首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dent's disease.     
Case A 42-year-old engineer developed right renal colic, and a plainradiograph showed bilateral nephrocalcinosis with calculi fillingthe upper part of the right ureter (Figure 1). Renal glycosuriaand proteinuria had been found at  相似文献   

2.
Dent's disease is a nephrolithiasis disorder associated with hypercalciuria and low molecular weight proteinuria that is caused by mutations in the voltage-gated chloride channel ClC-5. Because the exact cause of hypercalciuria in this disease is unknown and could come from a renal, intestinal, or bone origin, we have investigated overall calcium handling in the ClC-5 knockout mouse (ClC-5 KO). On a high calcium diet, ClC-5 KO mice had elevated serum 1alpha,25-dihydroxyvitamin D3 (1alpha,25D3), alkaline phosphatase (AP), osteocalcin (OC), and urinary deoxypyridinoline (DPD), but serum parathyroid hormone (PTH), calcium, and intestinal calcium uptake was similar to that of wild-type (WT) mice. A 30-fold decrease in dietary calcium intake caused elevation of serum PTH and urinary cyclic adenosine monophosphate in ClC-5 KO mice and decreased the renal calcium excretion, which still remained 2-fold above that of WT mice. On this low calcium diet, both groups of mice had the same serum 1alpha,25D3, with similar increments in intestinal calcium absorption, serum AP, OC, and urinary DPD. These data indicate that the hypercalciuria in the ClC-5 KO mice on low and high calcium diets is of bone and renal origin and is not caused by increased intestinal calcium absorption, despite an elevated serum 1alpha,25D3. These mice data suggest that young patients with this disease may have a propensity for altered bone homeostasis that should be monitored clinically.  相似文献   

3.
Gambaro G 《Kidney international》2006,69(10):1916; author reply 1916
  相似文献   

4.
5.
Erythrocyte sodium-potassium (Na+/K+) -ATPase and sodium-lithium (Na+/Li+) countertransport activities were measured in 18 children (aged 9.6 years, range 6–16 years) with idiopathic hypercalciuria (IHU) to evaluate cellular Na handling. The effect of chronic thiazide administration on these parameters and on bone mineral density was also evaluated. Patients with IHU had significantly lower erythrocyte Na+/K+-ATPase activity than 23 age-matched healthy controls (mean±SEM 2,156±110 μmol P/l erythrocyte per hour vs. 3,165±175, P<0.01). Thiazide treatment significantly lowered urinary calcium excretion; this was followed by a slight suppression of intact parathyroid hormone (iPTH). The urinary calcium/creatinine ratio before and during treatment was 0.90±0.07 mmol/mmol versus 0.51±0.06 respectively, P<0.01. The corresponding iPTH levels were 5.9±0.6 pmol/l and 5.1±0.7, P<0.05. The Na + /K + -ATPase activity increased significantly (2,769±169 μmol P/l erythrocyte per hour vs. 2,156±110 in the control period, P<0.01) and the Na + /Li + countertransport decreased (268±28 μmol Li/l erythrocyte per hour vs. 328 + 26 in the control period, P<0.03). The bone mineral density Z score rose from –1.3±0.26 to –0.8±0.22 (P<0.03). We conclude that IHU is accompanied by abnormalities of erythrocyte Na + /K + -ATPase and Na + /Li + countertransport which are corrected by chronic hydrochlorothiazide administration. These changes could model alterations in renal tubular transport mechanisms still to be elucidated. Chronic thiazide treatment also has a positive effect on bone mineral density. Received March 3, 1997; received in revised form and accepted July 7, 1997  相似文献   

6.
Evidence for genetic heterogeneity in Dent's disease   总被引:10,自引:0,他引:10  
  相似文献   

7.
Dent's disease and familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) are inherited diseases in which hypercalciuria, nephrocalcinosis, and renal failure are prominent features. Dent's disease resembles a Fanconi syndrome, with impaired reabsorption in the proximal tubule; FHHNC, with urinary loss of magnesium and calcium, is associated with impaired cation transport in the thick ascending limb of Henle's loop. Gene mapping in families and positional cloning led in both cases to identification of the responsible gene. Dent's disease is associated with mutations that disrupt function of a voltage-gated chloride channel, CLC-5, expressed in subapical endosomes of the proximal tubule and in other nephron segments. Impaired function of this channel disturbs reabsorption of filtered proteins, as well as other transport functions of the proximal tubule, and leads, apparently indirectly, to hypercalciuria and renal failure. FHHNC results from mutations in paracellin-1, a tight-junction protein that appears to be important in conducting or regulating paracellular cation transport. Impaired function of paracellin-1 leads specifically to urinary losses of magnesium and calcium, but because transcellular transport is intact these patients do not have hypokalemia or salt wasting. Identification of both genes represent triumphs of a genetic approach to solving problems of pathophysiology.  相似文献   

