共查询到20条相似文献,搜索用时 14 毫秒
1.
AbstractTo develop a novel self-nanoemulsifying drug delivery system (solid SNEDDS) with better oral bioavailability of tacrolimus, the solid SNEDDS was obtained by spray-drying the solutions containing the liquid SNEDDS and colloidal silica. Its reconstitution properties were determined and correlated to solid state characterisation of the powder. Moreover, the dissolution and pharmacokinetics in rats was done in comparison to the commercial product. Among the liquid SNEDDS formulations tested, the liquid SNEDDS comprised of Capryol PGMC, Transcutol HP and Labrasol (10:15:75, v/v/v) presented the highest dissolution rate. In the solid SNEDDS, this liquid SNEDDS was absorbed in the pores and attached onto the surface of the colloidal silica. Drug was present in the amorphous state in it. The solid SNEDDS with 5% w/v tacrolimus produced the nanoemulsions and improved the oral bioavailability of tacrolimus in rats. Therefore, this solid SNEDDS would be a potential candidate for enhancing the oral bioavailability of tacrolimus. 相似文献
2.
ABSTRACTObjective: This study aims to illustrate the applicability of solid supersaturated self-nanoemulsifying drug delivery system (sat-SNEDDS) for the improvement of rosuvastatin calcium (RC) oral bioavailability. Methods: Different sat-SNEDDS were prepared by incorporating different ratios of RC into SNEDDS using tween80/PEG400 (77.2%) as surfactant/cosurfactant mixture and garlic /olive oil (22.8%) as oil phase. The prepared systems were characterized viz; size, zeta potential, TEM and stability. Various hydrophilic and hydrophobic carriers were employed to solidify the optimized RC sat-SNEDDS. The influence of the carrier was investigated by SEM, XRPD, DSC, flow properties, in vitro precipitation, drug release and oral bioavailability study. Results: The adsorption of the stable positively charged nanocarrier RC sat-SNEDDS onto solid carriers provided free flowing amorphous powder. The carrier could amend the morphological architecture and in vitro release of the RC solid sat-SNEDDS. Hydrophobic carriers as microcrystalline cellulose 102 (MCC) showed superior physical characters and higher dissolution rate over hydrophilic carriers as maltodextrin with respective T 100% 30 min and 45 min. The rapid spontaneous emulsification, the positively nanosized MCC-sat-SNEDDS improved oral bioavailability of RC by 2.1-fold over commercial tablets. Conclusion: Solid MCC-sat-SNEDDS combined dual benefits of sat-SNEDDS and solid dosage form was successfully optimized to improve RC oral bioavailability. 相似文献
3.
In order to compare the effects of hydrophilic and hydrophobic solid carrier on the formation of solid self-microemulsifying drug delivery system (SMEDDS), two solid SMEDDS formulations were prepared by spray-drying the solutions containing liquid SMEDDS and solid carriers. Colloidal silica and dextran were used as a hydrophobic and a hydrophilic carrier, respectively. The liquid SMEDDS, composed of Labrafil M 1944 CS/Labrasol/Trasncutol HP (12.5/80/7.5%) with 2% w/v flurbiprofen, gave a z-average diameter of about 100 nm. Colloidal silica produced an excellent conventional solid SMEDDS in which the liquid SMEDDS was absorbed onto its surfaces. It gave a microemulsion droplet size similar to that of the liquid SMEDDS (about 100 nm) which was smaller than the other solid SMEDDS formulation. In the solid SMEDDS prepared with dextran, liquid SMEDDS was not absorbed onto the surfaces of carrier but formed a kind of nano-sized microcapsule with carrier. However, the drug was in an amorphous state in two solid SMEDDS formulations. Similarly, they greatly improved the dissolution rate and oral bioavailability of flurbiprofen in rats due to the fast spontaneous emulsion formation and the decreased droplet size. Thus, except appearance, hydrophilic carrier (dextran) and hydrophobic carrier (colloidal silica) hardly affected the formation of solid SMEDDS such as crystalline properties, dissolution and oral bioavailability. 相似文献
4.
