首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Hippocampal slices prepared from adult rats were loaded with fura-2 and the intracellular free Ca2+ concentration ([Ca2+]i) in the CA1 pyramidal cell layer was measured. Hypoxia (oxygen–glucose deprivation) elicited a gradual increase in [Ca2+]i in normal Krebs solution. At high extracellular sodium concentrations ([Na+]o), the hypoxia-induced response was attenuated. In contrast, hypoxia in low [Na+]o elicited a significantly enhanced response. This exaggerated response to hypoxia at a low [Na+]o was reversed by pre-incubation of the slice at a low [Na+]o prior to the hypoxic insult. The attenuation of the response to hypoxia by high [Na+]o was no longer observed in the presence of antagonist to glutamate transporter. However, antagonist to Na+–Ca2+ exchanger only slightly influenced the effects of high [Na+]o. These observations suggest that disturbance of the transmembrane gradient of Na+ concentrations is an important factor in hypoxia-induced neuronal damage and corroborates the participation of the glutamate transporter in hypoxia-induced neuronal injury. In addition, the excess release of glutamate during hypoxia is due to a reversal of Na+-dependent glutamate transporter rather than an exocytotic process.  相似文献   

2.
In leech Retzius neurones the inhibition of the Na+–K+ pump by ouabain causes an increase in the cytosolic free calcium concentration ([Ca2+]i). To elucidate the mechanism of this increase we investigated the changes in [Ca2+]i (measured by Fura-2) and in membrane potential that were induced by inhibiting the Na+–K+ pump in bathing solutions of different ionic composition. The results show that Na+–K+ pump inhibition induced a [Ca2+]i increase only if the cells depolarized sufficiently in the presence of extracellular Ca2+. Specifically, the relationship between [Ca2+]i and the membrane potential upon Na+–K+ pump inhibition closely matched the corresponding relationship upon activation of the voltage-dependent Ca2+ channels by raising the extracellular K+ concentration. It is concluded that the [Ca2+]i increase caused by inhibiting the Na+–K+ pump in leech Retzius neurones is exclusively due to Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

3.
Astrocytes exhibit three transmembrane Ca2+ influx pathways: voltage-gated Ca2+ channels (VGCCs), the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) class of glutamate receptors, and Na+/Ca2+ exchangers. Each of these pathways is thought to be capable of mediating a significant increase in Ca2+ concentration ([Ca2+]i); however, the relative importance of each and their interdependence in the regulation astrocyte [Ca2+]i is not known. We demonstrate here that 100 μM AMPA in the presence of 100 μM cyclothiazide (CTZ) causes an increase in [Ca2+]i in cultured cerebral astrocytes that requires transmembrane Ca2+ influx. This increase of [Ca2+]i is blocked by 100 μM benzamil or 0.5 μM U-73122, which inhibit reverse-mode operation of the Na+/Ca2+ exchanger by independent mechanisms. This response does not require Ca2+ influx through VGCCs, nor does it depend upon a significant Ca2+ influx through AMPA receptors (AMPARs). Additionally, AMPA in the presence of CTZ causes a depletion of thapsigargin-sensitive intracellular Ca2+ stores, although depletion of these Ca2+ stores does not decrease the peak [Ca2+]i response to AMPA. We propose that activation of AMPARs in astrocytes can cause [Ca2+]i to increase through the reverse mode operation of the Na+/Ca2+ exchanger with an associated release of Ca2+ from intracellular stores. This proposed mechanism requires neither Ca2+-permeant AMPARs nor the activation of VGCCs to be effective.  相似文献   

