首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Safety and immunogenicity of an experimental combined vaccine comprising attenuated strains of Peste des Petits ruminants virus (PPRV) and goat poxvirus (GTPV) was evaluated in goats. Goats immunized subcutaneously with 1 ml of vaccine consisting of 10(3) TCID(50) of each of PPRV and GTPV were monitored for clinical and serological responses for a period of 4 weeks postimmunization (pi) and postchallenge (pc). Specific antibodies directed to both GTPV and PPRV could be demonstrated by indirect ELISA and competitive ELISA, respectively following immunization. All the immunized animals resisted challenge with virulent strains of either GTPV or PPRV on day 28 pi, while control animals developed characteristic signs of disease. Specific antigen could be detected in the unvaccinated control animals after challenge but not from any of the immunized goats. Bivalent vaccine was found to be safe and induced protective immune response in goats as evident from sero conversion as well as challenge studies, indicating that component vaccines did not interfere with the immunogenicity of each other.  相似文献   

2.
Silva AC  Delgado I  Sousa MF  Carrondo MJ  Alves PM 《Vaccine》2008,26(26):3305-3311
Peste des Petits ruminants (PPR) is considered as one of the major constraints to the productivity of small ruminants in Africa and Asian countries. Currently PPR control is done by vaccination with an attenuated PPR strain (Nigeria 75/1) produced in monolayers of Vero cells grown in roller bottles or static flasks. This work focuses on the production of a PPR vaccine strain using stirred conditions as an advanced option for process scale-up. Non-porous microcarriers (Cytodex-1) were used to support Vero cell growth in suspension cultures. The use of Ex-Cell medium could improve cell specific productivities obtained with standard serum containing medium, independently of the type of system used, i.e. static as well as suspension stirred cultures. As an alternative, several cell lines adapted to grow as single cells in suspension (CHO-K1, BHK-21A and 293) and another anchorage-dependent (MRC-5) were evaluated in their capacity to produce a PPR vaccine. BHK-21A and 293 cells grown as single-cell suspension in serum free medium were both suited to produce PPR vaccine with productivities similar to Vero cells, namely 10(6)TCID(50)/mL. However, for the 293 cells, these results were only obtained 2-3 days later. CHO-K1 and MRC-5 cells have shown not to be suitable to adequately produce this virus. These results provide further insights into the feasibility of applying microcarrier cell culture technology to produce PPR vaccine in Vero cells as well as in the alternative use of single-cell suspension cultures of BHK-21A, significantly simplifying the existing production process.  相似文献   

3.
In this paper extended tests on a new candidate formulation for Peste des Petits Ruminants (PPR) vaccine carried out at National Veterinary Institute (NVI) in Ethiopia are presented. This work was performed in the frame of the VACNADA project from GALVmed which aimed at procuring vaccines against neglected veterinary diseases to African vaccine producing laboratories, in particular PPR.  相似文献   

4.
Silva AC  Carrondo MJ  Alves PM 《Vaccine》2011,29(31):4983-4991
The main focus of this work was the improvement of the stability of the current PPRV vaccine. First, new formulations based on the Tris buffer were tested, with and without the addition of sucrose and trehalose and compared with the formulation normally used to stabilize the vaccine, the Weybridge medium. The results show a virus half-life of 21 h at 37 °C and 1 month at 4 °C for the Tris/trehalose liquid formulation and, in the lyophilized form, the formulation was able to maintain the viral titer above the 1 × 104 TCID50/mL (>10 doses/mL) for at least 21 months at 4 °C (0.6 log lost), 144 h at 37 °C (0.6 log lost) and 120 h at 45 °C (1 log lost).Secondly, a strategy based on culture medium composition manipulation aiming at improving the intrinsic PPRV vaccine stability was also evaluated. The addition of 25 mM fructose resulted in a higher virus production (1 log increase) with higher stability (2.6-fold increase compared to glucose 25 mM) at 37 °C. Increased concentrations of NaCl, improved virus release, reducing the cell-associated fraction of the virus produced. Moreover this harvesting strategy is scalable and more suitable for a larger scale production than the freeze/thaw cycles normally used.The information gathered in this work showed that it is possible for the PPRV vaccine to have adequate short-term stability at non-freezing temperatures to support manufacturing, short-term shipping and storage. The identification of a more stable formulation should significantly enhance the utility of the vaccine in the control of a PPRV outbreak.  相似文献   