The objective of this study was to develop and optimise self-nanoemulsifying drug delivery system (SNEDDS) of atorvastatin calcium (ATC) for improving dissolution rate and eventually oral bioavailability. Ternary phase diagrams were constructed on basis of solubility and emulsification studies. The composition of ATC–SNEDDS was optimised using the Box–Behnken optimisation design. Optimised ATC–SNEDDS was characterised for various physicochemical properties. Pharmacokinetic, pharmacodynamic and histological findings were performed in rats. Optimised ATC–SNEDDS resulted in droplets size of 5.66?nm, zeta potential of ?19.52?mV, t90 of 5.43?min and completely released ATC within 30?min irrespective of pH of the medium. Area under the curve of optimised ATC–SNEDDS in rats was 2.34-folds higher than ATC suspension. Pharmacodynamic studies revealed significant reduction in serum lipids of rats with fatty liver. Photomicrographs showed improvement in hepatocytes structure. In this study, we confirmed that ATC–SNEDDS would be a promising approach for improving oral bioavailability of ATC. 相似文献
5.
The aim of present investigation was to develop surface-adsorbed reverse-micelle-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) of talinolol in order to enhance its in vitro dissolution rate, which in turn enhance the bioavailability. SNEDDS were prepared using aqueous phase titration method. Thermodynamically stable formulations were characterized in terms of droplet size, viscosity, % transmittance, drug content and surface morphology. Low cost acid-treated coffee husk was used as an effective biosorbent for preparation of solid SNEDDS. Developed SNEDDS were subjected to in vitro drug release/dissolution studies. In vitro drug release studies showed 99.6% release of talinolol from optimized solid SNEDDS TS3 after 120?min of study. The results of solubility studies showed 4849.5-folds enhancement in solubility of talinolol from optimized SNEDDS as compared to its aqueous solubility. 相似文献
6.
Objective: Lopinavir (LPV), an antiretroviral protease inhibitor shows poor bioavailability because of poor aqueous solubility and extensive hepatic first-pass metabolism. The aim of the present work was to investigate the potential of the solid self-nanoemulsifying drug delivery system (S-SNEDDS) in improving dissolution rate and oral bioavailability of LPV. Materials and methods: Liquid SNEDDS (L-SNEDDS) of LPV were prepared using Capmul MCM C8, Cremophor RH 40 and propylene glycol and their amounts were optimized by Scheffe’s mixture design. L-SNEDDS formulations were evaluated for different physicochemical and in vitro drug release parameters. S-SNEDDS were prepared by adsorbing L-SNEDDS on Neusilin US2 and characterized for solid-state properties. In vivo bioavailability of S-SNEDDS, marketed Lopinavir?+?Ritonavir (LPV/RTV) formulation and pure LPV was studied in Wistar rats. Stability study of S-SNEDDS was performed as per ICH guidelines. Results and discussion: Optimized L-SNEDDS obtained by Scheffe design had drug loading 160?±?1.15?mg, globule size 32.9?±?1.45?nm and drug release?>95% within 15?min. Solid state studies suggested the transformation of the crystalline drug to amorphous drug. The size and zeta potential of globules obtained on dilution S-SNEDDS remained similar to L-SNEEDS. In vivo bioavailability study revealed that S-SNEDDS has 2.97 and 1.54-folds higher bioavailability than pure LPV and LPV/RTV formulation, respectively. The optimized S-SNEDDS was found to be stable and had a shelf life of 2.85 years. Conclusion: The significant increase in drug dissolution and bioavailability by prepared SNEDDS suggest that the developed S-SNEDDS is a useful solid platform for improving oral bioavailability of poorly soluble LPV. 相似文献
7.
Introduction: Lipid-based drug delivery systems (LBDDS) are the most promising technique to formulate the poorly water soluble drugs. Nanotechnology strongly influences the therapeutic performance of hydrophobic drugs and has become an essential approach in drug delivery research. Self-nanoemulsifying drug delivery systems (SNEDDS) are a vital strategy that combines benefits of LBDDS and nanotechnology. SNEDDS are now preferred to improve the formulation of drugs with poor aqueous solubility. Areas covered: The review in its first part shortly describes the LBDDS, nanoemulsions and clarifies the ambiguity between nanoemulsions and microemulsions. In the second part, the review discusses SNEDDS and elaborates on the current developments and modifications in this area without discussing their associated preparation techniques and excipient properties. Expert opinion: SNEDDS have exhibit the potential to increase the bioavailability of poorly water soluble drugs. The stability of SNEDDS is further increased by solidification. Controlled release and supersaturation can be achieved, and are associated with increased patient compliance and improved drug loads, respectively. Presence of biodegradable ingredients and ease of large-scale manufacturing combined with a lot of ‘drug-targeting opportunities’ give SNEDDS a clear distinction and prominence over other solubility enhancement techniques. 相似文献
8.
