首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
OBJECTIVE: To examine the pathogenetic mechanisms of osteoarthritis (OA)-like changes in Col9a1-/- mice, which are deficient in type IX collagen. METHODS: Knee joints and temporomandibular joints (TMJs) from Col9a1-/- mice and their wild-type (Col9a1+/+) littermates were examined by light microscopy. Immunohistochemical staining was performed to examine the expression of matrix metalloproteinase 3 (MMP-3) and MMP-13, degraded type II collagen, and the discoidin domain receptor 2 (DDR-2) in knee joints. Cartilage mechanics were also evaluated for compressive properties by microindentation testing of the tibial plateau and for tensile properties by osmotic loading of the femoral condyle. RESULTS: Histologic analysis showed age-dependent OA-like changes in the knee and TMJs of Col9a1-/- mice starting at the age of 3 months. At the age of 6 months, enhanced proteoglycan degradation was observed in the articular cartilage of the knee and TMJs of the mutant mice. The expression of MMP-13 and DDR-2 protein and the amount of degraded type II collagen were higher in the knee joints of Col9a1-/- mice than in their wild-type littermates at the age of 6 months. Changes in cartilage mechanics were observed in the femoral and tibial plateaus of Col9a1-/- mice at 6 months, including a decrease in the compressive modulus and uniaxial modulus. At 3 and 6 months of age, tibial cartilage in Col9a1-/- mice was found to be more permeable to fluid flow, with an associated compromise in the fluid pressurization mechanism of load support. All of these changes occurred only at medial sites. CONCLUSION: Lack of type IX collagen in Col9a1-/- mice results in age-dependent OA-like changes in the knee joints and TMJs.  相似文献   

3.
Oxidative remodeling in pressure overload induced chronic heart failure   总被引:1,自引:0,他引:1  
Despite extensive strides in understanding pressure overload induced heart failure, there is very little known about oxidative stress induced matrix metalloproteinase (MMP) activation, collagen degradation and remodeling in pressure overload heart failure. We hypothesize that pressure overload leads to redox imbalance causing increased expression/activity of MMP-2/9 producing collagen degradation and heart failure. To test this hypothesis, we created pressure overload heart failure by abdominal aortic stenosis (AS) in wild-type C57BL/6J and collagen mutant (Col1a1 with 129 s background) mice. At 4 weeks, post surgery, functional parameters were measured. Left ventricle (LV) tissue sections were analyzed by histology, Western Blot and PCR. The results suggest an increase in iNOS with a decrease in eNOS, an increase in nitrated protein modification and depletion of antioxidants thioredoxin and SOD in pressure overload. MMP-2/9 expression/activity and collagen degradation were increased in the AS animals. To determine whether a mutation in the collagen gene at the site of MMP cleavage mitigates cardiac hypertrophy, we used Col1a1 mice. In these mice, the AS induced LV hypertrophy (LVH) was ameliorated. In conclusion, our results suggest that AS leads to increased oxidative stress, expression/activity of MMP-2/9 and a decrease in antioxidant expression producing collagen degradation and heart failure.  相似文献   

4.

Objective

To examine the pathogenetic mechanisms of osteoarthritis (OA)–like changes in Col9a1−/− mice, which are deficient in type IX collagen.

Methods

Knee joints and temporomandibular joints (TMJs) from Col9a1−/− mice and their wild‐type (Col9a1+/+) littermates were examined by light microscopy. Immunohistochemical staining was performed to examine the expression of matrix metalloproteinase 3 (MMP‐3) and MMP‐13, degraded type II collagen, and the discoidin domain receptor 2 (DDR‐2) in knee joints. Cartilage mechanics were also evaluated for compressive properties by microindentation testing of the tibial plateau and for tensile properties by osmotic loading of the femoral condyle.

Results

Histologic analysis showed age‐dependent OA‐like changes in the knee and TMJs of Col9a1−/− mice starting at the age of 3 months. At the age of 6 months, enhanced proteoglycan degradation was observed in the articular cartilage of the knee and TMJs of the mutant mice. The expression of MMP‐13 and DDR‐2 protein and the amount of degraded type II collagen were higher in the knee joints of Col9a1−/− mice than in their wild‐type littermates at the age of 6 months. Changes in cartilage mechanics were observed in the femoral and tibial plateaus of Col9a1−/− mice at 6 months, including a decrease in the compressive modulus and uniaxial modulus. At 3 and 6 months of age, tibial cartilage in Col9a1−/− mice was found to be more permeable to fluid flow, with an associated compromise in the fluid pressurization mechanism of load support. All of these changes occurred only at medial sites.