8.
PURPOSE OF REVIEW: Decreased bone mineral density and increased prevalence of bone fractures have been found in patients with idiopathic hypercalciuria. The purpose of this review is to summarize the recent published evidence that supports a potential role of the bone, and its link to the kidney and intestine, in the pathogenesis of idiopathic hypercalciuria. The effects of hypercalciuria on bone and the implications for treatment are also reviewed. RECENT FINDINGS: Evidence suggests that the incidence of a first fracture in kidney stone patients is fourfold higher than the control population. Support for the role of bone in the pathophysiology of hypercalciuria has been corroborated. New studies have detailed the effects of several cytokines - increased number and sensitivity of vitamin D receptors, and increased acid production - upon the bone acting cells. Similarly, recent clinical and experimental studies have suggested that genetic factors confer a predisposition to the formation of renal calcium stones and bone demineralization. SUMMARY: Whether hypercalciuria is the result of a primary bone disorder, a consequence of a persisting negative calcium balance or a combination of both still remains to be determined. Nevertheless, bone status must be evaluated and followed up in patients with idiopathic hypercalciuria.  相似文献   

9.
Eleven hypercalciuric patients (10 women and 1 man) with hyperparathyroidism and recurrent renal stones are described. In 6 patients normal calcium metabolism was restored after the removal of a single adenoma. No new stones were passed during the follow-up period of 5 years. In 2 patients with more than 1 abnormal parathyroid gland, the hypercalciuria continued for 8–12 months after the parathyroid surgery. New stones developed in both of them. Subsequent thiazide therapy abolished the hypercalciuria and no additional renal stones were seen during a follow-up period of 4 years. In 3 patients hypercalcemia reappeared 2–12 years after parathyroid surgery. Treatment with thiazide decreased serum calcium and parathyroid hormone levels for at least 9–36 months. No new stones developed. Hypercalciuria and recurrent hypercalcemia appearing after parathyroid surgery for hyperparathyroidism and the responses to thiazide therapy are thought to be evidence for renal hypercalciuria. Thiazides are recommended as therapy in such patients to prevent the formation of new renal stones, and probably also the recurrence of hyperparathyroidism.  相似文献   

10.
Aim:   Dent's disease represents a group of hereditary renal tubular disorders mainly characterized by hypercalciuria, nephrocalcinosis and low molecular weight proteinuria. The majority of patients with Dent's disease were found to carry CLCN5 gene mutations, whereas a small fraction of patients carry OCRL1 gene mutations. Up to date, over 100 patients with Dent's disease have been reported to carry CLCN5 gene mutations, but none in Chinese patients. The purpose of this study was to investigate the phenotypes and genotypes of three Chinese boys with Dent's disease.
Methods:   Three patients from three unrelated families were studied. Genomic DNA was extracted from peripheral white blood cells using a simple salting out procedure after informed consent. Thirteen pairs of primers were used to amplify all coding exons and exon–intron boundaries of the CLCN5 gene by polymerase chain reaction (PCR). All PCR products were sequenced directly on an autosequencer.
Results:   Low molecular weight proteinuria and hypercalciuria were found in all patients, nephrocalcinosis in two patients and hypophosphataemia in two patients. Three mutations of the CLCN5 gene were revealed, including R467X, L594fsX595 and R637X. Each mutation was inherited from maternal DNA, respectively. The mutation L594fsX595 was never reported before.
Conclusion:   Low molecular weight proteinuria and hypercalciuria were the main clinical features of the three Chinese boys with Dent's disease. Our study was the first to demonstrate CLCN5 gene mutations in Chinese patients with Dent's disease and we reported a novel mutation.  相似文献   

11.
There have been relatively few studies of bone mass in children with idiopathic hypercalciuria (IH). When performed, bone mineral density (BMD) measurements have consistently disclosed decreased Z-scores for children with IH at the lumbar spine and, to a lesser extent, at the femoral neck. Few investigations have delineated the nature of the mechanism(s) that may contribute to the bone loss in these children. Some studies have been consistent, showing increased bone resorption as the probable mechanism of bone loss. To date, there have been no reports regarding the assessment of biochemical markers specific for bone formation in children with IH. However, since most of the children with IH in these reports had demonstrated normal longitudinal growth, it seems less likely that there is an alteration in bone formation. The causes for increased bone resorption also are not firmly established, but genetics, dietary indiscretions, and altered cytokine production have been proposed as being contributory to the decreased BMD observed in these children with IH. Optimal bone mineral accretion during childhood and adolescence is important in attaining peak bone mass and may serve to prevent the development of osteoporosis in adulthood. Thus, a better understanding of bone loss in children with IH is warranted.  相似文献   