5.
Worrall EE  Litamoi JK  Seck BM  Ayelet G 《Vaccine》2000,19(7-8):834-839
The accepted procedure for the long-term preservation of live viruses and bacteria in vaccines has been lyophilisation. We show that thermolabile viruses can be dehydrated in vitro, within 18 h, in an excipient containing trehalose. We further demonstrate that in the resulting dehydrated state, where the viruses are captive in a metastable glass composed of trehalose, they are capable of resisting 45 degrees C for a period of 14 days with minimal loss of potency. The degree of thermotolerance achieved matches that of current 'thermostable' lyophilised vaccines, but with the distinct advantage of a shorter, cheaper and simpler process. The development and utilisation of this process can make significant improvements in current live virus vaccine production. It presents a further step away from dependence on mandatory low temperature refrigerated storage and could lead to greater confidence in vaccine stability, potency and efficacy.  相似文献   

6.
We investigated peste des petits ruminants (PPR) infection in cattle and wildlife in northern Tanzania. No wildlife from protected ecosystems were seropositive. However, cattle from villages where an outbreak had occurred among small ruminants showed high PPR seropositivity, indicating that spillover infection affects cattle. Thus, cattle could be of value for PPR serosurveillance.  相似文献   

7.
8.
《Vaccine》2019,37(47):7041-7051
Process intensification for Peste des Petites Ruminants Virus (PPRV) vaccine production in anchorage dependent Vero cells is challenging, involving substantial amount of bioprocess development.In this study, we describe the implementation of a new, scalable bioprocess for PPRV vaccine production in Vero cells using serum-free medium (SFM), microcarrier technology in stirred-tank bioreactors (STB), in-situ cell detachment from microcarriers and perfusion. Vero cells were successfully adapted to ProVero™-1 SFM, reaching growth rates similar to serum-containing cultures (0.030 1/h vs 0.026 1/h, respectively). An in-situ cell detachment method was successfully implemented, with efficiencies above 85%. Up to 2.5-fold increase in maximum cell concentration was obtained using perfusion when compared to batch culture. Combining perfusion with the in-situ cell detachment method enabled the scale-up to 20 L STB directly from a 2 L STB, surpassing the need for a mid-scale platform (i.e. 5 L STB) and thus reducing seed train duration. Head-to-head comparison of cell growth and PPRV production in the 2 L and 20 L STB was performed, and no significant differences could be observed. Estimated infectious PPRV titers in Tissue Culture Infection Dose (TCID50) (TCID50/mL = 5 × 106 and TCID50/cell = 5) are within the log-range reported in literature for PPRV production in STB and SFM by Silva et al. (2008), thus confirming the feasibility and scalability of the seed train designed [1].The novel and scalable vaccine production process herein proposed has the potential to assist the upcoming Peste des Petites Ruminants (PPR) Global Eradication Program (targeted by FAAO for 2030) by providing African local and/or regional manufacturers with a platform capable of generating over 25,000 doses of Nigeria 75/1 strain in just 19 days using a 20 L STB.  相似文献   

9.
Peste des petits ruminants virus (PPRV, genus Morbillivirus), which causes a severe disease in sheep and goats, has only recently been officially declared to be present in Turkey. We carried out a study to determine the prevalence, distribution, and host range of PPRV in Turkey. A total of 1,607 animals, reared in 18 different locations, were monitored for the presence of antibodies to PPRV and the related virus of large ruminants, Rinderpest virus (RPV). Only two farms had animals that were free of antibody responses to either disease. Prevalence for PPRV infection varied (range 0.87%-82.6%) and was higher in sheep (29.2%) than in goats (20%). The overall antibody responses to PPRV and RPV were 22.4% and 6.28%, respectively. Two PPRVs of lineage 4, which comprises many other PPRVs whose origins are in the Middle East, the Arabian Peninsula, and southern Asia, were isolated from Turkish sheep.  相似文献   

