the CSC hypothesis (for the carcinogenesis processes) and the clonal selection model (in terms of tumour development). We uphold that the basal-like-, ERBB2- and luminal B-sporadic and familial tumour subtypes have an ER-negative breast stem/PC origin, whereas luminal A tumours arise from an ER-positive PC, supporting a hierarchical breast carcinogenesis model, whereas crucial genomic imbalances are clonally selected during the tumour development.  相似文献   

7.
Amplification of 11q13 is found in approximately 15% of breast cancers. Cyclin D1 (CCND1) has been reported to be the ‘driver’ of this amplicon, however, multiple genes map to the smallest region of amplification of 11q13. Out of these genes, cortactin (CTTN) has been shown to be consistently overexpressed at the mRNA level in tumours harbouring 11q13 amplification. The aims of this study are to define whether CTTN is consistently co-amplified with the main core of the 11q13 amplicon, whether it is consistently overexpressed when amplified and to determine correlations between CTTN amplification and overexpression with clinicopathological features of breast cancers and survival of breast cancer patients. CTTN and CCND1 chromogenic in situ hybridisation (CISH) probes and a validated monoclonal antibody against CTTN were applied to a tissue microarray of a cohort of breast cancers from patients treated with anthracycline-based chemotherapy. CTTN and CCND1 amplifications were found in 12.3 and 12.4% of cases, respectively. All cases harbouring CTTN amplification also displayed CCND1 amplification. High expression of CTTN was found in 10.8% of cases and was associated with CTTN amplification, expression of ‘basal’ markers and topoisomerase IIα. Exploratory subgroup analysis of tumours devoid of 11q13 amplification revealed that high expression of CTTN in the absence of CTTN gene amplification was associated with lymph node negative disease, lack of hormone receptors and FOXA1, expression of ‘basal’ markers, high Ki-67 indices, p53 nuclear expression, and basal-like and triple negative phenotypes. CTTN expression and CTTN gene amplification were not associated with disease-, metastasis-free and overall survival. In conclusion, CTTN is consistently co-amplified with CCND1 and expressed at higher levels in breast cancers harbouring 11q13 amplification, suggesting that CTTN may also constitute one of the drivers of this amplicon. CTTN expression is not associated with the outcome of breast cancer patients treated with anthracycline-based chemotherapy.  相似文献   

8.
Rearrangements of chromosome 11q13 are frequently observed in human cancer. The 11q13 region harbors several chromosomal breakpoint clusters found in hematologic malignancies and exhibits frequent DNA amplification in carcinomas. DNA amplification patterns in breast tumors are consistent with the existence of at least 4 individual amplification units, suggesting the activation of more than 1 gene in this region. Two candidate oncogenes have been identified, CCND1 and EMS1/CORTACTIN, representing centrally localized amplification units. Genes involved in the proximal and distal amplicons remain to be identified. Recently we reported on a putative transforming gene, MYEOV, mapping 360 kb centromeric to CCND1. This gene was found to be rearranged and activated concomitantly with CCND1 in a subset of t(11;14)(q13;q32)-positive multiple myeloma (MM) cell lines. To evaluate the role of the MYEOV gene in the proximal amplification core, we tested 946 breast tumors for copy number increase of MYEOV relative to neighboring genes or markers. RNA expression levels were studied in a subset of 72 tumors for which both RNA and DNA were available. Data presented here show that the MYEOV gene is amplified in 9.5% (90/946) and abnormally expressed in 16.6% (12/72) of breast tumors. Amplification patterns showed that MYEOV was most frequently coamplified with CCND1 (74/90), although independent amplification of MYEOV could also be detected (16/90). Abnormal expression levels correlated only partially with DNA amplification. MYEOV DNA amplification correlated with estrogen and progesterone receptor-positive cancer, invasive lobular carcinoma type and axillary nodal involvement. In contrast to CCND1 amplification, no association with disease outcome could be found. Our data suggest that MYEOV is a candidate oncogene activated in the amplification core located proximal to CCND1.  相似文献   