12.
Observational and epidemiologic studies alike have shown that idiopathic hypercalciuric (IH) stone-forming patients typically show bone mineral density scores that are significantly lower than those observed for age- and sex-matched normal subjects or those for nonhypercalciuric stone-forming patients. Most of these studies have relied on changes in bone mineral density and have not explored the mechanism(s) involved. There have been a small number of studies that have relied on dynamic bone histomorphometry to ascertain the nature of the bone defect in IH patients. When performed, these studies clearly have shown increased bone resorption and high bone turnover in patients with fasting hypercalciuria whereas suppressed bone formation indices are the most consistent finding in patients with the absorptive variant of IH. The causes of this apparent difference in bone remodeling between the 2 variants of IH still is uncertain. Available evidence suggests that potential mechanisms may be dependent in large part to genetic, metabolic, and nutritional causes of hypercalciuria and bone loss in patients with IH.  相似文献   

13.
Renal stones form in the late collecting duct in a complex milieu involving salts and protein components of the urine together with direct interactions at the epithelial cells lining the duct. The operation of newly discovered physiological controls that limit crystal formation by feedback mechanisms which sense the luminal environment are discussed. Adhesion at the epithelial surface and intracellular processing of crystals comprise a previously unrecognised mechanism for limiting crystal growth, which may be disrupted resulting in disease. Dent's disease is discussed as a paradigm of a complex renal tubular disease resulting in renal stone formation. Defects in endosomal acidification, due to ablation of the CLC-5 voltage-gated Cl- channel, result in defects in both proximal and collecting duct endosomal traffic leading to stone formation.  相似文献   

14.
Renal stone disease, which affects 12% of males and 5% of females by the seventh decade, occurs as an inherited disorder in 45% of patients and is most commonly associated with hypercalciuria. The biochemical basis for hereditary nephrolithiasis and hypercalciuria is unknown, and this has therefore been investigated by a "positional cloning" approach. As a first step in this approach, the chromosomal locations of two disorders referred to as Dent's disease and X-linked recessive nephrolithiasis (XRN) were determined. These two disorders, which represent unusual forms of the renal Fanconi syndrome, are characterized by a low molecular weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis and renal failure. An X-linked inheritance for XRN was established by studies of a North American kindred, and a similar inheritance for Dent's disease was indicated by the observation of a greater disease severity in males and an absence of male-to-male transmission in five British families. X-linked polymorphic genetic markers were used in linkage studies of these families, and the genes causing Dent's disease and XRN were mapped to Xp11. In addition, in one family with Dent's disease, a microdeletion involving the DNA probe M27 beta was identified. This microdeletion was further characterized by using yeast artificial chromosomes (YACs) and its size was estimated to be 515 Kb. A search for renal-expressed genes from this region identified a novel gene encoding a chloride channel (CLCN5) with similarities to a family of voltage-gated chloride channels. Molecular genetic studies of CLCN5 demonstrated that mutations, which resulted in a functional loss, were associated with Dent's disease and XRN. In addition, such CLCN5 mutations that would result in a functional loss have also been demonstrated in Japanese children with idiopathic low molecular weight proteinuria, hypercalciuria and nephrocalcinosis, and an Italian kindred with X-linked recessive hypophosphatemic rickets (XLRH) and hypercalciuria. Thus, four hereditary disorders of nephrolithiasis are due to mutations of the novel chloride channel, CLCN5.  相似文献   

15.
PURPOSE: We recently showed that androgen receptors are expressed in Dupuytren's contracture. The aim of the present work was to test the responsiveness of Dupuytren's fibroblasts to 5 alpha-dihydrotestosterone (5 alpha-DHT), the active form of testosterone. RESULTS: Cultured palmar fascia cells from 10 patients with Dupuytren's contracture and 4 normal subjects were exposed to 5 alpha-DHT (10 or 100 ng/mL) for 1, 3, 7, and 15 days. Their phenotype was analyzed immunohistochemically for alpha-smooth muscle actin and androgen receptor expression and proliferation rates were studied. RESULTS: At 15 days the higher concentration of 5 alpha-DHT induced an increase in Dupuytren's fibroblast proliferation, whereas anti-alpha-smooth muscle actin exhibited the strongest expression. At the same time point androgen receptor expression decreased with the lower concentration and disappeared altogether with the higher dose of 5 alpha-DHT. CONCLUSIONS:The palmar fascia is a target tissue for androgen action via androgen receptors. Further studies are required to determine whether control of androgen receptor may control the evolution of Dupuytren's disease.  相似文献   