To formulate a self-nanoemulsifying drug delivery system (SNEDDS) for the oral administration of docetaxel as an alternative to commercial docetaxel-loaded injectable products, it was prepared by spray-drying an aqueous solution containing liquid SNEDDS and colloidal silica. Its physicochemical properties and oral bioavailability were investigated compared to a clear docetaxel solution administered intravenously or orally to rats. In the docetaxel-loaded solid SNEDDS prepared with colloidal silica, the liquid SNEDDS composed of Capryol 90, Cremophore EL and Transcutol HP (45/35/20, volume ratio) was absorbed inside the pores of carriers, and docetaxel was present in a changed amorphous state. The solid SNEDDS with 3.3% (w/v) docetaxel produced nanoemulsions, and showed about 12.5% absolute bioavailability in rats. Thus, this solid SNEDDS may be a potential candidate for oral pharmaceutical product with improved oral bioavailability of docetaxel. 相似文献
9.
目的 通过调节纳米骨架载药系统(NDDS)中载体类型和比例实现对缬沙坦体外溶出和体内生物利用度的调控。 方法 以缬沙坦作为模型药物,分别选取酸性敏感材料Eudragit E100(E100)、碱性敏感材料Eudragit L100-55(L100-55)作为载体材料,介孔二氧化硅Sylysia 350(S350)、Aerosil 200(A200)作为纳米骨架,通过调节载体和骨架材料的类型和比例筛选出具有pH 1.2、6.8敏感释放行为的纳米骨架载体处方,考察缬沙坦在pH 1.2、6.8环境中释放和在大鼠体内的药动学行为特征。 结果 筛选的pH 1.2敏感释放缬沙坦NDDS处方缬沙坦、S350、E100比例为1∶3∶1,pH 6.8敏感释放缬沙坦NDDS处方为缬沙坦、A200、L100-55比例为1∶1∶3。pH 6.8敏感释放处方可调控缬沙坦在肠道pH 6.8条件下特异性溶出;pH 1.2敏感释放处方在保持缬沙坦在pH 6.8高溶出特性的同时可特异性地提高胃部酸性条件下的药物释放。pH 1.2、6.8敏感释放缬沙坦NDDS均一定程度上改善了缬沙坦的生物利用度,其中pH 6.8敏感释放缬沙坦NDDS提高生物利用度的幅度更高,血药浓度变化比较平缓。 结论 NDDS可以调控缬沙坦的体外溶出和生物利用度,有望应用于pH值敏感性难溶药物的递送。 相似文献
10.
AbstractTrans-resveratrol ( t-RVT) is a potent antioxidant. By virtue of extensive pre-systemic metabolism and existence of enterohepatic recirculation, t-RVT bioavailability is almost zero. The current study aimed to develop self-nanoemulsifying drug delivery systems (SNEDDS) using long-chain triglycerides (LCTs) of t-RVT in an attempt to circumvent such obstacles. Equilibrium solubility studies indicated the choice of Lauroglycol FCC as lipid, and of Labrasol and Transcutol P as surfactants, for formulating the SNEDDS. Ternary phase diagrams were constructed to select the areas of nanoemulsions, and the amounts of lipid (X 1) and surfactant (X 2) as the critical factor variables. The SNEDDS were optimized using 3 2 central composite design (CCD) and the optimized formulation (OPT) located using overlay plot. The nanometer size range and high negative values of zeta potential depicted non-coalescent nature of the SNEDDS. Optimized formulation indicated marked improvement in drug release profile vis-à-vis pure drug. Cloud point determination and accelerated stability studies ascertained the stability of OPT. Augmentation in the values of Ka (3.29-fold) and AUC (4.31-fold) indicated significant enhancement in the rate and extent of bioavailability by the OPT compared with pure drug. In situ perfusion (SPIP) studies in Wistar rats construed remarkable enhancement in the absorptivity and permeability parameters of SNEDDS vis-à-vis the pure drug. Successful establishment of level A of in vitro/in vivo correlation substantiated the judicious choice of the in vitro dissolution milieu for simulating the in vivo conditions. The present study, therefore, reports the successful development of SNEDDS with distinctly enhanced bioavailability of t-RVT. 相似文献
11.