Conclusion

Lack of type IX collagen in Col9a1−/− mice results in age‐dependent OA‐like changes in the knee joints and TMJs.
  相似文献   

5.
GPR56, an orphan G protein-coupled receptor (GPCR) from the family of adhesion GPCRs, plays an indispensable role in cortical development and lamination. Mutations in the GPR56 gene cause a malformed cerebral cortex in both humans and mice that resembles cobblestone lissencephaly, which is characterized by overmigration of neurons beyond the pial basement membrane. However, the molecular mechanisms through which GPR56 regulates cortical development remain elusive due to the unknown status of its ligand. Here we identify collagen, type III, alpha-1 (gene symbol Col3a1) as the ligand of GPR56 through an in vitro biotinylation/proteomics approach. Further studies demonstrated that Col3a1 null mutant mice exhibit overmigration of neurons beyond the pial basement membrane and a cobblestone-like cortical malformation similar to the phenotype seen in Gpr56 null mutant mice. Functional studies suggest that the interaction of collagen III with its receptor GPR56 inhibits neural migration in vitro. As for intracellular signaling, GPR56 couples to the Gα12/13 family of G proteins and activates RhoA pathway upon ligand binding. Thus, collagen III regulates the proper lamination of the cerebral cortex by acting as the major ligand of GPR56 in the developing brain.  相似文献   

6.
OBJECTIVE: An arginine-to-cysteine substitution at position 519 of the COL2A1 gene causes early generalized osteoarthritis with mild chondrodysplasia in humans. In this study, a human COL2A1 gene with the same mutation was introduced into a murine genome having 1 or no alleles of the murine Col2a1 gene, and the skeletal phenotypes of the transgenic mice were compared with those of control mice. METHODS: Mice with 1 allele of the normal murine Col2a1 gene and 1 allele of the mutated human COL2A1 gene (n = 10), those with no murine Col2a1 gene and 2 alleles of the mutated human COL2A1 gene (n = 13), those with no murine Col2a1 gene and only 1 allele of the mutated COL2A1 gene (n = 9), and normal control mice (n = 11) were studied for skeletal abnormalities, using radiographic imaging and light microscopic analyses of histologic sections. The collagen network of cartilage was also investigated with transmission electron microscopy. RESULTS: At 2 months of age, all transgenic mice had dysplastic changes in their long bones, flattened vertebral bodies, and osteoarthritic changes in their joints. The intervertebral discs of the transgenic animals were degenerated, and their histologic structure was disturbed. The changes were more severe in mice with no murine Col2a1 allele. CONCLUSION: The human COL2A1 gene with the Arg519Cys mutation causes osteochondrodysplasia in mice, as it does in humans.  相似文献   

7.

Objective

Chondrocytes, the sole cell type in articular cartilage, maintain the extracellular matrix (ECM) through a homeostatic balance of anabolic and catabolic activities that are influenced by genetic factors, soluble mediators, and biophysical factors such as mechanical stress. Chondrocytes are encapsulated by a narrow tissue region termed the “pericellular matrix” (PCM), which in normal cartilage is defined by the exclusive presence of type VI collagen. Because the PCM completely surrounds each cell, it has been hypothesized that it serves as a filter or transducer for biochemical and/or biomechanical signals from the cartilage ECM. The present study was undertaken to investigate whether lack of type VI collagen may affect the development and biomechanical function of the PCM and alter the mechanical environment of chondrocytes during joint loading.

Methods

Col6a1−/− mice, which lack type VI collagen in their organs, were generated for use in these studies. At ages 1, 3, 6, and 11 months, bone mineral density (BMD) was measured, and osteoarthritic (OA) and developmental changes in the femoral head were evaluated histomorphometrically. Mechanical properties of articular cartilage from the hip joints of 1‐month‐old Col6a1−/−, Col6a1+/−, and Col6a1+/+ mice were assessed using an electromechanical test system, and mechanical properties of the PCM were measured using the micropipette aspiration technique.

Results

In Col6a1−/− and Col6a1+/− mice the PCM was structurally intact, but exhibited significantly reduced mechanical properties as compared with wild‐type controls. With age, Col6a1−/− mice showed accelerated development of OA joint degeneration, as well as other musculoskeletal abnormalities such as delayed secondary ossification and reduced BMD.

Conclusion

These findings suggest that type VI collagen has an important role in regulating the physiology of the synovial joint and provide indirect evidence that alterations in the mechanical environment of chondrocytes, due to either loss of PCM properties or Col6a1−/−‐derived joint laxity, can lead to progression of OA.
  相似文献   

8.

