首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effects of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and some other 5-hydroxytryptamine1A (5-HT1A) receptor agonists (buspirone, ipsapirone and flesinoxan) on corticosterone secretion in rats were studied. The 5-HT1A receptors mediating the corticosterone secretion appear to be postsynaptic to the 5-HT neurons, since the response to 8-OH-DPAT was not decreased but potentiated by depletion of 5-HT with p-chlorophenylalanine pretreatment of the animals. Rapid attenuation of the response was developed after a single dose of a 5-HT1A receptor agonist. Thus, 1 mg/kg s.c. of 8-OH-DPAT attenuated the response of a challenge dose (0.1 mg/kg s.c.) of this compound within 4 h lasting between 7 and 14 d. The development of the subsensitivity was antagonized by pretreatment of the rats with the 5-HT1A receptor antagonist S-5-fluoro-8-hydroxy-2-(di-n-propylamino)tetralin ((–)-UH 301). This compound also antagonized the acute effect of 8-OH-DPAT in increasing serum corticosterone. The subsensitivity development was specific for the 5-HT1A receptor-mediated corticosterone secretion, since the increase in serum corticosterone produced by stimulation of other receptor systems, e.g. 2-adrenoreceptors (clonidine) or 5-HT2 receptors [1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, (DOI)] was not affected. Send offprint requests to S. B. Ross at the above address  相似文献   

2.
The effects of spiroxatrine, a putative antagonist with selectivity for the serotonin (5-HT)1A receptor, were compared with compounds believed to function as agonists at the 5-HT1A receptor. Schedule-controlled responding of pigeons was maintained under a multiple 30-response fixed-ratio (FR), 3-min fixed-interval (FI) schedule or under a schedule in which responding was suppressed by electric shock (conflict procedure). Under the multiple schedule, spiroxatrine (0.3–1.0 mg/kg) decreased FR responding but did not affect FI responding; responding was decreased in both schedule components at 3.0 mg/kg. When administered alone, buspirone, a compound believed to produce its anxiolytic effects through 5-HT1A agonist actions, produced effects similar to those of spiroxatrine; in combination, the two drugs produced greater effects than when either was administered alone. As with 5-HT1A agonists such as buspirone and 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT) in the pigeon, spiroxatrine (0.01–1.0 mg/kg) increased punished responding. Spiroxatrine and buspirone were potent inhibitors of [3H]8-OH-DPAT binding to pigeon cerebral membranes with IC50 values in the nM range. Neurochemical analyses of metabolite changes produced by spiroxatrine in pigeon cerebrospinal fluid showed buspirone-like effects, with increases in MHPG, DOPAC and HVA at doses that decreased 5-HIAA levels. Spiroxatrine dose-dependently blocked the behavioral effects of the dopamine agonist piribedil indicating that, like buspirone, it also is a potent dopamine antagonist. Spiroxatrine most likely functions as an agonist at the 5-HT1A receptor. As with buspirone, however, spiroxatrine has a prominent dopamine antagonist component.  相似文献   

3.
Summary The somatodendritic 5-HT1A autoreceptor regulating 5-HT neuronal activity is currently poorly defined pharmacologically because there are no specific antagonists, but also because potent and stereoselective agonists are scarce. Moreover, there have been few, if any, attempts to specifically investigate structure-activity relationships for agonists acting at this site. Employing brain microdialysis techniques, we have examined the effects of the enantiomers of cis-8-hydroxy-1-methyl-2-(di-n-propylamino)tetralin (ALK-3; 0.01-0.3 mg/kg s.c.), its trans-1-methyl analogue (ALK-4; 0.3 mg/kg s.c.) and the pure enantiomers of the parent compound - 8-OH-DPAT (0.3 mg/kg s.c.) — in an attempt to address stereochemical agonist structure-activity requirements of 5-HT release-controlling 5-HT1A autoreceptors in brain. The cis-1-methylated 8-OH-DPAT analogue (+)ALK-3 was comparable to the parent compound in reducing the 5-HT output from rat ventral hippocampus. In comparison, both (–)ALK-3 and the racemic rans-diastereomer to ALK-3, ALK-4, were inactive, while the two stereoisomers of 8-OH-DPAT strongly reduced 5-HT release. Pretreatment with (–)pindolol (8 mg/kg s.c.), which has high affinity for 5-HT1A radioligand binding sites, blocked the reduction of hippocampal 5-HT release induced by a submaximally effective dose of (+)ALK-3. The direct intrahippocampal administration of (+)ALK3 (10 M) via the perfusion medium did not affect 5-HT output.In summary, the data indicate that (+)ALK-3, like 8-OH-DPAT, is a very potent 5-HT receptor agonist which inhibits terminal 5-HT release in rat hippocampus, probably via activation of somatodendritic 5-HT1A autoreceptors. However, unlike 8-OH-DPAT, (+)ALK-3 is highly stereoselective and may therefore represent a useful probe in the further characterization of 5-HT1A receptor-mediated mechanisms and function. The present study defines some of the stereochemical requirements for 5-HT1A receptor interaction, emphasizing the importance of the receptor region complementary to the C1 and C2 carbons of the 8-OH-DPAT molecule. These findings contribute to the establishment of structure-activity relationships for the cell body 5-HT1A autoreceptors and might be of value in resolving structural features that determine agonist/antagonist activity at central 5-HT1A receptors. Finally, in conjunction with our recent finding that (+)ALK-3 is a partial agonist at postsynaptic 5HT1A receptors, the present study extends previous observations suggesting that pre- and postsynaptic 5-HT1A receptor populations differ in their characteristics. Send offprint requests to S. Hjorth at the above address  相似文献   