Albendazolum (ABZ) is a BCS class II drug. It has challenging biopharmaceutical properties, which include poor solubility and dissolution rate. These properties have laid the ground for developing a supersaturated self-nanoemulsifying drug delivery system (S-SNEDDS) to form oil-in-water nanoemulsion in situ to improve the oral bioavailability of ABZ. Based on the ABZ solubility, emulsifying ability, and stability after dispersion in an aqueous phase, an optimal self-nanoemulsifying drug delivery system (SNEDDS) consisting of oleic acid, Tween ® 20, and PEG 600 (X:Y:Z, w/w) was identified, having 10% (w/w) hydroxypropyl methylcellulose (HPMC) E15 lv as its precipitation inhibitor. The optimized system possessed a small mean globule size value (89.2 nm), good dispersion properties (polydispersity index (PDI): 0.278), and preserved the supersaturated state of ABZ. S-SNEDDS was transformed into solid supersaturated self-nanoemulsifying drug delivery systems (SS-SNEDDS) using microcrystalline cellulose as a solid material. The developed S-SNEDDS were characterized for globule size, pH, turbidity, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and flow properties. The data obtained from the results suggest that this S-SNEDDS formulation can enhance the solubility and oral bioavailability of ABZ for appropriate clinical application. 相似文献
12.
Vitamin A self-nanoemulsifying drug delivery system (SNEDDS), which comprises soybean oil, Cremophor EL, and Capmul MCM-C8, was prepared and mixed with different grades of Avicel to produce homogenized powders. The resultant powders were compressed into tablets. The prepared tablets were characterized for their thickness, hardness, friability, disintegration time, and dissolution rate. In addition, the relative bioavailability of the tablets in comparison to solid-state Vitamin A oily solution (SSVAOS) tablets was investigated in rats. Vitamin A dissolution rate was markedly different from one formulation to another. From the bioavailability data, it was observed that Vitamin A SNEDD tablets have higher bioavailability (relative bioavailability 143.68%) compared with SSVAOS tablets. The AUC and Cmax of Vitamin A SNEDD tablets were found to be significantly different from that of SSVAOS tablets. 相似文献
13.
Solvent evaporation method for preparation of nanomatrix has the disadvantages, such as residual organic solvent, environmental pollution, explosion-proofing and so on. To overcome these shortcomings, a series of fenofibrate nanomatrix drug delivery system (NDDS) consisting of nano-porous silica Sylysia ®350 (S350) and pH sensitive material Eudragit ® L100-55 (EL100-55) were prepared using hot-melt extrusion (HME), and their in vitro dissolution and in vivo bioavailability were compared. Finally, the formulation with the highest in vivo bioavailability was selected as the optimized formulation for DSC and PXRD characterization. The results showed that the optimized NDDS showed a higher bioavailability than the reference formulation, although there was crystalline form drug remaining in NDDS. The relative bioavailability of the optimized formulation was 157.1% compared with the commercial product Lipanthyl ®. In addition, the relative bioavailability of the optimized formulation was 124.8% in comparison with the formulation prepared by solvent evaporation method, showing that the NDDS prepared by the HME method was effective in improving the bioavailability of fenofibrate. In conclusion, HME was a promising method to prepare NDDS. 相似文献
14.
