首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The CNAP technology (CNSystems Medizintechnik AG, Graz, Austria) allows continuous noninvasive arterial pressure waveform recording based on the volume clamp method and estimation of cardiac output (CO) by pulse contour analysis. We compared CNAP-derived CO measurements (CNCO) with intermittent invasive CO measurements (pulmonary artery catheter; PAC-CO) in postoperative cardiothoracic surgery patients. In 51 intensive care unit patients after cardiothoracic surgery, we measured PAC-CO (criterion standard) and CNCO at three different time points. We conducted two separate comparative analyses: (1) CNCO auto-calibrated to biometric patient data (CNCObio) versus PAC-CO and (2) CNCO calibrated to the first simultaneously measured PAC-CO value (CNCOcal) versus PAC-CO. The agreement between the two methods was statistically assessed by Bland–Altman analysis and the percentage error. In a subgroup of patients, a passive leg raising maneuver was performed for clinical indications and we present the changes in PAC-CO and CNCO in four-quadrant plots (exclusion zone 0.5 L/min) in order to evaluate the trending ability of CNCO. The mean difference between CNCObio and PAC-CO was +0.5 L/min (standard deviation?±?1.3 L/min; 95% limits of agreement ?1.9 to +3.0 L/min). The percentage error was 49%. The concordance rate was 100%. For CNCOcal, the mean difference was ?0.3 L/min (±0.5 L/min; ?1.2 to +0.7 L/min) with a percentage error of 19%. In this clinical study in cardiothoracic surgery patients, CNCOcal showed good agreement when compared with PAC-CO. For CNCObio, we observed a higher percentage error and good trending ability (concordance rate 100%).  相似文献   

2.
Estimated continuous cardiac output (esCCO), a noninvasive technique for continuously measuring cardiac output (CO), is based on modified pulse wave transit time, which in turn is determined by pulse oximetry and electrocardiography. However, its trending ability has never been evaluated in patients undergoing non-cardiac surgery. Therefore, this study examined esCCO’s ability to detect the exact changes in CO, compared with currently available arterial waveform analysis methods, in patients undergoing kidney transplantation. CO was measured using an esCCO system and arterial pressure-based CO (APCO), and compared with a corresponding intermittent bolus thermodilution CO (ICO) method. Percentage error and statistical methods, including concordance analysis and polar plot analysis, were used to analyze results from 15 adult patients. The difference in the CO values between esCCO and ICO was ?0.39 ± 1.15 L min?1 (percentage error, 35.6 %). And corrected precision for repeated measures was 1.16 L min?1 (percentage error for repeated measures, 36.0 %). A concordance analysis showed that the concordance rate was 93.1 %. The mean angular bias was ?1.8° and the radial limits of agreement were ±37.6°. The difference between the APCO and ICO CO values was 0.04 ± 1.37 L min?1 (percentage error, 42.4 %). And corrected precision for repeated measures was 1.37 L min?1 (percentage error for repeated measures, 42.5 %). The concordance rate was 89.7 %, with a mean angular bias of ?3.3° and radial limits of agreement of ±42.2°. This study demonstrated that the trending ability of the esCCO system is not clinically acceptable, as judged by polar plots analysis; however, its trending ability is clinically acceptable based on a concordance analysis, and is comparable with currently available arterial waveform analysis methods.  相似文献   