16.
Recent advances in molecular biology have characterised a new class of chloride channels that are referred to as voltage-gated chloride channels (CLCs). To date 9 such CLCs (CLC-1 to CLC-7, CLC-Ka and CLC-Kb which are respectively encoded by the genes CLCN1 to CLCN7, CLCNKa and CLCNKb) have been identified in mammals. Mutations in 2 of these, referred to as CLC-5 and CLC-Kb, have been defined in the hypercalciuric nephrolithiasis disorders of Dent's disease and a form of Bartter's syndrome, respectively. In addition, other forms of Bartter's syndrome have been defined with mutations involving the bumetanide-sensitive sodium-potassium-chloride co-transporter (NKCC2) and the potassium channel ROMK. Finally, mutations of the thiazide-sensitive sodium chloride co-transporter (NCCT) are associated with Gitelman's syndrome, in which hypocalciuria and hypomagnesaemia are notable features. These molecular genetic studies have increased our understanding of the renal tubular mechanisms that regulate mineral homeostasis.  相似文献   

17.
Isolated hypercalciuria with mutation in CLCN5: Relevance to idiopathic hypercalciuria. BACKGROUND: Idiopathic hypercalciuria (IH) is the most common risk factor for kidney stones and often has a genetic component. Dent's disease (X-linked nephrolithiasis) is associated with mutations in the CLCN5 chloride channel gene, and low molecular weight (LMW) proteinuria was universally observed in affected males. We sought to identify mutations in CLCN5 or abnormalities in LMW protein excretion in a large group of patients with IH and in a rat model of genetic hypercalciuria. METHODS: One hundred and seven patients with IH (82 adults and 25 children) and one asymptomatic hypercalciuric man with a known inactivating mutation in CLCN5 were studied. Secondary causes of hypercalciuria were excluded in all. The excretion of retinol-binding protein and beta2-microglobulin was measured by immunoassay in 101 patients with IH. Mutation analysis of the CLCN5 gene was performed in 32 patients with IH and in the genetic hypercalciuric stone-forming (GHS) rat strain. RESULTS: LMW protein excretion was normal in 92 patients with IH, and only slight abnormalities were found in the other nine, none of whom had a mutation in CLCN5. One 27-year-old man who had a CLCN5 mutation was found to have isolated hypercalciuria without LMW proteinuria, renal failure, or other evidence of renal disease. Mutation analysis was normal in 32 patients with IH. The CLCN5 sequence was normal in the GHS rat. CONCLUSIONS: Inactivation of CLCN5 can be found in the setting of hypercalciuria without other features of X-linked nephrolithiasis. However, mutations in CLCN5 do not represent a common cause of IH.  相似文献   

18.
19.
Dent's disease is an X-linked renal tubular disorder characterized by low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis, and renal failure. Patients with Dent's disease may also suffer from rickets and other features of the renal Fanconi Syndrome. Patients may have mutations in the X-linked renal chloride channel gene, CLCN5, which encodes a 746-amino-acid protein with 12-13 transmembrane domains. We have investigated the 11 coding exons of CLCN5 for mutations in eight unrelated patients with Dent's disease. Leukocyte DNA was used for the polymerase chain reaction amplification of CLCN5 and the products analyzed for single-stranded conformational polymorphisms (SSCPs). Abnormal SSCPs were sequenced and revealed eight mutations. These consisted of three nonsense mutations (Arg34Stop, Arg648Stop, Arg704Stop), four deletions involving codons 40, 86, 157, and 241, and one acceptor splice consensus sequence mutation tgcag --> tgaag. The mutations were confirmed either by restriction endonuclease or sequence-specific oligonucleotide hybridization analysis. In addition, an analysis of 110 alleles from 74 unrelated normal individuals demonstrated that the DNA sequence changes were not common polymorphisms. All of the mutations predict truncated chloride channels that are likely to result in a functional loss. Thus, our findings expand the spectrum of CLCN5 mutations associated with Dent's disease and the results will help to elucidate further the functional domains of this novel chloride channel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号