首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Asymmetrical dimethylarginine (ADMA) is capable of inhibiting nitric oxide synthase enzymes, whereas symmetrical dimethylarginine (SDMA) competes with arginine transport. The potential role of inflammation in the metabolism of ADMA has been elucidated in an in vitro model using tumour necrosis factor-alpha, resulting in a decreased activity of the ADMA-degrading enzyme dimethylarginine dimethylaminohydrolase (DDAH). The kidney probably plays a crucial role in the metabolism of ADMA by both urinary excretion and degradation by DDAH. We aimed to further elucidate the role of the kidney in a rat model under basal conditions and during endotoxaemia. METHODS: Twenty-five male Wistar rats weighing 275-300 g were used for this study. The combination of arteriovenous concentration differences and kidney blood flow allowed calculation of net organ fluxes. Blood flow was measured using radiolabelled microspheres according to the reference sample method. Concentrations of ADMA, SDMA and arginine were measured by high-performance liquid chromatography. RESULTS: The kidney showed net uptake of both ADMA and SDMA and fractional extraction rates were 35% and 31%, respectively. Endotoxaemia resulted in a lower systemic ADMA concentration (P = 0.01), which was not explained by an increased net renal uptake. Systemic SDMA concentrations increased during endotoxaemia (P = 0.007), which was accompanied by increased creatinine concentrations. CONCLUSIONS: The rat kidney plays a crucial role in the regulation of concentrations of dimethylarginines, as both ADMA and SDMA were eliminated from the systemic circulation in substantial amounts. Furthermore, evidence for the role of endotoxaemia in the metabolism of dimethylarginines was obtained as plasma levels of ADMA were significantly lower in endotoxaemic rats.  相似文献   

2.
BACKGROUND: Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of endothelial nitric oxide synthase and a proposed cardiovascular risk factor, is elevated in chronic kidney disease (CKD). Pharmacological strategies that lower plasma concentration of ADMA may be expected to increase nitric oxide (NO.) bioavailability and potentially limit atherosclerosis. We hypothesized that the antioxidant alpha-tocopherol (vitamin E) reduces ADMA levels in CKD. METHODS: An open-label pilot interventional study using 800 IU of vitamin E was undertaken in eight stable out-patients with non-diabetic CKD (creatinine clearance <30 ml/min/1.73 m(2)) and six healthy controls, with the objective of measuring plasma ADMA levels at baseline and after 8 weeks of treatment. Plasma ADMA, symmetric dimethylarginine (SDMA) and alpha-tocopherol concentrations were determined at study entry and exit using high-performance liquid chromatography, while plasma total F2-isoprostanes, an index of oxidative stress, were measured using a commercially available enzyme-linked immunosorbent assay kit. RESULTS: ADMA and SDMA concentrations were significantly higher in the plasma of patients compared with that of controls (P 相似文献   

3.
4.
The plasma concentration of asymmetrical dimethylarginine (ADMA), an inhibitor of nitric oxide synthase, has been linked to endothelial dysfunction. We investigated the relation between ADMA, symmetric dimethylarginine (SDMA) and L-arginine concentrations and erectile dysfunction. We compared plasma levels of ADMA, SDMA and L-arginine in 61 men in good health with erectile dysfunction of arteriogenic and non-arteriogenic origin. Diagnosis of erectile dysfunction was based on the International Index of Erectile Function Score and its aetiology was classified with penile echo-colour-Doppler in basal condition and after intracavernous injection of prostaglandin E1. The ADMA and SDMA concentrations were significantly higher in men with arteriogenic erectile dysfunction compared with those with erectile dysfunction of non-arteriogenic origin (p??0.05) nor between each of the two erectile dysfunction subgroups and controls (p?>?0.05). The L-arginine/ADMA and the L-arginine/SDMA ratios in arteriogenic erectile dysfunction subgroups were significantly lower than both in controls (p??0.05). We conclude that ADMA and SDMA concentrations are significantly higher and L-arginine/ADMA ratio lower in patients who have arteriogenic erectile dysfunction compared with both patients with non-arteriogenic erectile dysfunction and controls. The negative correlation between ADMA and severity of erectile dysfunction is present only in patients with arteriogenic erectile dysfunction. This study supports the importance to always distinguish arteriogenic from non-arteriogenic erectile dysfunction patients to study the complicate erectogenic mechanisms that lead to erectile dysfunction and also to provide potential therapeutic agents for patients with arteriogenic erectile dysfunction.  相似文献   