3.
To evaluate the accuracy of estimated continuous cardiac output (esCCO) based on pulse wave transit time in comparison with cardiac output (CO) assessed by transpulmonary thermodilution (TPTD) in off-pump coronary artery bypass grafting (OPCAB). We calibrated the esCCO system with non-invasive (Part 1) and invasive (Part 2) blood pressure and compared with TPTD measurements. We performed parallel measurements of CO with both techniques and assessed the accuracy and precision of individual CO values and agreement of trends of changes perioperatively (Part 1) and postoperatively (Part 2). A Bland–Altman analysis revealed a bias between non-invasive esCCO and TPTD of 0.9 L/min and limits of agreement of ±2.8 L/min. Intraoperative bias was 1.2 L/min with limits of agreement of ±2.9 L/min and percentage error (PE) of 64 %. Postoperatively, bias was 0.4 L/min, limits of agreement of ±2.3 L/min and PE of 41 %. A Bland–Altman analysis of invasive esCCO and TPTD after OPCAB found bias of 0.3 L/min with limits of agreement of ±2.1 L/min and PE of 40 %. A 4-quadrant plot analysis of non-invasive esCCO versus TPTD revealed overall, intraoperative and postoperative concordance rate of 76, 65, and 89 %, respectively. The analysis of trending ability of invasive esCCO after OPCAB revealed concordance rate of 73 %. During OPCAB, esCCO demonstrated poor accuracy, precision and trending ability compared to TPTD. Postoperatively, non-invasive esCCO showed better agreement with TPTD. However, invasive calibration of esCCO did not improve the accuracy and precision and the trending ability of method.  相似文献   

4.
We aimed to describe and evaluate an autocalibrating algorithm for determination of cardiac output (CO) based on the analysis of an arterial pressure (AP) waveform recorded using radial artery applanation tonometry (AT) in a continuous non-invasive manner. To exemplarily describe and evaluate the CO algorithm, we deliberately selected 22 intensive care unit patients with impeccable AP waveforms from a database including AP data obtained with AT (T-Line system; Tensys Medical Inc.). When recording AP data for this prospectively maintained database, we had simultaneously noted CO measurements obtained from just calibrated pulse contour analysis (PiCCO system; Pulsion Medical Systems) every minute. We applied the autocalibrating CO algorithm to the AT-derived AP waveforms and noted the computed CO values every minute during a total of 15 min of data recording per patient (3 × 5-min intervals). These 330 AT-derived CO (AT-CO) values were then statistically compared to the corresponding pulse contour CO (PC-CO) values. Mean ± standard deviation for PC-CO and AT-CO was 7.0 ± 2.0 and 6.9 ± 2.1 L/min, respectively. The coefficient of variation for PC-CO and AT-CO was 0.280 and 0.299, respectively. Bland–Altman analysis demonstrated a bias of +0.1 L/min (standard deviation 0.8 L/min; 95 % limits of agreement ?1.5 to 1.7 L/min, percentage error 23 %). CO can be computed based on the analysis of the AP waveform recorded with AT. In the selected patients included in this pilot analysis, a percentage error of 23 % indicates clinically acceptable agreement between AT-CO and PC-CO.  相似文献   

5.
A novel algorithm of impedance cardiography referred to as electrical velocimetry (EV) has been introduced for non-invasive determination of cardiac output (CO). Previous validation studies yielded diverging results and no comparison with the non-invasive gold standard cardiac magnetic resonance imaging (CMR) has been performed. We therefore aimed to prospectively assess the accuracy and reproducibility of EV compared to CMR. 152 consecutive stable patients undergoing CMR were enrolled. EV measurements were taken twice before or after CMR in supine position and averaged over 20 s (AESCULON®, Osypka Medical, Berlin, Germany). Bland–Altman analysis showed insufficient agreement of EV and CMR with a mean bias of 1.2 ± 1.4 l/min (bias 23 ± 26 %, percentage error 51 %). Reproducibility was high with 0.0 ± 0.3 l/min (bias 0 ± 8 %, percentage error 15 %). Outlier analysis revealed gender, height, CO and stroke volume (SV) by CMR as independent predictors for larger variation. Stratification of COCMR in quintiles demonstrated a good agreement for low values (<4.4 l/min) with bias increasing significantly with quintile as high as 3.1 ± 1.1 l/min (p < 0.001). Reproducibility was not affected (p = 0.71). Subgroup analysis in patients with arrhythmias (p = 0.19), changes in thoracic fluid content (p = 0.51) or left heart failure (p = 0.47) could not detect significant differences in accuracy. EV showed insufficient agreement with CMR and good reproducibility. Gender, height and increasing CO and SV were associated with increased bias while not affecting reproducibility. Therefore, absolute values should not be used interchangeably in clinical routine. EV yet may find its place for clinical application with further investigation on its trending ability pending.  相似文献   