AbstractIt was the aim of this study to evaluate the impact of lipases on the release behaviour of a peptide drug from oral self-nanoemulsifying drug delivery systems. Octreotide was ion paired with the anionic surfactants deoxycholate, decanoate, oleate and dodecylsulphate. The lipophilic character of these complexes was characterised by determining the n-octanol/buffer pH 7.4 partition coefficient. In the following the most hydrophilic complex was incorporated in a likely lipase degradable self-nanoemulsifying drug delivery systems (SNEDDS) formulation containing a triglyceride (olive oil; Pharm.Eur.) and in a likely not lipase degradable SNEDDS containing lipids and surfactants without any ester bonds. After 1:100 dilutions in artificial intestinal fluid (AIF), the lipid droplets were characterised regarding size distribution. With these SNEDDS, drug release studies were performed in AIF with and without lipase. Results showed that the most hydrophobic complex can be formed with deoxycholate in an octreotide:anionic surfactant ratio of 1:5. Even 73.1?±?8.1% of it could be quantified in the n-octanol phase. SNEDDS containing octreotide | olive oil | cremophor EL | propylene glycol (2|57|38|3) and octreotide | liquid paraffin | Brij 35 | propylene glycol | ethanol (2|66.5|25|5|1.5) showed after dilution in AIF, a mean droplet size of 232?±?53?nm and 235?±?50?nm, respectively. Drug release studies showed a sustained release of octreotide out of these formulations for at least 24?h, whereas?>?80% of the drug was released within 2?h in the presence of lipase in the case of the triglyceride containing SNEEDS. In contrast the release profile from ester-free SNEDDS was not significantly altered ( p?<?0.05) due to the addition of lipase providing evidence for the stability of this formulation towards lipases. According to these results, SNEDDS could be identified as a useful tool for sustained oral peptide delivery taking an enzymatic degradation by intestinal lipases into considerations. 相似文献
15.
AbstractOf late, solid self-nanoemulsifying drug delivery systems (S-SNEDDS) have been extensively sought-after owing to their superior portability, drug loading, stability and patient compliance. The current studies, therefore, entail systematic development, optimization and evaluation ( in vitro, in situ and in vivo) of the solid formulations of (SNEDDS) lovastatin employing rational quality by design (QbD)-based approach of formulation by design (FbD). The patient-centric quality target product profile (QTPP) and critical quality attributes (CQAs) were earmarked. Preformulation studies along with initial risk assessment facilitated the selection of lipid (i.e. Capmul MCM), surfactant (i.e. Nikkol HCO-50) and co-surfactant (i.e. Lutrol F127) as CMAs for formulation of S-SNEDDS. A face-centered cubic design (FCCD) was employed for optimization using Nikkol-HCO50 (X 1) and Lutrol-F127 (X 2), evaluating CQAs like globule size, liquefaction time, emulsification time, MDT, dissolution efficiency and permeation parameter. The design space was generated using apt mathematical models, and the optimum formulation was located, followed by validation of the FbD methodology. In situ SPIP and in vivo pharmacodynamic studies on the optimized formulation carried out in unisex Wistar rats, corroborated superior drug absorption and enhanced pharmacodynamic potential in regulating serum lipid levels. In a nutshell, the present studies report successful QbD-oriented development of novel oral S-SNEDDS of lovastatin with distinctly improved biopharmaceutical performance. 相似文献
16.
The objectives of this study was to prepare solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing phosphatidylcholine (PC), an endogenous phospholipid with excellent in vivo solubilization capacity, as oil phase for the delivery of bioactive carotenoid lutein, by spray drying the SNEDDS (liquid system) containing PC using colloidal silica (Aerosil® 200 VV Pharma) as the inert solid carrier, and to evaluate the enhanced bioavailability (BA) of lutein from S-SNEDDS. The droplet size analyses revealed droplet size of less than 100 nm. The solid state characterization of S-SNEDDS by SEM, DSC, and XRPD revealed the absence of crystalline lutein in the S-SNEDDS. The bioavailability study performed in rabbits resulted in enhanced values of Cmax and AUC for S-SNEDDS. The enhancement of Cmax for S-SNEDDS was about 21-folds and 8-folds compared with lutein powder (LP) and commercial product (CP), respectively. The relative BA of S-SNEDDS compared with CP or LP was 2.74-folds or 11.79-folds, respectively. These results demonstrated excellent ability of S-SNEDDS containing PC as oil phase to enhance the BA of lutein in rabbits. Thus, S-SNEDDS containing PC as oil phase could be a useful lipid drug delivery system for enhancing the BA of lutein in vivo. 相似文献
17.
作为一种新型的药物递送系统,固体自微乳药物递送系统可以显著提高水难溶性药物的口服生物利用度,且具有液态自微乳和固体制剂二者的优势。通过设计不同的辅料处方和包衣技术,可以控制药物释放使其具有靶向性,来达到不同的给药目的。固体自微乳药物递送系统的应用前景广阔,具有研究意义。本文对固体自微乳载体、固化技术、固体自微乳新制剂的应用进行了总结归纳,为提高水难溶性药物释放的固体自微乳化技术的研究提供了参考。 相似文献
18.