5.
《Renal failure》2013,35(10):1404-1411
Abstract

Arginine (ARG) and its methylated analogs (methylarginines) are the crucial regulators of nitric oxide (NO) bioavailability. ARG is the substrate for NO synthesis, whereas monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA) are potent inhibitors. Symmetric dimethylarginine (SDMA) does not interfere with NO synthesis, but competes with ARG for the intracellular transport. The kidneys play the major role in ARG and methylarginines metabolism. They synthesize ARG de novo and eliminate methylarginines by excretion into urine and also by enzyme dimethylarginine dimethylaminohydrolase (DDAH) degrading only ADMA and MMA. Acute renal injury (ARI) is known to be accompanied by reduced NO production in the body. This study aimed to investigate the influence of ARI on ARG and methylarginines metabolism, and to establish the relationship between disturbances in the latter and reduced NO bioavailability in ARI. The rhabdomyolysis-related ARI model in rats was used. ARI reduced renal synthesis of ARG and its level in circulation as well as renal DDAH activity. However, ADMA did not accumulate because of its increased urinary excretion. Whole-body production of SDMA was increased significantly, whereas whole-body metabolism of MMA did not change. ARG and methylarginines content in renal tissue was decreased. Moreover, the balance between the substrate and inhibitors for NO synthesis was changed in favor of the inhibitors in renal tissue as well as in blood, and daily urinary excretion of NO metabolites was significantly decreased. Thus, ARI provokes severe disturbances in ARG and methylarginines metabolism that results in reduced NO bioavailability in the kidney and the whole body.  相似文献   

6.
BACKGROUND AND METHODS: The endogenous inhibitor of nitric oxide synthase (NOs) asymmetrical dimethyl-arginine (ADMA) has been implicated as a possible modulator of inducible NOs during acute inflammation. We examined the evolution in the plasma concentration of ADMA measured at the clinical outset of acute inflammation and after its resolution in a series of 17 patients with acute bacterial infections. RESULTS: During the acute phase of inflammation/infection, patients displayed very high levels of C-reactive protein (CRP), interleukin-6 (IL-6), procalcitonin and nitrotyrosine. Simultaneous plasma ADMA concentration was similar to that in healthy subjects while symmetric dimethyl-arginine (SDMA) levels were substantially increased and directly related with creatinine. When infection resolved, ADMA rose from 0.62 +/- 0.23 to 0.80 +/- 0.18 micromol/l (+29%, P = 0.01) while SDMA remained unmodified. ADMA changes were independent on concomitant risk factor changes and inversely related with baseline systolic and diastolic pressure. Changes in the ADMA/SDMA ratio were compatible with the hypothesis that inflammatory cytokines activate ADMA degradation. CONCLUSIONS: Resolution of acute inflammation is characterized by an increase in the plasma concentration of ADMA. The results imply that ADMA suppression may actually serve to stimulate NO synthesis or that in this situation plasma ADMA levels may not reflect the inhibitory potential of this methylarginine at the cellular level.  相似文献   

7.
BACKGROUND: Patients with advanced chronic renal disease (CRD) suffer from excessive morbidity and mortality due to complications of accelerated atherosclerosis. Recombinant human erythropoietin (EPO), which is routinely used to treat the anaemia present in approximately 90% of dialysis-dependent patients with end-stage renal disease, may induce vascular dysfunction by reducing nitric oxide (NO) availability. Pathophysiologic concentrations of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), are found in patients with CRD and correlate with vascular disease and cardiovascular mortality. The aim of the current study was to investigate the effect of EPO on ADMA concentrations and NO generation in vitro and in vivo. Furthermore, we wanted to study the effect of EPO on the expression of the enzymes that regulate ADMA metabolism and NO generation. METHODS: Human umbilical vein endothelial cells (HUVECs) were exposed to therapeutic concentrations of EPO. The expression and metabolic activity of dimethylarginine dimethylaminohydrolase II (DDAH II), the enzyme that degrades ADMA, was evaluated. Following subcutaneous administration of EPO to Balb/c mice for 10 weeks, serum ADMA concentrations were determined. Systolic blood pressure was measured noninvasively. Urinary nitrite and nitrate (NOx) concentrations were assessed by Griess assay. Protein expression of DDAH and NOS in livers and kidneys was measured by western blotting. RESULTS: EPO suppressed ADMA elaboration by HUVECs. Systolic blood pressure and serum concentrations of ADMA were significantly elevated in EPO-treated mice. The protein expression of DDAH I in the kidney and liver was upregulated while hepatic expression of DDAH II was decreased and renal DDAH II expression remained unchanged by EPO administration. However, EPO augmented urinary NOx concentrations as well as the expression of NOS 1 and NOS 2 in the kidney. CONCLUSION: In spite of elevating serum ADMA concentrations, EPO does not appear to compromise overall NO generation in Balb/c mice.  相似文献   