9.
10.
Amplification of chromosome 11q13 is commonly seen in breast carcinomas and candidate genes from this region include CCND1 and EMSY. Here, we investigate the prognostic significance of CCND1 and EMSY amplification in a large series of breast carcinomas and in BRCA1 and BRCA2 mutation positive breast cancers. Amplification of CCND1 and EMSY was assessed by fluorescent in situ hybridization. Both CCND1 and EMSY amplifications were associated with a significantly worse outcome in ER-positive patients treated with tamoxifen only, in contrast to nonamplified tumors (P = 8.55 × 10−4 and P = 8.35 × 10−5, respectively). In multivariable Cox models, which included standard prognostic markers, co-amplification of CCND1 and EMSY was significantly more predictive of outcome than was amplification of either gene alone or neither gene amplified in ER-positive tamoxifen-treated patients (P = 5.47 × 10−5). EMSY gene amplification was a significantly less common event in BRCA2 mutation carriers as compared to BRCA1 mutation carriers (9 versus 24%, respectively). In contrast, CCND1 amplification occurred at a similar frequency in both BRCA1 and BRCA2 breast cancers (22 versus 18%, respectively). In summary, co-amplification of CCND1 and EMSY identified a poor prognostic subset of ER-positive tamoxifen-treated patients. In addition, EMSY amplification occurred at a lower frequency in BRCA2 mutation carriers providing evidence to support EMSY amplification as a somatic surrogate for BRCA2 loss in sporadic breast cancer.  相似文献   

11.
Loss of heterozygosity (LOH) on chromosome 13 occurs on 25-30% of breast tumours. This may reflect the inactivation of the retinoblastoma susceptibility gene RB1. However, recently another candidate tumour-suppressor gene has been identified on chromosome 13 by linkage analysis, the breast cancer susceptibility gene BRCA2. To investigate the involvement of BRCA2 in sporadic breast cancer 200 breast tumours were tested for LOH on chromosome band 13q12-q14, using 11 highly polymorphic microsatellite markers. LOH was found in 65 tumours, which all showed simultaneously loss of BRCA2 and RB1. Of 12 breast tumour cell lines tested with polymorphic microsatellite markers, seven showed a contiguous region of homozygosity on 13q12-q14, suggesting LOH in the tumour from which the cell line had been derived. One cell line showed homozygosity in the BRCA2 region and heterozygosity at RB1. This is the only indication that BRCA2 is a distinct target for LOH on chromosome 13 in addition to RB1.  相似文献   

12.
Amplification of the chromosome 11q13 region is frequently found in human breast cancer and in squamous cell carcinomas of the head and neck, and has been associated with an unfavourable clinical course of disease. The known oncogenes within the amplified 11q13 region, INT2 and HSTF1, are rarely expressed in these tumours, indicating that another, hitherto unidentified, gene or genes confer(s) the biological (prognostic) significance to the amplification of the 11q13 region. To identify the gene or genes, we have constructed a cDNA library from a cell line with an 11q13 amplification and have performed differential cDNA cloning using [32P]dCTP-labelled cDNAs from human squamous cell carcinoma cell lines with and without an 11q13 amplification. We isolated two cDNA clones, U21B31 and U21C8, which recognize two genes amplified and overexpressed in cell lines harbouring an 11q13 amplification. In breast carcinomas and in squamous cell carcinomas amplification of both the U21B31 and the U21C8 gene was found in most tumours with an amplification of the 11q13 region, despite the large distance between both genes. Sequence analysis of the U21C8 cDNA clone revealed no homology to known genes; we call this gene EMS1. The U21B31 cDNA clone corresponded to the 3' end of the PRAD1 proto-oncogene, recently cloned from a parathyroid adenoma. Both gene products are of interest as potential markers to identify tumours with an 11q13 amplification.  相似文献   

13.
Genomic analysis of the 8p11-12 amplicon in familial breast cancer   总被引:2,自引:0,他引:2  
Amplification of 8p11-12 has been recurrently reported in sporadic breast cancer. These studies define a complex molecular structure with a set of minimal amplified regions, and different putative oncogenes that show a strong correlation between amplification and over-expression such as ZNF703/FLJ14299, SPFH2/C8orf2, BRF2 and RAB11FIP. However, none of these studies were carried out on familial breast malignancies. We have studied the incidence, molecular features and clinical value of this amplification in familial breast tumors associated with BRCA1, BRCA2 and non-BRCA1/2 gene mutations. We detected 9 out of 80 familial tumors with this amplicon by chromosomal comparative genomic hybridization. Next, we used a high-resolution comparative genomic hybridization array covering the 8p11-12 region to characterize this chromosomal region. This approach allowed us to define 2 cores of common amplification that largely overlap with those reported in sporadic tumors. Our findings confirm the molecular complexity of this chromosomal region and indicate that this genomic event is a common alteration in breast cancer, present not only in sporadic but also in familial tumors. Finally, we found correlation between the 8p11-12 amplification and proliferation (Ki-67) and cyclin E expression, which further proves in familial tumors the poor prognosis association previously reported in sporadic breast cancer.  相似文献   