4.
We determined the relationships between the intracellular free Ca2+ concentration ([Ca2+]i) and the membrane potential (Em) of six different neurones in the leech central nervous system: Retzius, 50 (Leydig), AP, AE, P, and N neurones. The [Ca2+]i was monitored by using iontophoretically injected fura-2. The membrane depolarization evoked by raising the extracellular K+ concentration ([K+]o) up to 89 mM caused a persistent increase in [Ca2+]i, which was abolished in Ca2+-free solution indicating that it was due to Ca2+ influx. The threshold membrane potential that must be reached in the different types of neurones to induce a [Ca2+]i increase ranged between −40 and −25 mV. The different threshold potentials as well as differences in the relationships between [Ca2+]i and Em were partly due to the cell-specific generation of action potentials. In Na+-free solution, the action potentials were suppressed and the [Ca2+]i/Em relationships were similar. The K+-induced [Ca2+]i increase was inhibited by the polyvalent cations Co2+, Ni2+, Mn2+, Cd2+, and La3+, as well as by the cyclic alcohol menthol. Neither the polyvalent cations nor menthol had a significant effect on the K+-induced membrane depolarization. Our results suggest that different leech neurones possess voltage-dependent Ca2+ channels with similar properties.  相似文献   

5.
In some cells, Ca2+ depletion induces an increase in intracellular Ca2+ ([Ca2+]i) after reperfusion with Ca2+-containing solution, but the mechanism for the reperfusion injury is not fully elucidated. Using an antisense strategy we studied the role of the Na+-Ca2+ exchanger in reperfusion injury in cultured rat astrocytes. When astrocytes were perfused in Ca2+-free medium for 15–60 min, a persistent increase in [Ca2+]i was observed immediately after reperfusion with Ca2+-containing medium, and the number of surviving cells decreased 3–5 days latter. The increase in [Ca2+]i was enhanced by low extracellular Na+ ([Na+]o) during reperfusion and blocked by the inhibitors of the Na+-Ca2+ exchanger amiloride and 3,4-dichlorobenzamil, but not by the Ca2+ channel antagonists nifedipine, Cd2+ and Ni2+. Treatment of astrocytes with antisense, but not sense, oligodeoxynucleotide to the Na+-Ca2+ exchanger decreased Na+–Ca2+ exchanger protein level and exchange activity. The antisense oligomer attenuated reperfusion-induced increase in [Ca2+]i and cell toxicity. The Na+-Ca2+ exchange inhibitors 3,4-dichlorobenzamil and ascorbic acid protected astrocytes from reperfusion injury partially, while the stimulators sodium nitroprusside and 8-bromo-cyclic GMP and low [Na+]o exacerbated the injury. Pretreatment of astrocytes with ouabain and monensin caused similar delayed glial cell death. These findings suggest that Ca2+ entry via the Na+–Ca2+ exchanger plays an important role in reperfusion-induced delayed glial cell death.  相似文献   

6.
Hyposmotic activation hyperpolarizes outer hair cells of guinea pig cochlea   总被引:1,自引:0,他引:1  
The electrophysiological responses of isolated guinea pig outer hair cells (OHCs) to hyposmotic activation were studied using the whole-cell patch-clamp technique. The cell swelling by hyposmotic activation hyperpolarized OHCs by 6.6 ± 2.3 mV from the resting membrane potential of −58.5 ± 5.9 mV (n = 48). This hyperpolarization was associated with an outward current ( 97.7 ± 22.2, pA, n = 15). The hyperpolarization was inhibited by 300 μM quinine, 5 mN Ba2+ and increasing the extracellular K+ to 30 mM from 5 mM. In the absence of extracellular Ca2+ (1 mM EGTA), the hyperpolarization during hyposmotic activation was also abolished while the following depolarization was preserved. 50 μM GdCl3, which is known to block strecch-activated non-specific cation channels, inhibited the hyperpolarization reversibly. 50 μM GdCl3 also inhibited [Ca2+]i increase during hyposmotic activation as shown by the calcium-sensitive dye fura-2. Simultaneously, the [Ca2+]i increase and the hyperpolarization during hyposmotic activation could be observed using the combined method of whole-cell patch clamp and fura-2 technique. It is concluded that the cell swelling by hyposmotic activation may activate the stretch-activated non-specific cation channels in the OHCs which allow a Ca2+ influx. In turn, this [Ca2+]i increase leads to an activation of the Ca2+-activated K+ channels at the basolateral membrane of OHCs which results finally in a reversible hyperpolarization of OHCs by K+ efflux.  相似文献   