6.
Evaluation of the estimated continuous cardiac output (esCCO) allows non-invasive and continuous assessment of cardiac output. However, the applicability of this approach in children has not been assessed thus far. We compared the correlation coefficient, bias, standard deviation (SD), and the lower and upper 95 % limits of agreement for esCCO and dye densitography-cardiac output (DDG-CO) measurements by pulse dye densitometry (PDD) in adults and children. On the basis of these assessments, we aimed to examine whether esCCO can be used in pediatric patients. DDG-CO was measured by pulse dye densitometry (PDD) using indocyanine green. Modified-pulse wave transit time, obtained using pulse oximetry and electrocardiography, was used to measure esCCO. Correlations between DDG-CO and esCCO in adults and children were analyzed using regression analysis with the least squares method. Differences between the two correlation coefficients were statistically analyzed using a correlation coefficient test. Bland–Altman plots were used to evaluate bias and SD for DDG-CO and esCCO in both adults and children, and 95 % limits of agreement (bias ± 1.96 SD) and percentage error (1.96 SD/mean DDG-CO) were calculated and compared. The average age of the adult patients (n = 10) was 39.3 ± 12.1 years, while the average age of the pediatric patients (n = 7) was 9.4 ± 3.1 years (p < 0.001). For adults, the correlation coefficient was 0.756; bias, ?0.258 L/min; SD, 1.583 L/min; lower and upper 95 % limits of agreement for DDG-CO and esCCO, ?3.360 and 2.844 L/min, respectively; and percentage error, 42.7 %. For children, the corresponding values were 0.904; ?0.270; 0.908; ?2.051 and 1.510 L/min, respectively; and 35.7 %. Due to the high percentage error values, we could not establish a correlation between esCCO and DDG-CO. However, the 95 % limits of agreement and percentage error were better in children than in adults. Due to the high percentage error, we could not confirm a correlation between esCCO and DDG-CO. However, the agreement between esCCO and DDG-CO seems to be higher in children than in adults. These results suggest that esCCO can also be used in children. Future studies with bigger study populations will be required to further investigate these conclusions.  相似文献   

7.
We assessed the effect of re-calibration time on cardiac output estimation and trending performance in a retrospective analysis of an intensive care unit patient population using error grid analyses. Paired thermodilution and arterial blood pressure waveform measurements (N = 2141) from 222 patient records were extracted from the Multiparameter Intelligent Monitoring in Intensive Care II database. Pulse contour analysis was performed by implementing a previously reported algorithm at calibration times of 1, 2, 8 and 24 h. Cardiac output estimation agreement was assessed using Bland–Altman and error grid analyses. Trending was assessed by concordance and a 4-Quadrant error grid analysis. Error between pulse contour and thermodilution increased with longer calibration times. Limits of agreement were ?1.85 to 1.66 L/min for 1 h maximum calibration time compared to ?2.70 to 2.41 L/min for 24 h. Error grid analysis resulted in 74.2 % of points bounded by 20 % error limits of thermodilution measurements for 1 h calibration time compared to 65 % for 24 h. 4-Quadrant error grid analysis showed <75 % of changes in pulse contour estimates to be within ±80 % of the change in the thermodilution measurement at any calibration time. Shorter calibration times improved the agreement of cardiac output pulse contour estimates with thermodilution. Use of minimally invasive pulse contour methods in intensive care monitoring could benefit from prospective studies evaluating calibration protocols. The applied pulse contour analysis method and thermodilution showed poor agreement to monitor changes in cardiac output.  相似文献   

8.

Purpose

To validate a novel method of ultrasound dilution (COstatus®; Transonic Systems, Ithaca, NY) for measuring cardiac output in paediatric patients after biventricular repair of congenital heart disease.

Methods

Children undergoing biventricular repair of congenital heart disease were prospectively identified. Patients with significant intracardiac shunts were excluded. Postoperative cardiac output was measured by ultrasound dilution (COud) and concurrently calculated by the Fick equation (COrms) using measured oxygen consumption by respiratory mass spectrometry.