14.
Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer.   总被引:11,自引:0,他引:11  
DNA amplification at chromosomal region 20q12-q13, which is common in breast cancer, has recently been described also in ovarian tumors. We studied the amplification of the recently identified candidate oncogenes in this region in 24 sporadic, 3 familial and 4 hereditary ovarian carcinomas, and in 8 ovarian cancer cell lines. High-level amplification of at least one of the five nonsyntenic regions at 20q12-q13.2 was found in 13 sporadic (54%) and in all four hereditary tumors. Typically, two or more distinct amplicons (separated by nonamplified DNA) were found coamplified in various combinations. The regions defined by the AIB1 and PTPN1 genes (at 20q12 and 20q13.1, respectively) were amplified in 25% and 29% of the sporadic tumors, also without simultaneous coamplification of other regions. Amplification of AIB1 (a steroid receptor coactivator gene) was associated with estrogen receptor positivity in sporadic ovarian carcinomas (P = 0.01) and showed a tendency to correlate with poor survival of patients. Of the genes amplified in breast cancer, the BTAK gene was amplified in 21%, the MYBL2 gene in 17%, and the ZNF217 gene in 12.5% of the sporadic tumors. The high frequency of gene amplification at 20q12-q13.2 suggests that the genes amplified therein may play a central role in the pathogenesis of sporadic and hereditary ovarian carcinoma.  相似文献   

15.
The development of familial and sporadic breast cancer is based on genetic alterations of tumour-suppressor genes, for which loss of heterozygosity (LOH) is one mechanism of gene inactivation. To investigate LOH of BRCA1 (17q21) and BRCA2 (13-q12-13) in sporadic breast cancer, polymerase chain reaction (PCR)-based fluorescent DNA technology for detection of microsatellite polymorphisms was applied. A total of 137 breast cancer and 15 benign breast specimens with matched normal tissue were examined. Fluorescent-labelled PCR products were analysed in an automated DNA sequencer (ALFTM Pharmacia). Losses at both loci were correlated with different histological types, age, tumour size, lymph node status, grading and steroid hormone receptor expression, [SHR: oestrogen receptor (ER), progesterone receptor (PgR)]. For BRCA1 (D17S855, THRA1, D17S579) losses could be detected in invasive ductal carcinoma (IDC; n = 108) in 32-38%, invasive lobular carcinoma (ILC; n = 19) in 21-42% depending on the marker applied, but not in benign breast tumours (n = 15). Losses of BRCA1 markers correlated with larger tumour size, higher grade, and PgR expression. For BRCA2 (D13S260, D13S267, D13S171) losses could be detected in 108 IDCs in 30-38%, in 19 ILCs in 17-39% depending on the marker applied, but not in benign breast tumours. Losses of BRCA2 markers correlated only with higher grade. Microsatellite analyses combined with detection of fluorescent-labelled PCR products by an automated laser DNA sequencer can be used for routine determination of LOH. In sporadic breast cancer, LOH of BRCA1 of BRCA2 does not add decisive prognostic value as stated for familial breast cancer.  相似文献   

16.
DNA amplification seems to be particularly frequent in human breast tumours and has been associated with cancer evolution and aggressiveness. Recent data indicate that new events should be added to the list, such as the amplifications at chromosome 20q13 or the MDM2 gene. The present work aimed at determining the incidence and clinicopathological signification of these amplifications in a large series of breast and ovarian tumours. We tested 1371 breast and 179 ovarian tumours by Southern blotting and observed amplification of 20q13 in 5.4% breast and 2.8% ovarian carcinomas, whereas MDM2 was found amplified in 5.3% and 3.8% of breast and ovarian tumours respectively. MDM2 RNA expression levels were analysed in a subset of 57 breast tumours and overexpression was observed in 4/57 (7%) of the tumours. Elevated expression levels coincided with amplification of the gene. In breast cancer, 20q13 and MDM2 amplifications seem to define subsets of aggressive tumours. Indeed, 20q13 was correlated to axillary nodal involvement and occurred preferentially in younger patients (< 50 years). Furthermore, 20q13 correlated, as did MDM2 amplification, to aneuploidy. In parallel, we had also tested our tumour DNAs for amplification of CCND1, ERBB-2 and MYC, which made it possible to test for correlations with 20q13 or MDM2 amplifications. Whereas 20q13 showed a very strong correlation to CCND1 amplification, that of MDM2 was prevalent in MYC-amplified tumours. Interestingly, 20q13 and MDM2 amplifications showed some degree of correlation to each other, which may possibly be owing to the fact that both events occurred preferentially in aneuploid tumours. In ovarian cancer, no statistically significant correlation was observed. However, 20q13 amplification occurred preferentially in stage 3 tumours and MDM2 was correlated to ERBB-2 amplification. This may suggest that in ovarian tumours also, 20q13 and MDM2 amplifications occur in late or aggressive cancers.  相似文献   