4.
The present study was aimed at examining the adaptation of presynaptic 5-HT1A autoreceptors in the dorsal raphe and of postsynaptic 5-HT1A receptors in the dorsal hippocampus during long-term administration of the 5-HT1A receptor agonist ipsapirone given either repeatedly or in a sustained fashion. Concurrent microiontophoretic application of ipsapirone did not attentuate the suppressant effect of 5-hydroxytyptamine (5-HT) on 5-HT neurons, but markedly decreased it when co-applied on CA3 pyramidal neurons in the dorsal hippocampus. Thus, ipsapirone acted as a full agonist in the dorsal raphe and as a partial agonist in the dorsal hippocampus. Ipsapirone (15 mg/kg/day, s.c. × 2 days) delivered by osmotic minipumps markedly decreased the firing activity of the dorsal raphe 5-HT neurons. After 14 days of treatment, there was a complete recovery of their firing activity and a desensitization of their somatodendritic 5-HT1A autoreceptors, as assessed using microiontophoretic applications of 5-HT and 8-hydroxy-2(di-n-propylamino)tetraline (8-OH-DPAT) onto 5-HT neurons. The same degree of desensitization was obtained when ipsapirone was administered with repeated injections (7.5 mg/kg b.i.d., s.c. × 14 days). In contrast, the two modalities of ipsapirone adminsitration left unaltered the responsiveness of CA3 pyramidal neurons to microiontophoretic applications of 5-HT and 8-OH-DPAT. In conclusion, long-term administration of ipsapirone most likely increases 5-HT neurotransmission by enhancing the tonic activation of postsynaptic 5-HT1A receptors. Therefore, the use of sustained release preparation of 5-HT1A receptor agonists should not alter their therapeutic effectiveness in anxiety and affective disorders since the same effects on 5-HT1A receptor functions were produced in this rat model by the sustained and the repeated modes of administration of ipsapirone. Received: 24 September 1996 / Accepted: 28 April 1997  相似文献   

5.
This study examined the abilities of 5-hydroxytryptamine (5-HT) agonists with varying selectivity for different subtypes of 5-HT receptors to produce antidepressant-like behavioral effects in the forced swim test in rats. The 5-HT1A agonists 8-OH-DPAT (0.125–1.0 mg/kg, SC) and tandospirone (SM-3997) (5–20 mg/kg, SC) both produced dose-related decreases in immobility time following subchronic treatment in rats. These effects were similar to those of the tricyclic antidepressants imipramine (5–15 mg/kg) and desipramine (5–15 mg/kg). In addition, the 5-HT1A agonists, buspirone (20 mg/kg), gepirone (20 mg/kg) and ipsapirone (10 and 20 mg/kg) demonstrated antidepressant-like effects. Other groups of rats treated subchronically with each of the 5-HT1A agonists or antidepressants showed no increase in locomotor activity, so that general changes in activity could not account for the reduction of immobility time in the forced swim test. 5-HT agonists selective for other receptor subtypes, such as the 5-HT1B/1C agonistm-CPP (5 mg/kg) and the 5-HT2/1C agonist DOB (1 mg/kg), were not effective in this behavioral test. The benzodiazepine diazepam (5 mg/kg) also failed to reduce immobility time, suggesting that anxiolytic properties of 5-HT1A agonists did not mediate this behavioral effect. A common metabolite of some of the 5-HT1A agonists, 1-PP, was ineffective in reducing immobility time. The stimulantd-amphetamine (2 mg/kg) significantly reduced immobility time but also significantly increased locomotor activity. Pretreatment with the 5-HT synthesis inhibitor PCPA alone did not alter immobility time, and did not alter the antidepressant-like effects of 8-OH-DPAT or tandospirone, suggesting that the 5-HT1A agonists are producing their antidepressant-like effects through postsynaptic 5-HT1A receptors. These results suggest that 5-HT1A agonists may have antidepressant efficacy and act as a novel class of antidepressant drug.  相似文献   