Results

Thirty-five patients were studied generating 66 individual data sets. Subjects had a median (interquartile range) age of 147 days (11, 216), weight of 4.98 kg (3.78, 6.90) and body surface area of 0.28 m2 (0.22, 0.34). Of the patients, 66 % had peripheral arterial catheters and 34 % had femoral cannulation; peripheral arterial lines accounted for 6/8 of unsuccessful studies due to inability to generate sufficient flow. The site of the central venous cannula did not impact the feasibility of completing the study. A mean bias of 0.00 L/min [2 standard deviation (SD) ± 0.76 L/min] between COud and COrms was found with a percentage error of 97 %. When comparing cardiac index, bias increased to 0.13 L/min/m2 (2SD ± 2.16 L/min/m2).

Conclusions

Cardiac output by ultrasound dilution showed low bias with wide limits of agreement when compared to measurement derived by the Fick equation. Although measurements through central and peripheral arterial lines were completed with minimal difficulties in the majority of patients, the application of COstatus® in neonates with low body surface area may be limited.  相似文献   

9.
The aim of this study was to compare a continuous non-calibrated left heart cardiac index (CI) measurement by arterial waveform analysis (FloTrac®/Vigileo®) with a continuous calibrated right heart CI measurement by pulmonary artery thermodilution (CCOmbo-PAC®/Vigilance II®) for hemodynamic monitoring during lung transplantation. CI was measured simultaneously by both techniques in 13 consecutive lung transplants (n = 4 single-lung transplants, n = 9 sequential double-lung transplants) at distinct time points perioperatively. Linear regression analysis and Bland–Altman analysis with percentage error calculation were used for statistical comparison of CI measurements by both techniques. In this study the FloTrac® system underestimated the CI in comparison with the continuous pulmonary arterial thermodilution (p < 0.000). For all measurement pairs we calculated a bias of ?0.55 l/min/m2 with limits of agreement between ?2.31 and 1.21 l/min/m2 and a percentage error of 55 %. The overall correlations before clamping a branch oft the pulmonary artery (percentage error 41 %) and during the clamping periods of a branch oft the pulmonary artery (percentage error 66 %) failed to reached the required percentage error of less than 30 %. We found good agreement of both CI measurements techniques only during the measurement point “15 min after starting the second one-lung ventilation period” (percentage error 30 %). No agreement was found during all other measurement points. This pilot study shows for the first time that the CI of the FloTrac® system is not comparable with the continuous pulmonary-artery thermodilution during lung transplantation including the time periods without clamping a branch of the pulmonary artery. Arterial waveform and continuous pulmonary artery thermodilution are, therefore, not interchangeable during these complex operations.  相似文献   

10.
The FloTrac system is a system for cardiac output (CO) measurement that is less invasive than the pulmonary artery catheter (PAC). The purposes of this study were to (1) compare the level of agreement and trending abilities of CO values measured using the fourth version of the FloTrac system (CCO-FloTrac) and PAC-originated continuous thermodilution (CCO-PAC) and (2) analyze the inadequate CO-discriminating ability of the FloTrac system before and after cardiopulmonary bypass (CPB). Fifty patients were included. After exclusion, 32 patients undergoing cardiac surgery with CPB were analyzed. All patients were monitored with a PAC and radial artery catheter connected to the FloTrac system. CO was assessed at 10 timing points during the surgery. In the Bland–Altman analysis, the percentage errors (bias, the limits of agreement) of the CCO-FloTrac were 61.82% (0.16, ??2.15 to 2.47 L min) and 51.80% (0.48, ??1.97 to 2.94 L min) before and after CPB, respectively, compared with CCO-PAC. The concordance rates in the four-quadrant plot were 64.10 and 62.16% and the angular concordance rates (angular mean bias, the radial limits of agreement) in the polar-plot analysis were 30.00% (17.62°, ??70.69° to 105.93°) and 38.63% (??10.04°, ??96.73° to 76.30°) before and after CPB, respectively. The area under the receiver operating characteristic curve for CCO-FloTrac was 0.56, 0.52, 0.52, and 0.72 for all, ≥?±?5, ≥?±?10, and ≥?±?15% CO changes (ΔCO) of CCO-PAC before CPB, respectively, and 0.59, 0.55, 0.49, and 0.46 for all, ≥?±?5, ≥?±?10, and ≥?±?15% ΔCO of CCO-PAC after CPB, respectively. When CO <?4 L/min was considered inadequate, the Cohen κ coefficient was 0.355 and 0.373 before and after CPB, respectively. The accuracy, trending ability, and inadequate CO-discriminating ability of the fourth version of the FloTrac system in CO monitoring are not statistically acceptable in cardiac surgery.  相似文献   