10.
Peste des petits ruminants virus (PPRV), a member of the genus Morbillivirus within the family Paramyxoviridae, causes a fatal disease ‘peste des petits ruminants in goats and sheep. This enveloped virus is antigenically closely related to rinderpest virus (RPV), which causes a similar but distinct disease in large ruminants. PPRV harbors two major surface glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion (F) proteins. The surface glycoproteins of morbilliviruses are highly immunogenic and confer protective immunity. In this study, we investigated the immune responses generated in goats immunized with low doses of purified recombinant extracellular baculovirus carrying a membrane bound form of the HN protein of PPRV without any adjuvant. We report that the immunized goats develop both humoral and cell-mediated immune responses. Antibodies generated in the immunized animals could neutralize both PPRV and RPV in vitro. Further, using a combination of Escherichia coli expressed deletion mutants of PPRV-HN and RPV-H proteins, and synthetic peptides corresponding to the highly conserved N-terminal sequences of MV-H protein, we have mapped an N-terminal T cell determinant (amino acids 123–137) and a C-terminal domain (amino acids 242–609) harboring potential T cell determinant(s) in goats.  相似文献   

11.
Diallo A  Minet C  Le Goff C  Berhe G  Albina E  Libeau G  Barrett T 《Vaccine》2007,25(30):5591-5597
Peste des petits ruminants (PPR) is a highly contagious animal disease caused by a virus in the genus Morbillivirus, family Paramyxoviridae. This infection is responsible for high morbidity and mortality in sheep and goats and in some small wild ruminant species. The huge number of small ruminants, which are reared in the endemic areas makes PPR a serious disease threatening the livelihood of poor farmers. Taking advantage of the closely relationship between rinderpest and PPR viruses, the attenuated rinderpest vaccine was used in the control of PPR. It is now replaced by the homologous attenuated PPR vaccine. Unfortunately, animals that have received this vaccine cannot be distinguished serologically from infected animals. With the advent of DNA recombinant technology, efforts are being made to develop effective PPR marker vaccines to enable such differentiation and which would allow countries to implement both vaccination and disease surveillance programmes at the same time.  相似文献   

12.
During the 2009/10 pandemic of influenza A (H1N1), the American Society of Transplantation and other health organizations recommended that immunocompromised patients should be vaccinated as the key preventive measure. Since there are no data available for the immunogenicity of the unadjuvanted pandemic influenza vaccine in immunocompromised patients - as opposed to the adjuvanted preparation - the objective of this study was to evaluate the immunogenicity of an adjuvant-free H1N1 vaccine in recipients of solid organ transplants. Patients were recruited at the Vienna General Hospital, Austria. The vaccination schedule consisted of 2 doses of a whole-virion, vero cell derived, inactivated, non-adjuvanted influenza A/California/07/2009 (H1N1) vaccine given with an interval of 3 weeks. A hemagglutination inhibition (HI) assay on blood samples obtained prior to the first and after each vaccination was used for serologic analysis. The primary immunologic endpoint was the seroconversion rate, defined as the proportion of subjects with an individual 4-fold increase in HI titer of at least 1:40. In addition, virus-specific IgG antibodies to the pandemic H1N1 strain were measured using a commercially available ELISA.Twenty-five organ transplant patients (16 males, 9 females) aged 25-79 years were vaccinated and provided blood samples for serologic analysis. The time elapsed since transplantation was 10 months to 25 years (mean: 9 years; 95% CI 6-13 years). The vaccine was well tolerated and no local adverse events were noticed. After two vaccinations 37% of the patients demonstrated seroconversion in the HI assay as defined above and 70% had virus-specific IgG antibodies. Among the HI vaccine responders were 6 of 14 heart transplant recipients and 1 of 4 liver transplant recipients. The number and type of immunosuppressive agents did not significantly differ in their effect on the immune response.Our results show that the novel vero cell derived and adjuvant-free pandemic A/California/07/2009 (H1N1) influenza vaccine induced limited but measurable immune responses in adult recipients of solid organ transplants.  相似文献   

