首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila Enhancer of Polycomb, E(Pc), is a suppressor of position-effect variegation and an enhancer of both Polycomb and trithorax mutations. A homologous yeast protein, Epl1, is a subunit of the NuA4 histone acetyltransferase complex. Epl1 depletion causes cells to accumulate in G2/M and global loss of acetylated histones H4 and H2A. In relation to the Drosophila protein, mutation of Epl1 suppresses gene silencing by telomere position effect. Epl1 protein is found in the NuA4 complex and a novel highly active smaller complex named Piccolo NuA4 (picNuA4). The picNuA4 complex contains Esa1, Epl1, and Yng2 as subunits and strongly prefers chromatin over free histones as substrate. Epl1 conserved N-terminal domain bridges Esa1 and Yng2 together, stimulating Esa1 catalytic activity and enabling acetylation of chromatin substrates. A recombinant picNuA4 complex shows characteristics similar to the native complex, including strong chromatin preference. Cells expressing only the N-terminal half of Epl1 lack NuA4 HAT activity, but possess picNuA4 complex and activity. These results indicate that the essential aspect of Esa1 and Epl1 resides in picNuA4 function. We propose that picNuA4 represents a nontargeted histone H4/H2A acetyltransferase activity responsible for global acetylation, whereas the NuA4 complex is recruited to specific genomic loci to perturb locally the dynamic acetylation/deacetylation equilibrium.  相似文献   

2.
3.
4.
5.
Shia WJ  Li B  Workman JL 《Genes & development》2006,20(18):2507-2512
The yeast SAS (Something About Silencing) complex and the histone variant H2A.Z have both previously been linked to an antisilencing function at the subtelomeric regions. SAS is an H4 Lys 16-specific histone acetyltransferase complex. Here we demonstrate that the H4 Lys 16 acetylation by SAS is required for efficient H2A.Z incorporation near telomeres. The presence of H4 Lys 16 acetylation and H2A.Z synergistically prevent the ectopic propagation of heterochromatin. Overall, our data suggest a novel antisilencing mechanism near telomeres.  相似文献   

6.
The acetylation of histone tails is a key factor in the maintenance of chromatin dynamics and cellular homeostasis. The hallmark of active chromatin is the hyper-acetylation of histones, which appears to result in a more open chromatin structure. Although short nucleosomal arrays have been studied, the structural dynamics of relatively long acetylated chromatin remain unclear. We have analyzed in detail the structure of long hyper-acetylated chromatin fibers using atomic force microscopy (AFM). Hyper-acetylated chromatin fibers isolated from nuclei that had been treated with Trichostatin A (TSA), an inhibitor of histone deacetylase, were found to be thinner than those from untreated nuclei. The acetylated chromatin fibers were more easily spread out of nuclei by high-salt treatment, implying that hyper-acetylation facilitates the release of chromatin fibers from compact heterochromatin regions. Chromatin fibers reconstituted in vitro from core histones and linker histone H1 became thinner upon acetylation. AFM imaging indicated that the gyration radius of the nucleosomal fiber increased after acetylation and that the hyper-acetylated nucleosomes did not aggregate at high salt concentrations, in contrast to the behavior of non-acetylated nucleosomal arrays, suggesting that acetylation increases long-range repulsions between nucleosomes. Based on these data, we considered a simple coarse grained model, which underlines the effect of remaining electric charges inside the chromatin fiber.  相似文献   

7.
8.
PRMT1 is a histone methyltransferase that methylates Arg3 on histone H4. When we used siRNA to knock down PRMT1 in an erythroid cell line, it resulted in nearly complete loss of H4 Arg3 methylation across the chicken beta-globin domain, which we use as a model system for studying the relationship of gene activity to histone modification. We observed furthermore a domain-wide loss of histone acetylation on both histones H3 and H4, as well as an increase in H3 Lys9 and Lys27 methylation, both marks associated with inactive chromatin. To determine whether the effect on acetylation was directly related to the loss of H4 Arg3 methylation, we performed an in vitro acetylation reaction on chromatin isolated from PRMT1-depleted cells. We found that nucleosomes purified from these cells, and depleted in methylation at Arg3, are readily acetylated by nuclear extracts from the same cells, if and only if the nucleosomes are incubated with PRMT1 beforehand. Thus, methylation of histones by PRMT1 was sufficient to permit subsequent acetylation. Consistent with earlier reports of experiments in vitro, H4 Arg3 methylation by PRMT1 appears to be essential in vivo for the establishment or maintenance of a wide range of "active" chromatin modifications.  相似文献   