11.
Cardiac output measurement has a long history in haemodynamic management and many devices are now available with varying levels of accuracy. The purpose of the study was to compare the agreement and trending abilities of cardiac output, as measured by transpulmonary thermodilution and calibrated pulse contour analysis, using the VolumeView? system, continuous thermodilution via a pulmonary artery catheter, and uncalibrated pulse contour analysis, using FloTrac? with pulmonary artery bolus thermodilution. Twenty patients undergoing off-pump coronary artery bypass surgery using a pulmonary artery catheter and the VolumeView? and FloTrac? systems were included in this subgroup analysis of the cardiovascular anaesthesia registry at a single tertiary centre. During surgery, cardiac output was assessed after the induction of anaesthesia, after sternotomy, during the harvesting of grafts, during revascularization of the anterior and posterior/lateral wall, after protamine infusion, and after sternal fixation. In total, 145 sets of measurements were evaluated using Bland–Altman with % error calculation, correlation, concordance, and polar plot analyses. The percentage error (bias, limits of agreement) was 12.6 % (?0.12, ?0.64 to 0.41 L/min), 26.7 % (?0.38, ?1.50 to 0.74 L/min), 29.3 % (?0.08, ?1.32 to 1.15 L/min), and 33.8 % (?0.05, ?1.47 to 1.37 L/min) for transpulmonary thermodilution, pulmonary artery continuous thermodilution, calibrated, and uncalibrated pulse contour analysis, respectively, compared with pulmonary artery bolus thermodilution. All pairs of measurements showed significant correlations (p < 0.001), whereas only transpulmonary thermodilution revealed trending ability (concordance rate of 95.1 %, angular bias of 1.33°, and radial limits of agreement of 28.71°) compared with pulmonary artery bolus thermodilution. Transpulmonary thermodilution using the VolumeView? system provides reliable data on cardiac output measurement and tracking the changes thereof when compared with pulmonary artery bolus thermodilution in patients with preserved cardiac function during off-pump coronary artery bypass surgery. Trial registration NCT01713192 (ClinicalTrials.gov).  相似文献   

12.
To compare the performance of a bioreactance cardiac output (CO) monitor (NICOM) and transcutaneous Doppler (USCOM) during head up tilting (HUT). Healthy young adult subjects, age 22 ± 1 years, 7 male and 7 female, were tilted over 3–5 s from supine to 70° HUT, 30° HUT and back to supine. Positions were held for 3 min. Simultaneous readings of NICOM and USCOM were performed 30 s into each new position. Mean blood pressure (MBP), heart rate (HR), CO and stroke volume (SV), and thoracic fluid content (TFC) were recorded. Bland–Altman, percentage changes and analysis of variance for repeated measures were used for statistical analysis. Pre-tilt NICOM CO and SV readings (6.1 ± 1.0 L/min and 113 ± 25 ml) were higher than those from USCOM (4.1 ± 0.6 L/min and 77 ± 9 ml) (P < 0.001). Bland–Altman limits of agreement for CO were wide with a percentage error of 38 %. HUT increased MBP and HR (P < 0.001). CO and SV readings decreased with HUT. However, the percentage changes in USCOM and NICOM readings did not concur (P < 0.001). Whereas USCOM provided gravitational effect proportional changes in SV readings of 23 ± 15 % (30° half tilt) and 44 ± 11 % (70° near full tilt), NICOM changes did not being 28 ± 10 and 33 ± 11 %. TFC decreased linearly with HUT. The NICOM does not provide linear changes in SV as predicted by physiology when patients are tilted. Furthermore there is a lack of agreement with USCOM measurements at baseline and during tilting.  相似文献   