6.
Behavioural and pharmacological studies have suggested that anxiety may be an important factor in the initiation of non-opioid analgesia in defeated male mice. In the present study, the effects of three 5-HT1A anxiolytics (buspirone, ipsapirone and gepirone) on basal nociception and defeat analgesia were examined. Results show that the analgesic consequences of social defeat were potently blocked by all three compounds, with a rank-order potency (minimum effective doses) of ipsapirone (0.05 mg/kg) > gepirone (0.1 mg/kg) > buspirone (0.5 mg/kg). These inhibitory effects on defeat analgesia were observed in the absence of intrinsic activity on basal nociception (tail-flick assay). When administered alone, (-)pindolol produced biphasic effects on defeat analgesia with enhancement at 0.5 mg/kg and inhibition at 5.0 mg/kg. Lower doses of (-)pindolol (0.05 and 0.25 mg/kg) which did not affect defeat analgesia when administered alone, totally blocked the inhibitory effects of ipsapirone (0.5 mg/kg). Data are discussed in relation to the involvement of 5-HT1A receptor mechanisms in this adaptive form of pain inhibition.  相似文献   

7.
Summary In pigs, behavioural responses were examined after administration of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a full agonist at 5-hydroxytryptamine (5-HT) receptors of the 5-HT1A subtype, and the pyrimidinylpiperazine derivatives ipsapirone and Bay Vq 7813 (2-[4-(2-pyrimidinyl)-1-piperazinylpropyl]-1,2-benzisothiazol-3(2H)one-1,1-dioxide), which act as partial agonists at 5-HT1A receptors. The most prominent behavioural response examined after 8-OH-DPAT, 0.5 mg/kg i. m., ipsapirone, 2–5 mg/kg i.m., and Bay Vq 7813, 0.5–2 mg/kg i.m. or i.v., were head shakes. The potency of the three drugs to induce this behaviour correlated with their activity at 5-HT1A receptors as determined by inhibition of forskolin-stimulated adenylate cyclase, substantiating that the head shake response has potential as a quantitative probe of in vivo receptor function. The 5-HT2/5-HT1C receptor antagonist ritanserin did not counteract the head shakes induced by ipsapirone, suggesting that neither 5-HT2 nor 5-HT1C receptors are involved in mediation of this response to this 5-HT1A receptor agonist in pigs. Once daily administration of Bay Vq 7813 or ipsapirone for 3–5 days led to a reduction in the head shake response. 1-Pyrimidinylpiperazine (1-PP), a pharmacologically active metabolite shared by ipsapirone, Bay Vq 7813, and related pyrimidinylpiperazine derivatives, did not induce behavioural alterations in pigs. The data provide further evidence that marked species differences exist in functional responses to 5-HT receptor ligands. Send offprint requests to W. Löscher at the above address  相似文献   

8.
The effects of 2-(4-(4-(2-pyrimidinyl)-1-piperazinyl)-butyl)-1,2-benzoisothiazol-3(2H)one-1,1-dioxide hydrochloride (isapirone, TVX Q 7821), a putative 5-HT1 receptor antagonist, has been studied on various models of 5-HT receptor sub-type function. In mice TVX Q 7821 produced a dose-dependent inhibition of the hypothermia induced by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) with an ED50 of 5.3 mg/kg suggesting that TVX Q 7821 was an antagonist of the presynaptic (possibly somato-dendritic) 5-HT1A receptor. TVX Q 7821 did not alter the locomotor response to the suggested 5-HT1B agonist RU 24969. The rate of mouse brain 5-HT synthesis was accelerated by TVX Q 7821 (10 mg/kg). 5-HT2 receptor-mediated head twitch behaviour induced by precursor loading with 5-HTP was unaffected by TVX Q 7821 (10 mg/kg) pretreatment 75 min earlier, but the head-twitch induced by the agonist 5-methoxy-N,N-dimethyltryptamine was enhanced by prior treatment with TVX Q 7821.In rats the hypothermia induced by 8-OH-DPAT was partially antagonised by TVX Q 7821 while the behavioural serotonin syndrome induced by 8-OH-DPAT (a possible post-synaptic 5-HT1B-mediated effect) was unaffected by TVX Q 7821 as was the locomotion induced by RU 24969.The data suggest that TVX Q 7821 is a good presynaptic 5-HT1A antagonist in mice, as indicated by the 8-OH-DPAT-induced hypothermia and 5-HT synthesis rate studies. It did not antagonise 5-HT1B-mediated behaviour in mice or rats and appeared to have an antagonist action at pre- but not post-synaptic 5-HT1A receptors in rats. Offprint requests to: G.M. Goodwin  相似文献   