8.
Diabetic nephropathy is the leading cause of kidney failure all over the world. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of endothelial nitric oxide (NO) synthase. ADMA is in part eliminated via urinary excretion. It is found to be elevated in end stage renal disease. Identification of the plasma concentrations of ADMA in patients with different stages of diabetic nephropathy compared with healthy age-matched control subjects for estimation of the role of ADMA as a marker of progression of kidney disease in diabetic patients. Seventy-five diabetic patients were divided into five groups: Group I: patients with normoalbuminuria (urinary albumin excretion UAE < 30 mg/d), Group II: patients with microalbuminuria (UAE: 30–300 mg/d), Group III: patients with macroalbuminuria (UAE > 300 mg/d), Group IV: patients one month after renal transplantation and Group V: patients on haemodialysis. Patients were compared to 15 healthy control subjects matched for age and sex. All subjects subjected to thorough clinical examination and laboratory investigations including: serum albumin, urea, creatinine, fasting and postprandial blood glucose, UAE, urinary albumin/creatinine ratio and serum ADMA level. All patients groups had significantly higher levels of ADMA when compared to control group P < 0.01. The levels of ADMA were positively correlated with disease progression and degree of proteinuria. ADMA can be used as a marker of progression of kidney disease among diabetic patients.  相似文献   

9.
Asymmetric dimethylarginine (ADMA), a methylated L: -arginine (Arg) derivative is associated with endothelial dysfunction, vasoconstriction, and hypertension in animals and humans. We examined the relationship between these derivatives, estimated glomerular filtration rate (eGFR), and awake (AW) and asleep (AS) blood pressure (BP) load in children and adolescents (n = 28) with stage 2-3 chronic kidney disease (CKD) and in matched intra-familial controls (n = 10). Plasma L: -Arg, ADMA, and symmetric dimethylarginine (SDMA) levels were measured by high-performance liquid chromatography-tandem mass spectrometry. Subjects wore a 24-hr ambulatory BP monitor with BP load >95th percentile. ADMA, SDMA/ADMA ratio and SDMA were 38-200% higher in CKD patients while L: -Arg/ADMA and L: -Arg/SDMA ratios and the L: -Arg level were 11-64% lower. The eGFR explained 42-60% of L: -Arg/SDMA, SDMA/ADMA, and SDMA variability (n = 38). Using linear regression, SDMA and SDMA/ADMA separately explained 15-38% of AW and AS systolic (S) BP and diastolic (D) BP load variability (p < 0.001-0.022). Using multivariate stepwise regression with eGFR held constant, SDMA/ADMA was a significant independent variable for AW DBP load (p = 0.03). In conclusion, BP load and a disproportionate elevation of SDMA are seen in children and adolescents with stage 2-3 (mild-moderate) CKD. SDMA is a strong marker for reduced eGFR and serves as a moderate but significant indicator of 24-hr BP load variability.  相似文献   

10.
BACKGROUND: Chronic kidney disease (CKD) is associated with increased cardiovascular events. The relationships between the markers of inflammation and endothelial dysfunction were investigated both before and after living donor kidney transplantation. METHODS: Twenty-seven renal transplant patients were studied. Eleven patients (six male, five female) were on cyclosporine A, whereas 16 patients (nine male, seven female) were treated with tacrolimus based regimes. Twenty-seven subjects (12 males, 15 females) were studied as controls. Plasma adiponectin, high sensitive C reactive protein (hsCRP), Asymetric dimethyl arginine (ADMA) levels were studied before transplantation and on days 1, 3, 7, 14, and 28. The brachial artery flow mediated dilatation (FMD) was studied before transplantation and on the 28th day. RESULTS: Serum hsCRP and ADMA levels decreased significantly from the first posttransplantation day on each measurement (P<0.001 for all) while the decrement of plasma adiponectin started in the third day (P<0.001 for all). The FMD was lower in the patients than the control group (P<0.001) and improved significantly in the 28th day of transplantation (P<0.001). CONCLUSIONS: The results indicate that ADMA is associated with FMD in CKD both before and after kidney transplantation. Endothelial functions improve at the very beginning of the posttransplantation period with accompanying reduction in ADMA and hsCRP levels.  相似文献   