13.
To study agreement in cardiac index (CI), systemic vascular resistance index (Systemic VRI) and stroke volume variation (SV variation) between the FloTrac/Vigileo at radial and femoral arterial cannulation sites, and pulmonary artery catheter (PAC) thermodilution, in patients undergoing orthotopic liver transplantation. A prospective observational study of 25 adult patients with liver failure. Radial and femoral arteries were cannulated with standardised FloTrac/Vigileo arterial transducer kits and a PAC was inserted. CI, SV variation and Systemic VRI were measured four times (30 min after induction of anesthesia, 30 min after portal vein clamping, 30 min after graft reperfusion, 30 min after commencement of bile duct anastomosis). The bias, precision, limits of agreement (LOA) and percentage errors were calculated using Bland–Altman statistics to compare measurements from radial and femoral arterial cannulation sites and PAC thermodilution. Neither radial nor femoral CI achieved acceptable agreement with PAC CI [radial to PAC bias (SD) 1.17 (1.49) L/min/m2, percentage error 64.40 %], [femoral to PAC bias (SD) ?0.71 (1.81) L/min/m2, percentage error 74.20 %]. Agreement between radial and femoral sites for CI [mean difference (SD) ?0.43 (1.51) L/min/m2, percentage error 70.40 %] and Systemic VRI [mean difference (SD) 0.03 (4.17) LOA ±8.17 mmHg min m2/L] were also unacceptable. Agreement in SV variation between radial and femoral measurement sites approached a clinically acceptable threshold [mean difference (SD) 0.68 (2.44) %), LOA ±4.78 %]. FloTrac/Vigileo CI cannot substitute for PAC thermodilution CI, regardless of measurement site. SV variation measurements may be interchangeable between radial and femoral sites for determining fluid responsiveness.  相似文献   

14.
In this study a comparison of cardiac output (CO) measurements obtained with CardioQ transesophageal Doppler (TED) and pulmonary artery catheter (PAC) thermodilution (TD) technique was done in a systematic set-up, with induced changes in preload, afterload and heart rate. Twenty-five patients completed the study. Each patient were placed in the following successive positions: (1) supine, (2) head-down tilt, (3) head-up tilt, (4) supine, (5) supine with phenylephrine administration, (6) pace heart rate 80 beats per minute (bpm), (7) pace heart rate 110 bpm. The agreement of compared data was investigated by Bland–Altman plots, and to assess trending ability a four quadrants plot and a polar plot were constructed. Both methods showed an acceptable precision 6.4 % (PAC TD) and 12.8 % (TED). In comparison with PAC TD, the TED was associated with a mean bias in supine position of ?0.30 l min?1 (95 % CI ?0.88; 0.27), wide limits of agreement, a percentage error of 69.5 %, and a trending ability with a concordance rate of 92 %, angular bias of 1.1° and a radial sector size of 40.0° corresponding to an acceptable trending ability. In comparison with PAC TD, the CardioQ TED showed a low mean bias, wide limits of agreement and a larger percentage error than should be expected from the precision of the two methods. However, an acceptable trending ability was found. Thus, the CardioQ TED should not replace CO measurements done by PAC TD, but could be a valuable tool in guiding therapy.  相似文献   

15.