17.
18.
Germ-line mutations in the BRCA1 tumour suppressor gene contribute to familial breast tumour formation, but there is no evidence for direct mutation of the BRCA1 gene in the sporadic form of the disease. In contrast, decreased expression of the BRCA1 gene has been shown to be common in sporadic tumours, and the magnitude of the decrease correlates with disease progression. BRCA1 expression is also tightly regulated during normal breast development. Determining how these developmental regulators of BRCA1 expression are co-opted during breast tumourigenesis could lead to a better understanding of sporadic breast cancer aetiology and the generation of novel therapeutic strategies aimed at preventing sporadic breast tumour progression.  相似文献   

19.
Breast cancer susceptibility genes BRCA1 and BRCA2 are tumour suppressor genes the alleles of which have to be inactivated before tumour development occurs. Hereditary breast cancers linked to germ-line mutations of BRCA1 and BRCA2 genes almost invariably show allelic imbalance (AI) at the respective loci. BRCA1 and BRCA2 are believed to take part in a common pathway in maintenance of genomic integrity in cells. We carried out AI and fluorescence in situ hybridization (FISH) analyses of BRCA2 in breast tumours from germ-line BRCA1 mutation carriers and vice versa. For comparison, 14 sporadic breast tumours were also studied. 8 of the 11 (73%) informative BRCA1 mutation tumours showed AI at the BRCA2 locus. 53% of these tumours showed a copy number loss of the BRCA2 gene by FISH. 5 of the 6 (83%) informative BRCA2 mutation tumours showed AI at the BRCA1 locus. Half of the tumours (4/8) showed a physical deletion of the BRCA1 gene by FISH. Combined allelic loss of both BRCA1 and BRCA2 gene was seen in 12 of the 17 (71%) informative hereditary tumours, whereas copy number losses of both BRCA genes was seen in only 4/14 (29%) sporadic control tumours studied by FISH. In conclusion, the high prevalence of AI at BRCA1 in BRCA2 mutation tumours and vice versa suggests that somatic events occurring at the other breast cancer susceptibility gene locus may be selected in the cancer development. The mechanism resulting in AI at these loci seems more complex than a physical deletion.  相似文献   

20.
The human proto-oncogene INT2 (homologous to the mouse INT2 gene, implicated in proviral induced mammary carcinoma) has been mapped to chromosome 11q13 and found to share band localisation with, among others, the HST1 proto-oncogene. Both genes are members of the fibroblast growth factor family. In the present study, coamplification (2-15 copies) of the INT2/HST1 genes was found in 27 (9%) of 311 invasive human breast carcinomas using slot blot and Southern blot analyses. Amplification was not correlated to tumour size, axillary lymph node status or stage of disease, neither to patient age nor menopausal status. However, 26 (96%) of the 27 amplified tumours were, often strongly, Oestrogen receptor positive compared to 65% of the unamplified cases (P = 0.001). These findings are in sharp contrast to the strong correlations of HER-2/neu proto-oncogene amplification with advanced stage and steroid receptor negativity, previously observed in the same series of tumours. Patients with INT2/HST1 amplified breast cancer had a significantly shorter disease-free survival compared to those with unamplified genes (P = 0.015, median follow up 45 months). This correlation was confined to node-negative patients and persisted in multivariate analysis. No significant correlation to survival from breast cancer was found. It is concluded that amplification of the 11q13 region in breast cancer occurs in a particular subset of aggressive tumours, quite different from that identified by HER-2/neu amplification. It still remains to be shown that the selection for amplified genes at 11q13 is due to the activity of INT2, HST1 or yet another, still unidentified, neighbouring gene. However, the results are potentially of clinical value in separating a group of node-negative breast cancer for more intense treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号