11.
Asymmetric dimethyl-arginine (ADMA), a residue of the proteolysis of arginine-methylated proteins, is a potent inhibitor of nitric oxide synthesis. The increased protein turnover that accompanies proteinuric secondary amyloidosis may increase circulating levels of ADMA, and this may contribute to endothelial dysfunction. We performed a cross-sectional study of 121 nondiabetic proteinuric patients with normal GFR (including 39 patients with nephrotic-range proteinuria and secondary amyloidosis) and 50 age-, sex-, and BMI-matched healthy controls. The proteinuric patients had higher levels of serum ADMA, symmetric dimethyl-arginine (SDMA), high-sensitivity C-reactive protein (hsCRP), and insulin resistance (homeostasis model assessment index) than controls. Compared with controls, brachial artery flow-mediated dilatation (FMD), serum L-Arginine, and the L-Arginine/ADMA ratio were significantly lower among proteinuric patients, suggesting greater endothelial dysfunction. When patients with secondary amyloidosis were compared with patients with glomerulonephritis who had similar levels of proteinuria, those with amyloidosis had higher ADMA and SDMA levels and lower L-Arginine/ADMA ratios and FMD measurements (P < 0.001 for all). Finally, even after adjusting for confounders, ADMA level correlated with both proteinuria and the presence of secondary amyloidosis, and was an independent predictor of FMD. We propose that ADMA synthesis may be increased in chronic kidney disease, especially in secondary amyloidosis, and this may explain part of the mechanism by which proteinuria increases cardiovascular morbidity and mortality.  相似文献   

12.

Background

Cardiovascular (CV) morbidity and mortality rates are still higher after kidney transplantation than in general population. It is known that oxidative and nitrosative stress may contribute to the progress of CV disease in a post-transplant period, but still gender aspect has not been elucidated completely. The aim of this study was to analyze the gender differences in the oxidative and nitrosative stress parameters, as well as asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) levels among kidney transplant patients on tacrolimus-based immunosuppression.

Methods

Our research included 35 patients (20 men and 15 women) with renal transplant and 25 healthy volunteers. Patients were on chronic immunosuppressive regimen, which included tacrolimus, mycophenolate mofetil and prednisone. In order to estimate oxidative and nitrosative stress, we determined plasma levels of thiobarbituric acid-reactive substances (TBARS), activity of catalase (CAT), levels of total (protein and non-protein) sulfhydryl (SH) groups, advanced oxidation protein products (AOPP), ADMA and SDMA, as well as nitrite/nitrate (NOx) ratio.

Results

TBARS, CAT and SH in plasma were significantly higher in male patients than in female patients (p < 0.05, p < 0.01 and p < 0.05, respectively). There were no gender-dependent differences in AOPP, ADMA, SDMA and NOx in kidney transplant patients. Correlation analysis, Pearson and Spearman, showed significant correlations between tested oxidative and nitrosative stress parameters in male kidney transplant patients. Alternatively, in female patients, there were no significant correlations between tested parameters.

Conclusion

Our findings show that men might be more prone to oxidative damage than women. ADMA, the proven marker of CV morbidity and mortality, may be more significant in male kidney transplant patients concerning oxidative stress control of its level and function.  相似文献   