Pulse pressure variation (PPV) and cardiac output (CO) can guide perioperative fluid management. Capstesia (Galenic App, Vitoria-Gasteiz, Spain) is a mobile application for snapshot pulse wave analysis (PWAsnap) and estimates PPV and CO using pulse wave analysis of a snapshot of the arterial blood pressure waveform displayed on any patient monitor. We evaluated the PPV and CO measurement performance of PWAsnap in adults having major abdominal surgery. In a prospective study, we simultaneously measured PPV and CO using PWAsnap installed on a tablet computer (PPVPWAsnap, COPWAsnap) and using invasive internally calibrated pulse wave analysis (ProAQT; Pulsion Medical Systems, Feldkirchen, Germany; PPVProAQT, COProAQT). We determined the diagnostic accuracy of PPVPWAsnap in comparison to PPVProAQT according to three predefined PPV categories and by computing Cohen’s kappa coefficient. We compared COProAQT and COPWAsnap using Bland-Altman analysis, the percentage error, and four quadrant plot/concordance rate analysis to determine trending ability. We analyzed 190 paired PPV and CO measurements from 38 patients. The overall diagnostic agreement between PPVPWAsnap and PPVProAQT across the three predefined PPV categories was 64.7% with a Cohen’s kappa coefficient of 0.45. The mean (±?standard deviation) of the differences between COPWAsnap and COProAQT was 0.6?±?1.3 L min??1 (95% limits of agreement 3.1 to ??1.9 L min??1) with a percentage error of 48.7% and a concordance rate of 45.1%. In adults having major abdominal surgery, PPVPWAsnap moderately agrees with PPVProAQT. The absolute and trending agreement between COPWAsnap with COProAQT is poor. Technical improvements are needed before PWAsnap can be recommended for hemodynamic monitoring.

  相似文献   

16.
Non-invasive continuous monitoring of cardiac output could be very useful in clinical care and in research settings, particularly in elderly subjects. We studied whether Finapres arterial pulse wave analysis with Modelflow is a reliable non-invasive method for the assessment of cardiac output in healthy elderly subjects. We compared Modelflow cardiac output (MFCO) with thermodilution cardiac output (TDCO) in 28 healthy subjects, aged 70+/-4 years (mean+/-S.D.). TDCO was measured during right-sided heart catheterization, while MFCO was calculated with Modelflow(R) software from non-invasive arterial Finapres blood pressure, which was measured simultaneously. The two methods were compared using a paired t-test, by Pearson correlation, and by Bland-Altman analysis. TDCO was 6.4+/-1.1 litres/min (mean+/-S.D.) and MFCO was 4.7+/-1.3 litres/min (P<0.001). There was no significant correlation between MFCO and TDCO (r=0.28, P=0.13). Mean difference (bias) was -1.7 litres/min (S.E.M. 0.27 litres/min), with an S.D. (precision) of 1.5 litres/min. The 95% limits of agreement were -4.6 to +1.1 litres/min. In conclusion, non-invasive MFCO values differed significantly from and showed no significant correlation with invasively determined TDCO values in the normal range. Although simple, non-invasive and patient-friendly, the Modelflow method is inaccurate for assessment of cardiac output without invasive calibration.  相似文献   

17.
A new non-invasive continuous cardiac output (esCCO) monitoring system solely utilizing a routine cardiovascular monitor was developed, even though a reference cardiac output (CO) is consistently required. Subsequently, a non-invasive patient information CO calibration together with a new automated exclusion algorithm was implemented in the esCCO system. We evaluated the accuracy and trending ability of the new esCCO system. Either operative or postoperative data of a multicenter study in Japan for evaluation of the accuracy of the original version of esCCO system were used to develop the new esCCO system. A total of 207 patients, mostly cardiac surgical patients, were enrolled in the study. Data were manually reviewed to formulate a new automated exclusion algorithm with enhanced accuracy. Then, a new esCCO system based on a patient information calibration together with the automated exclusion algorithm was developed. CO measured with a new esCCO system was compared with the corresponding intermittent bolus thermodilution CO (ICO) utilizing statistical methods including polar plots analysis. A total of 465 sets of CO data obtained using the new esCCO system were evaluated. The difference in the CO value between the new esCCO and ICO was 0.34?±?1.50 (SD) L/min (95?% confidence limits of ?2.60 to 3.28?L/min). The percentage error was 69.6?%. Polar plots analysis showed that the mean polar angle was ?1.6° and radial limits of agreement were ±53.3°. This study demonstrates that the patient information calibration is clinically useful as ICO, but trending ability of the new esCCO system is not clinically acceptable as judged by percentage error and polar plots analysis, even though it’s trending ability is comparable with currently available arterial waveform analysis methods.  相似文献   