7.
Effect of the removal of extracellular Ca2+ on the response of cytosolic concentrations of Ca2+ ([Ca2+]i) to ouabain, an Na+/K+ exchanger antagonist, was examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2AM and microfluorometry. Application of ouabain (10 mM) induced a sustained increase in [Ca2+]i (mean±S.E.M.; 38±5% increase, n=16) in 55% of tested cells (n=29). The ouabain-induced [Ca2+]i increase was abolished by the removal of extracellular Na+. D600 (50 μM), an L-type voltage-gated Ca2+ channel antagonist, inhibited the [Ca2+]i increase by 57±7% (n=4). Removal of extracellular Ca2+ eliminated the [Ca2+]i increase, but subsequent washing out of ouabain in Ca2+-free solution produced a rise in [Ca2+]i (62±8% increase, n=6, P<0.05), referred to as a [Ca2+]i rise after Ca2+-free/ouabain. The magnitude of the [Ca2+]i rise was larger than that of ouabain-induced [Ca2+]i increase. D600 (5 μM) inhibited the [Ca2+]i rise after Ca2+-free/ouabain by 83±10% (n=4). These results suggest that ouabain-induced [Ca2+]i increase was due to Ca2+ entry involving L-type Ca2+ channels which could be activated by cytosolic Na+ accumulation. Ca2+ removal might modify the [Ca2+]i response, resulting in the occurrence of a rise in [Ca2+]i after Ca2+-free/ouabain which mostly involved L-type Ca2+ channels.  相似文献   

8.
Equimolar replacement of Na+ in medium with choline chloride or sucrose and experimental manipulations known to increase [Na+]i, such as ouabain addition and K+ deprivation from medium, caused a marked increase in in vitro DOPA synthesis in the median eminence of rat hypothalamic slices in a Ca2+-dependent manner. These results suggest that a Na+−Ca2+ exchange mechanism is closely involved in the regulation of dopamine biosynthesis in tuberoinfundibular neurons.  相似文献   

9.
Pituitary adenylate cyclase activating polypeptide (PACAP)-like immunoreactivity and its receptor mRNA have been reported in the supraoptic and the paraventricular nucleus (SON and PVN, respectively) and PACAP has been implicated in the regulation of magnocellular neurosecretory cell function. To examine the site and the mechanism of the action of PACAP in the neurosecretory cells, we measured AVP release from SON slice preparations and the cytosolic Ca2+ concentration ([Ca2+]i) from single dissociated SON neurons. PACAP at concentrations from 10?12 to 10?7 M increased [Ca2+]i in dissociated SON neurons in a dose-dependent manner. The patterns of the PACAP-induced [Ca2+]i increase were either sustained increase or cytosolic Ca2+ oscillations. PACAP (10?7 M) increased [Ca2+]i in 27 of 27 neurons and glutamate (10?4 M) increased [Ca2+]i in 19 of 19 SON neurons examined, whereas angiotensin II (10?7 M) increased [Ca2+]i in only 15 of 60 SON neurons examined. PACAP at lower concentrations (10?10 to 10?8 M) increased [Ca2+]i in 70–80% of neurons examined. Although the onset and recovery of the PACAP-induced [Ca2+]i increase were slower than those observed with glutamate, the spatial distribution of the [Ca2+]i increases in response to the two ligands were similar: [Ca2+]i increase at the proximal dendrites was larger and faster and that at the center of the soma was smaller and slower. The PACAP-induced [Ca2+]i responseswere abolished by extracellular Ca2+ removal, the l -type Ca2+-channel blocker, nicardipine, or by replacement of extracellular Na+ with N-methyl d-glucamine, and were partially inhibited by the Na+-channel blocker, tetrodotoxin. The N-type Ca2+-channel blocker, ω-conotoxin GVIA did not significantly inhibit the PACAP-induced [Ca2+]i responses. Furthermore, PACAP (10?7 M) as well as glutamate (10?4 M) increased AVP release from SON slice preparations, and extracellular Ca2+ removal or nicardipine inhibited the AVP release in response to PACAP. These results indicate that PACAP enhances Ca2+ entry via voltage-gated Ca2+ channels and increases [Ca2+]i, which, in turn, stimulates somatodendritic vasopressin release by directly activating PACAP receptors on SON neurons. The results also suggest that PACAP in the SON may play a pivotal role in the control of the neurohypophyseal function at the level of the soma or the dendrites.  相似文献   