13.
BACKGROUND: Patients with renal insufficiency have an increased risk of cardiovascular disease that is not fully explained by the presence of known cardiovascular risk factors. In patients with end-stage renal disease, increased serum concentration of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), has been linked to excess cardiovascular morbidity. We investigated, in patients with mild-to-moderate renal failure, the relationship between plasma ADMA and three surrogate markers of atherosclerosis that have been shown to have prognostic value, namely carotid intima-media thickness (IMT), plasma soluble vascular cell adhesion molecule-1 (sVCAM-1), and plasma C-reactive protein (CRP). METHODS: We used baseline data of an ongoing randomized trial in which the effects of oxidative stress-lowering treatment on vascular function and structure are studied in patients with chronic nondiabetic renal failure without clinical evidence of atherosclerosis (GFR 15 to 70 mL/min/per 1.73 m(2) according to the Cockcroft-Gault equation; ATIC study). RESULTS: Data from 93 patients were used. Creatinine clearance was inversely related to plasma ADMA concentration (standardized beta after adjustment = -0.342, P = 0.023). Plasma ADMA was strongly related to carotid IMT in univariate (beta = 0.459, P < 0.0001) and multivariate analysis (beta= 0.444, P < 0.0001). Plasma ADMA was also significantly related with plasma soluble vascular cell adhesion molecule-1 (sVCAM-1) in univariate (beta = 0.260, P = 0.010) and multivariate (beta = 0.242, P = 0.022) analysis. Plasma ADMA was not significantly related to C-reactive protein (beta = -0.134, P = 0.204). CONCLUSION: In patients with mild-to-moderate renal failure, renal function is inversely associated with plasma ADMA, which, in turn, is positively associated with carotid IMT and plasma sVCAM-1 concentration. Increased plasma ADMA may be a link between renal function and cardiovascular disease in patients with mild-to-moderate renal failure.  相似文献   

14.
BACKGROUND: The endogenous inhibitor of nitric oxide (NO), asymmetric dimethylarginine (ADMA), is a strong predictor of adverse cardiovascular outcomes in patients with end-stage renal disease (ESRD). METHODS: Since arterial and cardiac remodeling is associated with altered endothelial microcirculatory responses to forearm ischemia (a NO-dependent response), interference of ADMA with the NO system may be important for the pathogenesis of left ventricular hypertrophy (LVH) in these patients. This study sought to identify the relationship between plasma ADMA and LV geometry and function in a cohort of 198 hemodialysis patients. RESULTS: Plasma ADMA was significantly higher (P = 0.008) in patients with LVH (median 3.00 micromol/L, inter-quartile range 1.73 to 3.97 micromol/L) than in those without this alteration (1.88 micromol/L, 1.15 to 3.56 micromol/L) and was significantly related to left ventricular (LV) mass (r = 0.26, P < 0.001). Interestingly, ADMA was much higher (P < 0.001) in patients with concentric LVH (3.60 micromol/L, 2.90 to 4.33 micromol/L) than in patients with eccentric LVH (2.17 micromol/L, 1.47 to 3.24 micromol/L) or normal LV mass (1.76 micromol/L, 1.13 to 2.65 micromol/L). Furthermore, plasma ADMA was higher (P = 0.02) in patients with systolic dysfunction (3.52 micromol/L, 2.08 to 5.87 micromol/L) than in those with normal LV function (2.58 micromol/L, 1.53 to 3.84 micromol/L) and inversely related to ejection fraction (EF; r = -0.25, P < 0.001). The link between ADMA and LV mass and EF was confirmed by multivariate analysis (ADMA vs. LVMI, beta = 0.17, P = 0.006; ADMA vs. EF, beta = -0.24, P < 0.001). CONCLUSIONS: Overall, this study indicates that raised plasma concentration of ADMA is associated to concentric LVH and LV dysfunction. Intervention studies are needed to see whether the link between ADMA and concentric LVH remodeling and LV dysfunction is a causal one.  相似文献   

15.
BACKGROUND: Increased blood levels of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) predict cardiovascular mortality in patients with end-stage renal disease. Despite its low molecular weight, available information on the impact of hemodialysis (HD) on ADMA plasma levels is controversial. METHODS: We assessed plasma concentrations, dialyzer clearance and total amount of ADMA removed in 30 patients with end-stage renal disease during regular HD. In addition, plasma ADMA levels were assessed in 10 patients with acute renal failure treated with extended HD. RESULTS: Regular HD decreased plasma creatinine (from 774 +/- 42 to 312 +/- 17 micromol/l) and urea (from 24.5 +/- 1.5 to 8.4 +/- 0.5 mmol/l) concentrations significantly (both p < 0.001), whereas plasma ADMA remained unchanged (4.35 +/- 0.19 vs. 4.76 +/- 0.24 micromol/l). ADMA clearance was 92 +/- 6 ml/min, and the total amount removed in the spent dialysate was 37 +/- 4 micromol. The clearances of creatinine (161 +/- 3 ml/min) and of urea (173 +/- 3 ml/min) were significantly higher. Furthermore, even during extended HD, plasma ADMA concentrations did not decrease significantly (1.73 +/- 0.22 vs. 1.63 +/- 0.18 micromol/l). CONCLUSION: In conclusion, dialysance of ADMA is markedly lower than expected from its molecular weight because of significant protein binding of the substance. Since markedly increased ADMA blood concentrations have been linked to cardiovascular complications due to atherosclerosis in patients with ESRD, new strategies should be evaluated to remove this putative uremic toxin.  相似文献   