Self-nanoemulsifying drug delivery systems of gemfibrozil were developed under Quality by Design approach for improvement of dissolution and oral absorption. Preliminary screening was performed to select proper components combination. Box-Behnken experimental design was employed as statistical tool to optimize the formulation variables, X(1) (Cremophor(?) EL), X(2) (Capmul(?) MCM-C8), and X(3) (lemon essential oil). Systems were assessed for visual characteristics (emulsification efficacy), turbidity, droplet size, polydispersity index and drug release. Different pH media were also assayed for optimization. Following optimization, the values of formulation components (X(1), X(2), and X(3)) were 32.43%, 29.73% and 21.62%, respectively (16.22% of gemfibrozil). Transmission electron microscopy demonstrated spherical droplet morphology. SNEEDS release study was compared to commercial tablets. Optimized SNEDDS formulation of gemfibrozil showed a significant increase in dissolution rate compared to conventional tablets. Both formulations followed Weibull mathematical model release with a significant difference in t(d) parameter in favor of the SNEDDS. Equally amodelistic parameters were calculated being the dissolution efficiency significantly higher for SNEDDS, confirming that the developed SNEDDS formulation was superior to commercial formulation with respect to in vitro dissolution profile. This paper provides an overview of the SNEDDS of the gemfibrozil as a promising alternative to improve oral absorption. 相似文献
19.
The main objective of this study was to prepare a solid form of lipid-based self-emulsifying drug delivery system (SEDDS) by spray drying liquid SEDDS with an inert solid carrier Aerosil 200 to improve the oral bioavailability of poorly water-soluble drug dexibuprofen. The liquid SEDDS was a system that consisted of dexibuprofen, Labrasol, Capryol 90 and Labrafil M 1944 CS. The particle size analysis revealed no difference in the z-average particle diameter of the reconstituted emulsion between liquid and solid SEDDS. The solid SEDDS was characterized by SEM, DSC and XRD studies. In vivo results of solid SEDDS and dexibuprofen powder in rats at the dose of 10 mg/kg showed that the initial plasma concentrations of drug in solid SEDDS were significantly higher than those of dexibuprofen powder ( P < 0.05). The solid SEDDS gave significantly higher AUC and Cmax than did dexibuprofen powder ( P < 0.05). In particular, the AUC of solid SEDDS was about twofold higher than that of dexibuprofen powder. Our results suggested that this solid SEDDS could be used as an effective oral solid dosage form to improve the bioavailability of poorly water-soluble drug dexibuprofen. 相似文献
20.
A solid self-nanoemulsifying drug-delivery system (solid SNEDDS) has been explored to improve the solubility and dissolution profile of glipizide. SNEDDS preconcentrate was systematically optimized using a circumscribed central composite design by varying Captex 355 (Oil), Solutol HS15 (Surfactant) and Imwitor 988 (Co-surfactant). The optimized SNEDDS preconcentrate consisted of Captex 355 (30% w/w), Solutol HS15 (45% w/w) and Imwitor 988 (25% w/w). The saturation solubility ( SS) of glipizide in optimized SNEDDS preconcentrate was found to be 45.12 ± 1.36 mg/ml, indicating an improvement (1367 times) of glipizide solubility as compared to its aqueous solubility (0.033 ± 0.0021 mg/ml). At 90% SS, glipizide was loaded to the optimized SNEDDS. In-vitro dilution of liquid SNEDDS resulted in a nanoemulsion with a mean droplet size of 29.4 nm. TEM studies of diluted liquid SNEDDS confirmed the uniform shape and size of the globules. The liquid SNEDDS was adsorbed onto calcium carbonate and talc to form solid SNEDDS. PXRD, DSC, and SEM results indicated that, the presence of glipizide as an amorphous and as a molecular dispersion state within solid SNEDDS. Glipizide dissolution improved significantly ( p < 0.001) from the solid SNEDDS (∼100% in 15 min) as compared to the pure drug (18.37%) and commercial product (65.82) respectively.Abbreviations: solid SNEDDS, solid self-nanoemulsifying drug delivery system; SS, saturation solubility; DR15min, percentage drug release in 15 minutes; LCT, long chain triglycerides; MCT, medium chain triglycerides 相似文献
|