10.
Baseline and stimulus-induced changes in [Ca2+]o and [K+]o as well as field potentials (fp's) were studied during application of the excitatory amino acids kainate or glutamate, or during glucose deprivation in area CA1 and CA3 of rat hippocampal slices. Bath application of kainate in concentrations of 1, 2, 5, 8 and 10 mM induced a sudden rapid fall of [Ca2+]o in area CA1, associated with a negative shift of the slow fp. Kainate induced disappearance of stratum radiatum (SR) as well as alveus stimulation-evoked postsynaptic fp's, with partial recovery after application of up to 2 mM kainate, but no recovery after 5 mM kainate. Only afferent volleys and repetitive SR stimulation-induced decreases of [Ca2+]o recovered after 5 mM kainate. Similar observations were made with glutamate. Only when glutamate was applied with 20 mM, irreversible disappearance of postsynaptic fp's was noted. Glucose deprivation for 60–90 min led to an initial slow decline of [Ca2+]o in area CA1 and CA3, associated with increases in [K+]o, but no significant changes in the fp baseline. Before reaching the lowest level in [Ca2+]o, stimulation of afferent and efferent fibres in area CA1 and CA3 evoked epileptiform discharges. After reaching the lowest level in [Ca2+]o, all postsynaptic potential components were irreversibly abolished, sparing afferent volleys and SR stimulation-induced decreases in [Ca2+]o. The application of the glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 30 μM) and

-2-amino-5-phosphonovalerate (2APV, 30 μM) during glucose deprivation did not prevent irreversible loss of alveus and SR stimulation-induced postsynaptic signals. These findings suggest that glutamate release during glucose deprivation is not the main factor of acute cell damage.  相似文献   

11.
Astrocytes respond to the excitatory neurotransmitter glutamate with dynamic spatio-temporal changes in intracellular calcium [Ca2+]i. Although they share a common wave-like appearance, the different [Ca2+]i changes--an initial spike, sustained elevation, oscillatory intracellular waves, and regenerative intercellular waves--are actually separate and distinct phenomena. These separate components of the astrocytic Ca2+ response appear to be generated by two different signal transduction pathways. The metabotropic response evokes an initial spatial Ca2+ spike that can propagate rapidly from cell to cell and appears to involve IP3. The metabotropic response can also produce oscillatory intracellular waves of various amplitudes and frequencies that propagate within cells and are sustained only in the presence of external Ca2+. The ionotropic response, however, evokes a sustained elevation in [Ca2+]i associated with receptor-mediated Na+ and Ca2+ influx, depolarization, and voltage-dependent Ca2+ influx. In addition, the ionotropic response can lead to regenerative intercellular waves that propagate smoothly and nondecrementally from cell to cell, possibly involving Na+/Ca2+ exchange. All these astrocytic [Ca2+]i changes tend to appear wave-like, traveling from region to region as a transient rise in [Ca2+]i. Nevertheless, as our understanding of the cellular events that underlie these [Ca2+]i changes grows, it becomes increasingly clear that glutamate-induced Ca2+ signaling is a composite of separate and distinct phenomena, which may be distinguished not based on appearance alone, but rather on their underlying mechanisms. © 1994 Wiley-Liss, Inc.  相似文献   