Objective

To substantiate a pathogenic role of cytotoxic CD8 T cells in the development of a murine polymyositis model, C protein–induced myositis (CIM).

Methods

Beta2‐microglobulin–null mutant, perforin‐null mutant, and wild‐type (WT) C57BL/6 mice were immunized with skeletal muscle C protein fragments to provoke CIM. Regional lymph node CD8 or CD4 T cells stimulated with C protein–pulsed dendritic cells were transferred adoptively to naive mice. Inflammation and damage of the muscle tissues were evaluated histologically.

Results

The incidence of myositis development was significantly lower in β2‐microglobulin–null and perforin‐null mutant mice compared with WT mice. Inflammation was less severe in mutant mice, and the incidence of muscle injury was reduced significantly. Adoptive transfer of lymph node T cells from mice with CIM induced myositis in naive recipient mice. The CD8 T cell–induced muscle injuries were significantly more severe than the CD4 T cell–induced muscle injuries.

Conclusion

Perforin‐mediated cytotoxicity by CD8 T cells is definitively responsible for muscle injury in CIM.
  相似文献   

9.
The matricellular protein thrombospondin (TSP) 1 is induced after tissue injury and may regulate reparative responses by activating transforming growth factor-β, by suppressing angiogenesis and by modulating inflammation and matrix metabolism. We hypothesized that endogenous TSP-1 may be involved in the pathogenesis of cardiac remodeling in the pressure-overloaded heart. Myocardial TSP-1 expression was increased in a mouse model of pressure overload because of transverse aortic constriction. TSP-1(-/-) mice exhibited increased early hypertrophy and enhanced late dilation in response to pressure overload. Pressure-overloaded TSP-1 null mice had intense degenerative cardiomyocyte changes, exhibiting more extensive sarcomeric loss and sarcolemmal disruption when compared with wild-type hearts. Accentuated hypertrophy and cardiomyocyte injury in TSP-1(-/-) hearts was accompanied by increased myofibroblast density. However, despite a 2-fold higher infiltration of the cardiac interstitium with myofibroblasts, pressure-overloaded TSP-1 null hearts did not exhibit significantly increased collagen content when compared with wild-type hearts. The disproportionately low collagen content in TSP-1 null hearts was attributed to infiltration with abundant, but functionally defective, fibroblasts that exhibited impaired myofibroblast differentiation and reduced collagen expression in comparison with wild-type fibroblasts. Impaired myofibroblast activation in TSP-1 null hearts was associated with reduced Smad2 phosphorylation reflecting defective transforming growth factor-β signaling. Moreover, TSP-1 null hearts had increased myocardial matrix metalloproteinase 3 expression and enhanced matrix metalloproteinase 9 activation after pressure overload. TSP-1 upregulation in the pressure-overloaded heart critically regulates fibroblast phenotype and matrix remodeling by activating transforming growth factor-β signaling and by promoting matrix preservation, thus preventing chamber dilation.  相似文献   

10.
BACKGROUND: nitric oxide (NO) plays an important role in the regulation of cardiovascular and glucose homeostasis. Mice lacking the gene encoding the neuronal isoform of nitric oxide synthase (nNOS) are insulin-resistant, but the underlying mechanism is unknown. nNOS is expressed in skeletal muscle tissue where it may regulate glucose uptake. Alternatively, nNOS driven NO synthesis may facilitate skeletal muscle perfusion and substrate delivery. Finally, nNOS dependent NO in the central nervous system may facilitate glucose disposal by decreasing sympathetic nerve activity. METHODS: in nNOS null and control mice, we studied whole body glucose uptake and skeletal muscle blood flow during hyperinsulinaemic clamp studies in vivo and glucose uptake in skeletal muscle preparations in vitro. We also examined the effects of alpha-adrenergic blockade (phentolamine) on glucose uptake during the clamp studies. RESULTS: as expected, the glucose infusion rate during clamping was roughly 15 percent lower in nNOS null than in control mice (89 (17) vs 101 (12) [-22 to -2]). Insulin stimulation of muscle blood flow in vivo, and intrinsic muscle glucose uptake in vitro, were comparable in the two groups. Phentolamine, which had no effect in the wild-type mice, normalised the insulin sensitivity in the mice lacking the nNOS gene. CONCLUSIONS: insulin resistance in nNOS null mice was not related to defective insulin stimulation of skeletal muscle perfusion and substrate delivery or insulin signaling in the skeletal muscle cell, but to a sympathetic alpha-adrenergic mechanism.  相似文献   