13.
Epizootiological aspects of peste des petits ruminants (PPR) and rinderpest in sheep and goats in Saudi Arabia are examined. The presence of PPR has been suspected on occasions, but virus isolation has been successful only once. Information regarding PPR and rinderpest in sheep and goats in Saudi Arabia is scarce. The only survey conducted indicated that neither disease is endemic in the country.  相似文献   

14.
The first combined vaccine against hepatitis A and B: an overview   总被引:14,自引:0,他引:14  
Hepatitis A and B infections are prevalent world-wide and are a significant cause of morbidity and mortality. A vaccine providing dual protection against hepatitis A and B is now available (Twinrix, SmithKline Beecham Biologicals). Six pivotal vaccine trials, involving 843 healthy adults, aged between 17 and 60 years and vaccinated following a 0, 1, 6 month schedule are discussed. At month 2 more than 99% of the vaccinees were seropositive for anti-HAV and 84% were protected against hepatitis B. The third dose induced a 12-fold increase in geometric mean titres (GMTs) to 5404 mIU/ml. One month after completion of the vaccination course nearly all vaccinees had protective titres against hepatitis B with a GMT of 4818 mIU/ml. Long term follow-up data until month 48 is available for two studies. At month 48 all 129 vaccinees sampled were still positive for anti-HAV antibodies and > 95% were still protected against hepatitis B. The combined hepatitis A and B vaccine Twinrix proves to be consistently safe, well tolerated and highly immunogenic and compares well with serological responses reached with monovalent vaccines. This combined hepatitis A and B vaccine offers more convenience, potentially better compliance and lower administration costs.  相似文献   

15.
《Vaccine》2017,35(30):3773-3779
The research objective was to develop a thermostable vaccine against peste des petits ruminants (PPR), a morbilliviral disease of small ruminants targeted for eradication that is a major constraint on the livelihoods of the rural poor throughout much of Africa and Asia. Although existing PPR vaccines provide life-long immunity, they require continuous refrigeration. This limits their utility in developing countries. Methods for the lyophilization of a related morbillivirus, rinderpest (RP), resulted in vaccine that could be used in the field for up to 30 days without refrigeration which was a major contribution to the global eradication of RP completed in 2011. The present research applied the rinderpest lyophilization method to the attenuated Nigeria 75/1 PPR vaccine strain, and measured thermostability in accelerated stability tests (AST) at 37 °C. The shelf-life of the vaccine was determined as the time a vial retained the minimum dose required as a 25-dose presentation at the specified temperature. A lactalbumin hydrolysate and sucrose (LS) stabilizer was compared to stabilizers based on trehalose. PPR vaccine produced using the Xerovac drying method was compared to vaccine produced using the rinderpest lyophilization method in AST. LS vaccine was evaluated in AST at 37, 45 and 56 °C and an Arrhenius plot was constructed for estimation of stability at temperatures not tested. Vaccines produced using LS and the rinderpest method of lyophilization were the most stable. The shelf-life of the Xerovac preparation was 22.2 days at 37 °C. The three LS vaccine batches had shelf-lives at 37 °C of 177.6, 105.0 and 148.9 days, respectively, at 37 °C. At 56 °C, the shelf-life was 13.7 days. The projected half-life at 25 °C was 1.3 years. This is sufficient thermostability for use without a cold chain for up to 30 days which will greatly facilitate the delivery of vaccination in the global eradication of PPR.  相似文献   