12.
The effect of glutamate of [Ca2+]i and on [3H]γ-aminobutyric acid (GABA) release was studied on cultured chick embryonic retina cells. It was observed that glutamate (100 μM) increases the [Ca2+]i by Ca2+ influx through Ca2+ channels sensitive to nitrendipine, but not to ω-conotoxin GVIA (ω-Cg Tx) (50%), and by other channels insensitive to either Ca2+ channel blocker. Mobilization of Ca2+ by glutamate required the presence of external Na+, suggesting that Na+ mobilization through the ionotropic glutamate receptors is necessary for the Ca2+ channels to open. The increase in [Ca2+]i was not related to the release of [3H]GABA induced by glutamate, suggesting that the pathway for the entry of Ca2+ triggered by glutamate does not lead to exocytosis. In fact, the glutamate-induced release of [3H]GABA was significantly depressed by Cao2+, but it was dependent on Nao+, just as was observed for the [3H]GABA release induced by veratridine (50 μM). The veratridine-induced release could be fully inhibited by TTX, but this toxin had no effect on the glutamate-induced [3H]GABA release. Both veratridine- and glutamate-induced [3H]GABA release were inhibited by 1-(2-(((diphenylmethylene)amino)oxy)ethyl)-1,2,5,6-tetrahydro-3-pyridine-carboxylic acid (NNC-711), a blocker of the GABA carrier. Blockade of the NMDA and non-NMDA glutamate receptors with MK-801 and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), respectively, almost completely blocked the release of [3H]GABA evoked by glutamate. Continuous depolarization with 50 mM K+ induced maximal release of [3H]GABA of about 1.5%, which is much smaller than the release evoked by glutamate under the same conditions (6.0–6.5%). Glycine (3 μM) stimulated [3H]GABA release induced by 50 mM K+, and this effect was blocked by MK-801, suggesting that the effect of K+ on [3H]GABA release was partially mediated through the NMDA receptor which probably was stimulated by glutamate released by K+ depolarization. We conclude that glutamate induces Ca2+-independent release of [3H]GABA through reversal of the GABA carrier due to Na+ entry through the NMDA and non-NMDA, TTX-insensitive, channels. Furthermore the GABA carrier seems to be inhibited by Ca2+ entering by the pathways open by glutamate. This Ca2+ does not lead to exocytosis, probably because the Ca2+ channels used are located at sites far from the active zones.  相似文献   

13.
The effect of glutamatergic agonists on the intracellular free Ca2+ concentration ([Ca2+]i) of neuropile glial cells and Retzius neurones in intact segmental ganglia of the medicinal leech Hirudo medicinalis was investigated by using iontophoretically injected fura-2. In physiological Ringer solution the [Ca2+]i levels of both cell types were almost the ssame (glial cells: 58 ± 30 nM, n = 51; Retzius neurones: 61 ± 27 nM, n = 64). In both cell types glutamate, kainate, and quisqualate induced an increase in [Ca2+]i which was inhibited by 6,7-dinitroquinoxaline-2,3-dione (DNQX). This increase was caused by a Ca2+ influx from the extracellular space because the response was greatly diminished upon removal of extracellular Ca2+. The glutamate receptors of neuropile glial cells and Retzius neurones differed with respect to the relative effectiveness of the agonists used, as well as with regard to the inhibitory strenght of DNQX. In Retzius neurones the agonist-induced [Ca2+]i increase was abolished after replacing extracellular Na+ by organic cations or by mM amounts of Ni2+, whereas in glial cells the [Ca2+]i increase was largely preserved under both conditions. It is concluded that in Retzius neurones the Ca2+ influx is predominantly mediated by voltage-dependent Ca2+ channels, whereas in neuropile glial cells the major influx occurs via the ion channels that are associated with the glutamate receptors.  相似文献   