11.
AIM: To evaluate the possible differences in morphology and immunohistochemical expression of CD3, transforming growth factor beta1 (TGF-beta1), Smad7, alpha-smooth muscle actin (alpha-Sma), and collagen types I-VII of small and large intestine in Smad3 null and wild-type mice. METHODS: Ten null and ten wild-type adult mice were sacrificed at 4 mo of age and the organs (esophagus, small and large bowel, ureters) were collected for histology (hematoxylin and eosin, Masson thrichrome, silver staining), morphometry and immunohistochemistry analysis. TGF-beta1 levels of intestinal tissue homogenates were assessed by ELISA. RESULTS: No macroscopic intestinal lesions were detected both in null and wild-type mice. Histological and morphometric evaluation revealed a significant reduction in muscle layer thickness of small and large intestine in null mice as compared to wild-type mice. Immunohistochemistry evaluation showed a significant increase of CD3+ T cell, TGF-beta1 and Smad7 staining in the small and large intestine mucosa of Smad3 null mice as compared to wild-type mice. Alpha-Sma and collagen I-VII staining of small and large intestine did not differ between the two groups of mice. TGF-beta1 levels of colonic tissue homogenates were significantly higher in null mice than in wild-type mice. In preliminary experiments a significant reduction of TNBS-induced intestinal fibrosis was observed in null mice as compared to wild-type mice. CONCLUSION: Smad3 null mice are a useful model to investigate the in vivo role of the TGF-beta/Smad signalling pathway in intestinal inflammation and fibrosis.  相似文献   

12.
Desmin, the major muscle-specific intermediate filament (IF) protein, is essential for mitochondrial behavior and function and maintenance of healthy muscle. Mice null for desmin develop dilated cardiomyopathy characterized by extensive cardiomyocyte death, fibrosis, calcification and eventual heart failure. We sought to investigate the heart mitochondrial proteome of wild type and desmin null mice in order to understand the cardiac and skeletal myopathy phenotype of desmin deficiency. The proteins were analyzed by 2-D electrophoresis, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Three hundred and eighty different gene products were identified, about 50% of which were enzyme subunits. Cytoskeletal and muscle-specific proteins, calcium-binding proteins, proteins with various other functions and about 70 unknown, hypothetical or poorly described gene products, were also identified. We have observed differences in most metabolic pathways, in apoptosis, calcium homeostasis, calcification and fibrosis and in different signaling pathways linked or not to mitochondrial function. The most significant changes were observed in ketone body and acetate metabolism, NADH shuttle proteins, amino-acid metabolism proteins and respiratory enzymes. Several of these changes are consistent with the known phenotype of desmin deficiency.  相似文献   

13.
14.
Tendons play a significant role in the modulation of forces transmitted between bones and skeletal muscles and consequently protect muscle fibers from contraction-induced, or high-strain, injuries. Myostatin (GDF-8) is a negative regulator of muscle mass. Inhibition of myostatin not only increases the mass and maximum isometric force of muscles, but also increases the susceptibility of muscle fibers to contraction-induced injury. We hypothesized that myostatin would regulate the morphology and mechanical properties of tendons. The expression of myostatin and the myostatin receptors ACVR2B and ACVRB was detectable in tendons. Surprisingly, compared with wild type (MSTN(+/+)) mice, the tendons of myostatin-null mice (MSTN(-/-)) were smaller and had a decrease in fibroblast density and a decrease in the expression of type I collagen. Tendons of MSTN(-/-) mice also had a decrease in the expression of two genes that promote tendon fibroblast proliferation: scleraxis and tenomodulin. Treatment of tendon fibroblasts with myostatin activated the p38 MAPK and Smad2/3 signaling cascades, increased cell proliferation, and increased the expression of type I collagen, scleraxis, and tenomodulin. Compared with the tendons of MSTN(+/+) mice, the mechanical properties of tibialis anterior tendons from MSTN(-/-) mice had a greater peak stress, a lower peak strain, and increased stiffness. We conclude that, in addition to the regulation of muscle mass and force, myostatin regulates the structure and function of tendon tissues.  相似文献   