9.
Heterochromatin spreading leads to the silencing of genes within its path, and boundary elements have evolved to constrain such spreading. In fission yeast, heterochromatin at centromeres I and III is flanked by inverted repeats termed IRCs, which are required for proper boundary functions. However, the mechanisms by which IRCs prevent heterochromatin spreading are unknown. Here, we identified Bdf2, which is homologous to the mammalian bromodomain and extraterminal (BET) family double bromodomain proteins involved in diverse types of cancers, as a factor required for proper boundary function at IRCs. Bdf2 is enriched at IRCs through its interaction with the boundary protein Epe1. The bromodomains of Bdf2 recognize acetylated histone H4 tails and antagonize Sir2-mediated deacetylation of histone H4K16. Furthermore, abolishing H4K16 acetylation (H4K16ac) with an H4K16R mutation promotes heterochromatin spreading, and mimicking H4K16ac by an H4K16Q mutation blocks heterochromatin spreading at IRCs. Our results thus illustrate a mechanism of establishing chromosome boundaries at specific sites through the recruitment of a factor that protects euchromatic histone modifications. They also reveal a previously unappreciated function of H4K16ac in cooperation with H3K9 methylation to regulate heterochromatin spreading.  相似文献   

10.
Terminal erythroid differentiation in vertebrates is characterized by progressive heterochromatin formation and chromatin condensation and, in mammals, culminates in nuclear extrusion. To date, although mechanisms regulating avian erythroid chromatin condensation have been identified, little is known regarding this process during mammalian erythropoiesis. To elucidate the molecular basis for mammalian erythroblast chromatin condensation, we used Friend virus-infected murine spleen erythroblasts that undergo terminal differentiation in vitro. Chromatin isolated from early and late-stage erythroblasts had similar levels of linker and core histones, only a slight difference in nucleosome repeats, and no significant accumulation of known developmentally regulated architectural chromatin proteins. However, histone H3(K9) dimethylation markedly increased while histone H4(K12) acetylation dramatically decreased and became segregated from the histone methylation as chromatin condensed. One histone deacetylase, HDAC5, was significantly upregulated during the terminal stages of Friend virus-infected erythroblast differentiation. Treatment with histone deacetylase inhibitor, trichostatin A, blocked both chromatin condensation and nuclear extrusion. Based on our data, we propose a model for a unique mechanism in which extensive histone deacetylation at pericentromeric heterochromatin mediates heterochromatin condensation in vertebrate erythroblasts that would otherwise be mediated by developmentally-regulated architectural proteins in nucleated blood cells. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Variation in the composition of chromatin has been proposed to generate a 'histone code' that epigenetically regulates gene expression in a variety of eukaryotic systems. As a result of the process of X chromosome inactivation, chromatinon the mammalian inactive X chromosome (Xi) is marked by several modifications, including histone hypoacetylation, trimethylation of lysine 9 on histone H3 (H3TrimK9) and substitution of core histone H2A with the histone variant MacroH2A. H3TrimK9 is a well-studied marker for heterochromatin in many organisms, but the distribution and function of MacroH2A are less clear. Cytologically, the Xi in human cells comprises alternating and largely non-overlapping approximately 10-15 Mb domains marked by MacroH2A and H3TrimK9. To examine the genomic deposition of MacroH2A, H3TrimK9 and acetylated histone H4 modifications on the Xi at higher resolution, we used chromatin immunoprecipitation in combination with a SNP-based assay to distinguish the Xi and active X (Xa) in a diploid female cell line and to determine quantitatively the relative enrichment of these histone code elements on the Xi relative to the Xa. Although we found a majority of sites were enriched for either MacroH2A or H3TrimK9 in a manner consistent with the cytological appearance of the Xi, a range of different histone code types were detected at different sites along the X. These findings suggest that the nature of the heterochromatin histone code associated with X inactivation may be more heterogeneous than previously thought and imply that gene silencing can be achieved by a variety of different epigenetic mechanisms whose genomic, evolutionary or developmental basis is now amenable to investigation.  相似文献   

19.
20.
We measured the kinetics of histone H4 hyperacetylation and kinetics of deacetylation for all core histones in young and senescent human diploid fibroblast-like cells. Both cell populations contained a fraction of histone H4 characterized by very rapid acetylation and deacetylation. The kinetics of these reactions were similar in young and senescent cells. The distribution of acetylated species of core histones was also similar in young and senescent human diploid fibroblast-like cells. These results indicated that previously-reported alterations in chromatin template activity in senescent cells were due to a mechanism other than histone acetylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号