14.
Intracellular Ca2+ ([Ca2+]i) and membrane properties were measured in fura-2 dialysed dorsal vagal neurons (DVN) spontaneously active at a frequency of 0.5–5 Hz. [Ca2+]i increased by about 30 nm upon rising spike frequency by more than 200% due to 20–50 pA current pulses or 10 μm serotonin. It fell by 30 nm upon block of spiking by current-injection, tetrodotoxin or Ni2+ and also during hyperpolarization due to γ-aminobutyric acid or opening of adenosine triphosphate (ATP) -sensitive K+ (KATP) channels with diazoxide. KATP channel-mediated hyperpolarizations during anoxia or cyanide produced an initial [Ca2+]i decrease which reversed into a secondary Ca2+ rise by less than 100 nm . Similar moderate rises of [Ca2+]i were observed during block of aerobic metabolism under voltage-clamp as well as in intact cells, loaded with fura-2 AM. The magnitude of the metabolism-related [Ca2+]i transients did not correlate with the amplitude of the KATP channel-mediated outward current. [Ca2+]i did not change during diazoxide-induced or spontaneous activation of KATP outward current observed in 10% of cells after establishing whole-cell recording. Increasing [Ca2+]i with cyclopiazonic acid did not activate KATP channels. [Ca2+]i was not affected upon block of outward current with sulphonylureas, but these KATP channel blockers were effective to reverse inhibition of spike discharge and, thus, the initial [Ca2+]i fall upon spontaneous or diazoxide-, anoxia- and cyanide-induced KATP channel activation. A sulphonylurea-sensitive hyperpolarization and [Ca2+]i fall was also revealed in the early phase of iodoacetate-induced metabolic arrest, whereas after about 20 min, occurrence of a progressive depolarization led to an irreversible rise of [Ca2+]i to more than 1 μm . The results indicate that KATP channel activity in DVN is not affected by physiological changes of intracellular Ca2+ and the lack of a major perturbance of Ca2+ homeostasis contributes to their high tolerance to anoxia.  相似文献   

15.
Excess administration of glutamate is known to induce Ca2+ overload in neurons, which is the first step in excitotoxicity. Although some reports have suggested a role for Mg2+ in the excitotoxicity, little is known about its actual contribution. To investigate the role of Mg2+ in the excitotoxicity, we simultaneously measured intracellular Ca2+ and Mg2+, using fluorescent dyes, Fura red, a fluorescent Ca2+ probe, and KMG‐104, a highly selective fluorescent Mg2+ probe developed by our group, respectively. Administration of 100 μM glutamate supplemented with 10 μM glycine to rat hippocampal neurons induced an increase in intracellular Mg2+ concentration ([Mg2+]i). Extracellular Mg2+ was not required for this glutamate‐induced increase in [Mg2+]i, and no increase in intracellular Ca2+ concentration ([Ca2+]i) or [Mg2+]i was observed in neurons in nominally Ca2+‐free medium. Application of 5 μM carbonyl cyanide p‐(trifluoromethoxy) phenylhydrazone (FCCP), an uncoupler of mitochondrial inner membrane potential, also elicited increases in [Ca2+]i and [Mg2+]i. Subsequent administration of glutamate and glycine following FCCP treatment did not induce a further increase in [Mg2+]i but did induce an additive increase in [Ca2+]i. Moreover, the glutamate‐induced increase in [Mg2+]i was observed only in mitochondria localized areas. These results support the idea that glutamate is able to induced Mg2+ efflux from mitochondria to the cytosol. Furthermore, pretreatment with Ru360, an inhibitor of the mitochondrial Ca2+ uniporter, prevented this [Mg2+]i increase. These results indicate that glutamate‐induced increases in [Mg2+]i result from the Mg2+ release from mitochondria and that Ca2+ accumulation in the mitochondria is required for this Mg2+ release. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
To investigate the correlation between neural activity and intracellular Ca2+ ([Ca2+]i) mobilization in immature and adult brain during ischemia (hypoxia and glucose deprivation) and deprivation of glucose, hippocampal slices were prepared from 7-, 10-day-old and adult rats. Population spikes (PS) and antidromic responses (AR) were recorded in the pyramidal cell layer of the CA1 area as an index of neural function. [Ca2+]i mobilization of the stratum radiatum in the CA1 area was measured using the fluorescent dye fura-2 AM. The rise in [Ca2+]i occurred earlier in the adult animal and the decay times for the orthodromic PS and antidromic responses were shorter in the adult during ischemia. The field potentials and antidromic responses decreased substantially prior to the elevation of [Ca2+]i in both developing and adult brains. Furthermore, ATP levels decreased substantially before the elevation of [Ca2+]i during ischemia. These results suggest that neural activity and intracellular Ca2+ homeostasis in the immature rats brain are more resistant to energy failure than adult rats and that neuronal activity in the developing and adult brain is impaired initially by energy depletion during ischemia. In the immature animal, during glucose deprivation, the antidromic responses were slowly decayed or even failed to extinguish and [Ca2+]i levels were maintained for a longer period or even failed to rise in spite of the rapid loss of PS. Furthermore, ATP levels were well preserved at the time of PS loss. These results agree well with our previous reports showing that glucose plays an important role in the preservation of synaptic transmission in addition to its major function as an energy substrate.  相似文献   