15.
Burn injury is associated with inflammatory responses and metabolic alterations including insulin resistance. Impaired insulin receptor substrate-1 (IRS-1)-mediated insulin signal transduction is a major component of insulin resistance in skeletal muscle following burn injury. To further investigate molecular mechanisms that underlie burn injury-induced insulin resistance, we study a role of inducible nitric oxide synthase (iNOS), a major mediator of inflammation, on burn-induced muscle insulin resistance in iNOS-deficient mice. Full-thickness third-degree burn injury comprising 12% of total body surface area was produced in wild-type and iNOS-deficient C57BL/6 mice. Insulin-stimulated activation (phosphorylation) of IR, IRS-1, and Akt was assessed by immunoblotting and immunoprecipitation. Insulin-stimulated glucose uptake by skeletal muscle was evaluated ex vivo. Burn injury caused induction of iNOS in skeletal muscle of wild-type mice. The increase of iNOS expression paralleled the increase of insulin resistance, as evidenced by decreased tyrosine phosphorylation of IR and IRS-1, IRS-1 expression, insulin-stimulated activation of phosphatidylinositol 3-kinase and Akt/PKB, and insulin-stimulated glucose uptake in mouse skeletal muscle. The absence of iNOS in genetically engineered mice significantly lessened burn injury-induced insulin resistance in skeletal muscle. In wild-type mice, insulin tolerance test revealed whole-body insulin resistance in burned mice compared with sham-burned controls. This effect was reversed by iNOS deficiency. Unexpectedly, however, blood glucose levels were depressed in both wild-type and iNOS-deficient mice after burn injury. Gene disruption of iNOS ameliorated the effect of burn on IRS-1-mediated insulin signaling in skeletal muscle of mice. These findings indicate that iNOS plays a significant role in burn injury-induced skeletal muscle insulin resistance.  相似文献   

16.
17.
18.
Collagen types I and III (Col I and Col III) are the major fibrillar collagens produced by fibroblasts and myofibroblasts in the adult heart. Fibrillar collagen of the heart provides the structural scaffolding for cardiomyocytes and coronary vessels and imparts cardiac tissue with physical properties that include stiffness and resistance to deformation. In addition, fibrillar collagen may also act as a link between contractile element of adjacent cardiomyocytes and as a conduit of information that is necessary for cell function. As in other organs, collagen turnover of normal adult heart results from the equilibrium between the synthesis and degradation of Col I and Col III. A number of factors have been described that may alter the balance in favor of either the synthesis (e.g., angiotensin II-ANG II-) or the degradation. Predominance of synthesis over degradation leads to increased Col I and Col III deposition or fibrosis that accompanies cardiac diseases such as hypertensive heart disease. Fibrosis alters myocardial structure and function and adversely afects the clinical outcome of hypertensive patients. Various lines of evidence suggest that besides hypertension, systemically and/or locally produced ANG II may participate in the development of hypertensive myocardial fibrosis via activation of ANG II type 1 receptors (AT(1)R). The potential clinical relevance of this possibility is linked to the ability of antihypertensive drugs such as angiotensin converting enzyme inhibitors (ACEIs) and AT(1)R antagonists (ARAs) to reverse myocardial fibrosis beyond their antihypertensive efficacy.  相似文献   

19.
20.
Aim: Neural cell adhesion molecule (N‐CAM) is expressed by activated hepatic stellate cells (HSC), portal fibroblasts, cholangiocytes and hepatic progenitor cells during liver injury. Its functional role in liver disease and fibrogenesis is unknown. The aim of this study was to investigate the role of N‐CAM in liver fibrogenesis. Methods: To induce fibrosis, N‐CAM knockout mice and wild‐type controls were subjected to bile duct ligation (BDL) or repeated carbon tetrachloride (CCl4) injections. Fibrosis was quantified by hydroxyproline, immunhistochemistry staining and image analysis. Protein levels were determined with immunoblotting. HSCs were isolated by ultracentrifugation in a Larcoll gradient and thereafter in vitro stimulated with recombinant transforming growth factor (TGF)‐β1. Results: Two weeks after BDL, wild‐type mice had developed pronounced liver fibrosis while N‐CAM?/? mice had less such alterations. N‐CAM?/? mice had less deposition of collagen and fibronectin seen in immunhistochemistry. The protein levels of fibronectin were higher in the liver from the wild type, while laminin were unaltered. CCl4‐treated N‐CAM?/? and wild‐type mice showed no significant difference in the extent of liver fibrosis or the expression levels of the above‐mentioned genes. HSC isolated from N‐CAM?/? mice showed declined levels of smooth muscle actin and desmin after stimulation in vitro with TGF‐β1. Conclusions: Loss of N‐CAM results in decreased hepatic collagen and fibronectin deposition in mice subjected to BDL, but not in animals exposed to repeated CCl4 injections. HSC isolated from N‐CAM null mice show impaired activation in vitro. This indicates a role of N‐CAM in cholestatic liver disease and HSC activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号