16.
17.
Burkholderia pseudomallei, and other members of the Burkholderia, are among the most antibiotic-resistant bacterial species encountered in human infection. Mortality rates associated with severe B. pseudomallei infection approach 50% despite therapeutic treatment. A protective vaccine against B. pseudomallei would dramatically reduce morbidity and mortality in endemic areas and provide a safeguard for the U.S. and other countries against biological attack with this organism. In this study, we investigated the immunogenicity and protective efficacy of B. pseudomallei-derived outer membrane vesicles (OMVs). Vesicles are produced by Gram-negative and Gram-positive bacteria and contain many of the bacterial products recognized by the host immune system during infection. We demonstrate that subcutaneous (SC) immunization with OMVs provides significant protection against an otherwise lethal B. pseudomallei aerosol challenge in BALB/c mice. Mice immunized with B. pseudomallei OMVs displayed OMV-specific serum antibody and T-cell memory responses. Furthermore, OMV-mediated immunity appears species-specific as cross-reactive antibody and T cells were not generated in mice immunized with Escherichia coli-derived OMVs. These results provide the first compelling evidence that OMVs represent a non-living vaccine formulation that is able to produce protective humoral and cellular immunity against an aerosolized intracellular bacterium. This vaccine platform constitutes a safe and inexpensive immunization strategy against B. pseudomallei that can be exploited for other intracellular respiratory pathogens, including other Burkholderia and bacteria capable of establishing persistent infection.  相似文献   

18.
Monoclonal antibody-based competitive ELISA (C-ELISA) have been used for the specific measurement of antibodies to both rinderpest and peste des petits ruminants (PPR) viruses in cattle, sheep and goats. Examination of serum samples from sheep and goats in Gambia, before and after vaccination with rinderpest vaccine, suggested that antibodies to PPR virus could prevent an immune response to the rinderpest vaccine. Cattle sera from Nigeria and Ghana showed a high prevalence of antibody against PPR virus which may explain the difficulty experienced in some countries in achieving high post-vaccination immunity levels against rinderpest. Because antibodies against PPR virus are both cross-neutralizing and cross-protective against rinderpest virus further vaccination in the presence of antibodies against PPR virus may be a waste of national resources. This paper presents serological evidence for the transmission of PPR virus from sheep and goats to cattle and highlights the need to include PPR serology in the sero-monitoring programme to give a better indication of national herd immunity.  相似文献   

19.
This study describes the serosurveillance of peste des petits ruminants (PPR) in sheep and goats that was carried out between 2003 and 2009 using serum samples from animals suspected of PPR that were submitted to the Rinderpest and Allied Disease Laboratory (Division of Virology of the Indian Veterinary Research Institute [IVRI]). A total of 2,197 serum samples from sheep and 2,687 from goats were screened for PPR virus (PPRV) antibody using a monoclonal antibody-based competitive enzyme-linked immunosorbent assay developed at IVRI. Screening of the 4,884 serum samples showed that the prevalence of PPRV antibody in sheep and goats was 41.01% (95% confidence interval [CI]: 31.86 to 50.16) and 46.11% (95% CI: 37.18 to 55.04), respectively, with an overall prevalence of 43.56% (95% CI: 36.78 to 50.34) during the period. This indicates increased and widespread infection with the virus in India compared with earlier reports, which is attributed to the variations in sheep and goat husbandry practices in different regions, the agro-climatic conditions, the topography of different states, the socio-economic status of individual farmers and the migration of livestock in India.  相似文献   

20.
The authors present the results of a study designed to compare the immunogenicity of several attenuated strains of sheep pox virus and a virus/immune serum vaccine. Two of the strains studied present immunogenic characteristics that make them particularly interesting for the manufacture of a vaccine. The first, named Djelfa, confers solid immunity to animals without provoking a vaccinal reaction; the second, known as Romania, can provide protection beyond twenty-four months, but causes persistent vaccinal lesions. In a country like Algeria, these two strains could be used for immunoprophylaxis of sheep pox: the first in those regions in which prevalence is low and sheep are vaccinated on a regular basis, and the second in regions of high prevalence where herds are moved to new pastures each season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号