17.
Rat cortical neurons grown in cell culture were exposed to 500 μM glutamate for 5 min during continuous current recording from cell-attached patches. The Ca2+-dependence and ion selectivity of the membrane channels activated during and after glutamate application were studied in inside-out patches. Glutamate blocked spontaneous action potential firing. In 77% of the experiments glutamate activated several types of ion channels indirectly, i.e. via a change of cytoplasmic factors. Channel activity did not disappear after removing glutamate from the bath. A K+ channel requiring intracellular calcium ([Ca2+]i) was activated in 44% of the experiments (conductance for inward currents in cell-attached patches 118 ± 6 pS;‘BK channel'). Another Ca2+-dependent channel permeable for Cl- (conductance for outward currents in cell-attached patches 72±17 pS), acetate and methanesulphonate appeared in 26% of the patches. Other K+ channels of smaller conductance were infrequently observed. During and after glutamate application the activity of the BK channel showed an initial increase followed by a transient decay and a second rise to a plateau, probably reflecting a similar time course of changes in [Ca2+]i. Both phases of increasing channel activity required the presence of extracellular Ca2+ suggesting that [Ca2+]i was mainly increased by Ca2+ influx. The N-methyl-d -aspartate (NMDA) antagonists dizocilpine (MK-801, 10 μM) and dl -2-amino-5-phosphonovaleric acid (AP5; 100 μM), added within 5 min after glutamate application, stopped BK channel activity and restored the spontaneous action potential firing. We conclude that the influx of Ca2+ through NMDA receptor channels causes a strong activation of Ca2+-dependent K+ channels, which is likely to result in pronounced loss of intracellular K+. NMDA receptor channels seem to remain active for a long time (>10 min) after the end of glutamate application.  相似文献   