16.
The rationale of this study is based on the fact that, both proteinuria and elevated asymmetric dimethyl arginine (ADMA) levels have been linked to the progression of vascular disease. Currently, there is not enough knowledge about any association between the levels of proteinuria and ADMA levels. Seventy-eight non-diabetic patients (42 men, 36 women, mean age of 26.1+/-5.2 years) with proteinuria having normal glomerular filtration rate were enrolled along with 38 healthy subjects (20 men, 18 women, mean age of 26.9+/-5.9 years). Proteinuria was below 3.5 g/day in 40 patients and above 3.5 g/day in 38 patients. Both groups had similar age, gender, and body mass index distributions. Serum ADMA, symmetric dimethyl arginine (SDMA), immunoreactive insulin, and high sensitivity C reactive protein (hsCRP) levels were measured. Insulin resistance was determined by homeostasis model assessment (HOMA). Serum ADMA, SDMA, insulin, hsCRP levels, and HOMA indexes were significantly higher in patients than in healthy control subjects. The above parameters were higher in the nephrotic range proteinuria group when compared to patients having protein levels below 3.5 g/day. There were significant correlations between the levels of proteinuria and the above parameters. According to the regression analysis, levels of proteinuria and hsCRP were significant determinants of serum ADMA levels. Our results indicate that, independent of other risk factors, ADMA is directly associated with proteinuria. Further studies are recommended to find out whether elevated ADMA levels are implicated in the high cardiovascular risk of proteinuric nephropathies.  相似文献   

17.
BACKGROUND: Chronic renal disease (CRD) is associated with hypertension and reduced synthesis of nitric oxide (NO). Here, we investigated whether there is a circulating endothelial NO synthase (eNOS) inhibitory factor(s) in some patients with CRD that might directly influence endothelial NOS. METHODS: Human dermal microvascular endothelial cells (HDMECs) were incubated for six hours with 20% plasma from subjects with normal renal function (PCr = 0.8 +/- 0.2 mg%), and patients with moderate renal insufficiency of various causes (PCr = 4.0 +/- 1.5 mg%) and impact on NOS activity, transport of L-arginine, and abundance of eNOS protein were measured. Plasma concentrations of asymmetric and symmetric dimethyl L-arginine (ADMA and SDMA) were also measured. RESULTS: There was no effect of any human plasma on L-arginine transport. The NOS activity was variable in CRD patients and fell into two subgroups: CRD I, individual values similar to control, and CRD II, individual values lower than control mean. The effect of CRD plasma on NOS activity in cultured cells was not related to the primary disease, but was predicted by plasma ADMA levels since plasma ADMA was elevated in CRD II versus both control and CRD I. Blood urea nitrogen and creatinine levels were uniformly elevated in CRD plasma. The abundance of eNOS protein was unaffected by plasma. CONCLUSION: High plasma levels of ADMA in CRD patients are independent of reduced renal clearance, suggesting an alteration in ADMA synthesis and/or degradation. High ADMA is a marker and is partly responsible for the inhibition of eNOS activity in cultured cells and may also result in reduced eNOS activity in vivo, with consequent hypertension.  相似文献   