18.
The non-invasive Nexfin cardiac output (CO) monitor shows a low level of agreement with the gold standard thermodilution method in morbidly obese patients. Here we investigate whether this disagreement is related to excessive bodyweight, and can be improved when bodyweight derivatives are used instead. We performed offline analyses of cardiac output recordings of patient data previously used and partly published in an earlier study by our group. In 30 morbidly obese patients (BMI?>?35 kg/m2) undergoing laparoscopic gastric bypass, cardiac output was simultaneously determined with PiCCO thermodilution and Nexfin pulse-contour method. We investigated if agreement of Nexfin-derived CO with thermodilution CO improved when ideal and adjusted—instead of actual- bodyweight were used as input to the Nexfin. Bodyweight correlated with the difference between Nexfin-derived and thermodilution-derived CO (r?=??0.56; p?=?0.001). Bland Altman analysis of agreement between Nexfin and thermodilution-derived CO revealed a bias of 0.4?±?1.6 with limits of agreement (LOA) from ?2.6 to 3.5 L min when actual bodyweight was used. Bias was ?0.6?±?1.4 and LOA ranged from ?3.4 to 2.3 L min when ideal bodyweight was used. With adjusted bodyweight, bias improved to 0.04?±?1.4 with LOA from ?2.8 to 2.9 L min. Our study shows that agreement of the Nexfin-derived with invasive CO measurements in morbidly obese patients is influenced by body weight, suggesting that Nexfin CO measurements in patients with a BMI above 35 kg/m2 should be interpreted with caution. Using adjusted body weight in the Nexfin CO-trek algorithm reduced the bias.  相似文献   

19.
Cardiac output (CO) is an important diagnostic and prognostic factor in the haemodynamic evaluation of patients. The gold standard for CO measurement, thermodilution, requires an invasive right-heart catheterisation (RHC). In this pilot study we aimed to determine the accuracy of non-invasive CO determination from dynamic contrast-enhanced computed tomography (CT) compared to thermodilution. Patients who underwent diagnostic or follow-up RHC due to suspected or known pulmonary vascular disease at our department and required a thoracic CT between June 2011 and August 2012 were included. CO was determined from CT attenuation-time curves in the pulmonary artery and the ascending aorta using a dynamic contrast-enhanced CT sequence. CO determined in N = 18 patients by dynamic CT in the pulmonary artery was in very good agreement with thermodilution data (r = 0.84). Bland–Altman analysis showed a systematic overestimation of 0.7 ± 0.6 l/min compared to thermodilution. Data from the ascending aorta also showed a good correlation, but with a larger scattering of the values. The average effective dose for the dynamic investigation was 1.2 ± 0.7 mSv. CO determined with dynamic contrast-enhanced CT in the main pulmonary artery reliably predicts the values obtained by thermodilution during RHC. This non-invasive technique might provide an alternative for repeated invasive right-heart catheter investigations in the follow-up of pulmonary arterial hypertension patients.  相似文献   

20.
Septic shock is a serious medical condition. With increased concerns about invasive techniques, a number of non-invasive and semi-invasive devices measuring cardiac output (CO) have become commercially available. The aim of the present study was to determine the accuracy, precision and trending abilities of the FloTrac and the continuous pulmonary artery catheter thermodilution technique determining CO in septic shock patients. Consecutive septic shock patients were included in two centres and CO was measured every 4 h up to 48 h by FloTrac (APCO) and by pulmonary artery catheter (PAC) using the continuous (CCO) and intermittent (ICO) technique. Forty-seven septic shock patients with 326 matched sets of APCO, CCO and ICO data were available for analysis. Bland and Altman analysis revealed a mean bias ±2 SD of 0.0 ± 2.14 L min?1 for APCO–ICO (%error = 34.5 %) and 0.23 ± 2.55 L min?1 for CCO–ICO (%error = 40.4 %). Trend analysis showed a concordance of 85 and 81 % for APCO and CCO, respectively. In contrast to CCO, APCO was influenced by systemic vascular resistance and by mean arterial pressure. In septic shock patients, APCO measurements assessed by FloTrac but also the established CCO measurements using the PAC did not meet the currently accepted statistical criteria indicating acceptable clinical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号