18.
The effect of AMPA-receptor stimulation on MMP and on the concentration of intracellular calcium ([Ca2+]i) was studied in dissociated CGC from rat pups, by flow cytometry. In the presence of cyclothiazide, AMPA induced a sodium-independent decrease in MMP up to 30.7 ± 2.5%. This effect was antagonized by CNQX and NBQX. Mepacrine and dibucaine reversed the effect of AMPA on MMP, suggesting that it is mediated by a release of arachidonic acid. AMPA alone induced a slight (about 7%) increase in [Ca2+]i. In the presence of cyclothiazide, AMPA induced a concentration-dependent [Ca2+]i increase up to 29.10 ± 2.10% that was not reversed by flunarizine. This increase was similar to that observed in a Na+-free medium, and was antagonized by CNQX and NBQX, but not by MK-801. Mitochondria play a key role in the modulation of [Ca2+]i since a significant [Ca2+]i increase was found in the presence of FCCP. On the other hand, the dantrolene-sensitive calcium pools do not participate in the [Ca2+]i increase induced by stimulation of AMPA receptors. It is concluded that when AMPA-receptor desensitization is blocked, a decrease in MMP and an increase in [Ca2+]i occurs, which could be additional events to potentiate neuronal cell death induced by glutamate. J. Neurosci. Res. 52:684–690, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) can protect CNS neurons against ischemic/excitotoxic insults, but the mechanism of action is unknown. Imaging of the calcium indicator dye fura-3 and whole-cell patch clamp recordings of calcium currents were used to examine the mechanisms whereby hypoglycemia damages and growth factors protect cultured rat hippocampal neurons. When cultures were deprived of glucose, massive neuronal death occured 16–24 h following the onset of hypoglycemia. Early hypoglycemia-induced changes included calcium current inhibition and a reduction in intracellular free calcium levels ([Ca2+]i) without morphological signs of neuronal damage. Later changes included a large elevation of [Ca2+]i which was causally involved in neuronal damage. NGF and bFGF prevented or reduced both early and later responses to hypoglycemia. The growth factors increased calcium (barium) current and [Ca2+]i to normal limits during the early stages of hypoglycemia and prevented the later elevation in [Ca2+]i and neuronal damage. Nifedipine, but not omega-conotoxin, blocked calcium currents. The increased calcium current caused by the growth factors was apparently not sufficient to protect neurons against hypoglycemic damage since K+ depolarization during the early stages of hypoglycemia did not prevent and, in fact exacerbated, the subsequent neuronal damage. In addition, exposure of neurons to K+, NGF or bFGF only during the first 1 h of hypoglycemia did not protect against hypoglycemic damage. Taken together, the data suggest that neurons initially respond to hypoglycemia with a reduction in calcium currents which may provide a means to maintain [Ca2+]i within a concentration range conducive to cell survival. Prolonged energy deprivation eventually results in a failure of calcium extrusion systems, glutamate receptor activation and a loss of neuronal calcium homeostasis. Taken together, the data indicate that the mechanism of growth factor protection against energydeprivation involves of the late prevention rise in [Ca2+]i.  相似文献   

20.
We compared the effectiveness of Ca2+ entering by Na+/Ca2+ exchange with that of Ca2+ entering by channels produced by membrane depolarization with K+ in inducing catecholamine release from bovine adrenal chromaffin cells. The Ca2+ influx through the Na+/Ca2+ exchanger was promoted by reversing the normal inward gradient of Na+ by preincubating the cells with ouabain to increase the intracellular Na+ and then removing Na+ from the external medium. In this way we were able to increase the cytosolic free Ca2+ concentration ([Ca2+]c) by Na+/Ca2+ exchange to 325 ± 14 nM, which was similar to the rise in [Ca2+]c observed upon depolarization with 35 mM K+ of cells not treated with ouabain. After incubating the cells with ouabain, K+ depolarization raised the [Ca2+]c to 398 ± 31 nM, and the recovery of [Ca2+]c to resting levels was significantly slower. Reversal of the Na+ gradient caused an −6-fold increase in the release of noradrenaline or adrenaline, whereas K+ depolarization induced a 12-fold increase in noradrenaline release but only a 9-fold increase in adrenaline release. The ratio of noradrenaline to adrenaline release was 1.24 ± 0.23 upon reversal of the Na+/Ca2+ exchange, whereas it was 1.83 ± 0.19 for K+ depolarization. Reversal of the Na+/Ca2+ exchange appeared to be as efficient as membrane depolarization in inducing adrenaline release, in that the relation of [Ca2+]c to adrenaline release was the same in both cases. In contrast, we found that for the same average [Ca2+]c, the Ca2+ influx through voltage-gated channels was much more efficient than the Ca2+ entering through the Na+/Ca2+ exchanger in inducing noradrenaline release from chromaffin ceils. This greater effectiveness of membrane depolarization in stimulating noradrenaline release suggests that there is a pool of noradrenaline vesicles which is more accessible to Ca2+ entering through voltage-gated Ca2+ channels than to Ca2+ entering through the Na+/Ca2+ exchanger, whereas the adrenaline vesicles do not distinguish between the source of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号