18.
Patients with end-stage renal disease (ESRD) receiving hemodialysis (HD) treatment have a markedly shortened life expectancy in large part owing to cardiovascular disease (CVD), not explained by established risk factors. We tested the hypothesis that therapy with valsartan, an angiotensin receptor blocker and amlodipine, an antioxidant calcium channel blocker will reduce oxidative stress and the plasma levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase. We confirmed that compared with age- and gender-matched healthy controls, ESRD patients have excessive oxidative stress and arginine methylation as indexed by elevated plasma levels of oxidation products of lipids (13-hydroxyoctadecadienoic acid (13-HODE)), thiols (oxidized:reduced glutathione, oxidized glutathione (GSSG):GSH), proteins, and nucleic acids, and the methylation products ADMA and symmetric dimethylarginine (SDMA). We undertook a double blind, crossover study of equi-antihypertensive treatment with amlodipine and valsartan for 6 weeks each to test our hypothesis. Both treatments significantly reduced GSSG:GSH, 8-hydroxy 2-deoxyguanosine, ADMA, and SDMA levels and amlodipine reduced 13-HODE. We conclude that hypertensive patients with ESRD receiving HD have evidence of extensive oxidation of lipids, thiols, proteins, and nucleic acids and methylation of arginine that could contribute to CVD. Many of these changes can be reduced by short-term treatment with amlodipine and valsartan.  相似文献   

19.
Almost 40 years ago, in 1970, Kakimoto and Akazawa were the first to isolate and describe N‐N, N‐G‐ and N‐G,N′‐G‐dimethyl‐arginine from human urine. Today, these substances are known as asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). In their detailed and meticulous publication, Kakimoto and Akazawa speculated about these two compounds: “They may have functional importance in proteins in which they are formed. If they are excreted into the urine as metabolites of body proteins, amounts of these substances in human urine may reflect methylation rate of body proteins and their turnover rates and determination of these substances might be important for the study of various pathological states.” The following decades proved them to be right. ADMA, the most potent endogenous nitric oxide synthase (NOS) inhibitor was first found to be elevated in hemodialysis patients. It has been shown to correlate with traditional and nontraditional cardiovascular risk factors. ADMA is also a strong predictor of cardiovascular events and death in both patients with chronic kidney disease (CKD, stage 2–5) and in the general population. Moreover, ADMA predicts the progression of CKD. SDMA, the structural isomer of ADMA, has been shown to be an excellent marker of renal function in human and animal studies. There is emerging evidence that SDMA might also be involved in inflammation and atherosclerosis although it is only thought to be a (weak) indirect inhibitor of NOS. There is burgeoning evidence that these two substances may indeed damage normal physiological functions, or interfere with physiological defense mechanisms in CKD, play a role in the progression of renal disease, induce uremic symptoms, and may even contribute to dialysis‐related complications. Hence these compounds are considered uremic toxins. This review summarizes our current concept how these two compounds might play a crucial part in the pathophysiology of uremia, either alone or in their combination. We also allude to the potential physiological role these substances might have.  相似文献   

20.
Reduced bioavailability of nitric oxide (NO) is thought to play an important role in progression of renal damage. The hypothesis that the endogenous NO synthase inhibitor asymmetric dimethylarginine (ADMA) is involved in progression of kidney disease was tested. Plasma ADMA concentrations and other putative progression factors were assessed in 227 relatively young patients (45.7 +/- 12.6 yr) with nondiabetic kidney diseases and mild to moderate renal failure. Progression assessed as doubling of serum creatinine and/or renal replacement therapy was evaluated prospectively. Baseline plasma ADMA concentrations in renal patients correlated significantly with serum creatinine (r = 0.595), GFR (r = -0.591), age (r = 0.281), and proteinuria (r = 0.184; all P < 0.01). Patients who reached an end point during follow-up were significantly older (P < 0.05) and had significantly higher creatinine, ADMA, and parathyroid hormone blood concentrations and protein excretion rates at baseline, whereas GFR and hemoglobin were significantly lower (all P < 0.01). Cox regression analysis revealed baseline serum creatinine (odds ratio 2.00; 95% confidence interval [CI] 1.61 to 2.49; P < 0.001) and ADMA (odds ratio 1.47; 95% CI 1.12 to 1.93 for an increment of 0.1 mumol/L; P < 0.006) as independent predictors of disease progression. In patients with ADMA levels above median, progression was significantly faster (P < 0.0001), and their mean follow-up time to a progression end point was 52.8 mo (95% CI 46.9 to 58.8) as compared with 71.6 mo (95% CI 66.2 to 76.9) in patients with ADMA levels below the median. The endogenous NO synthase inhibitor ADMA is significantly associated with progression of nondiabetic kidney diseases. Lowering plasma ADMA concentrations may be a novel therapeutic target to prevent progressive renal impairment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号