9.
Acute administration of gepirone, a 5-HT1A agonist, caused a dose dependent (1–10 mg/kg, IP) reduction in the locomotor activity (open and closed arms) of rats tested in the elevated plus-maze. However, rats housed in individual cages and submitted to chronic treatment with gepirone (10 mg/kg PO) showed a marked increase in the percentages of number and time spent in the open arms as compared to controls. These results are compatible with the idea that the antiaversive effect due to long-term treatment with 5-HT1A agonists is the result of a progressive desensitization of the somatodendritic 5-HT autoreceptor with the consequent recovery of firing rate of 5-HT neurons along with an activation of normosensitive postsynaptic 5-HT neurons. Ketanserin caused a biphasic effects on the exploratory behavior of rats in the plus-maze. The lower dose (0.5 mg/kg) decreased the aversion to the open arms and the higher dose (1.0 mg/kg) caused an unspecific decrease in the overall activity of the animals. Ketanserin is supposed to have antagonistic action on 5-HT2 and on -adrenergic receptors. As prazosin (0.5–1.0 mg/kg), an -adrenergic receptor blocker, did not present any significant effect in the present work it is suggested that the effects of the lower dose of ketanserin was due to its high antagonistic action on 5-HT2 receptors.  相似文献   

10.
BIMT 17 (1-[2-[4-(3-trifluoromethyl phenyl) piperazin-1-yl] ethyl] benzimidazol- [1H]-2-one), a 5-HT1A receptor agonist/5-HT2A receptor antagonist (see Borsini et al., accompanying paper), in a dose range of 1–10 mg/kg i.v., dose-dependently inhibited the electrical activity of rat medial prefronto-cortical neurons, whereas buspirone, in a dose range of 0.1–1000 g/kg, increased it. 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and 1-[2-(2-thenoylamino)ethyl]-4[1-(7-methoxynaphthyl)] piperazine (S 14671) presented biphasic patterns of response; they increased electrical activity at doses in the range of 0.1–10 g/kg and 0.1–3 g/kg i.v. respectively, and reduced it at higher doses, 30–300 g/kg and 10–30 g/kg i.v., respectively.The inhibitory effect of BIMT 17 on the firing rate of neurons in the frontal cortex was antagonized by the 5-HT1A antagonists tertatolol and WAY 100135, and was still present after destruction of serotonin (5-HT) containing neuronal endings by the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT; 150 g/rat, given intraventricularly), which reduced the cortical 5-HT content by 85%. This destruction of 5-HT neurons, while suppressing the ability of 8-OH-DPAT to inhibit the firing rate at high doses, did not change the excitatory action of this compound at low doses. The addition of ritanserin, a 5-HT2A receptor antagonist, potentiated both the excitatory and inhibitory effects of 8-OHDPAT on neuronal electrical activity. Direct microiontophoretic application (100 nA/20 s) of 5-HT and BIMT 17, but not that of 8-OH-DPAT, onto medial prefronto-cortical neurons, decreased the firing rate of these neurons.These findings suggest that BIMT 17 directly inhibits the electrical activity of medial prefronto-cortical neurons through its dual mode of receptor interaction.  相似文献   

11.
Previous work suggests that the elevated plusmaze test of anxiety is insensitive to the anxiolytic effects of the novel anxiolytic buspirone, which shows an anxiogenic-like profile in this test. This paper examines some of the possible reasons for this and the role that buspirone's agonist activity at 5-HT1A receptors plays in this effect. A variety of 5-HT1A receptor agonists (p-aminophenylethylm-trifluromethylphenyl piperazine, (+)- and (-)-MDL 72832) showed similar activity to buspirone, as did the related compound ipsapirone. (-)-MDL 72832 was more potent than (+)-MDL 72832, in keeping with its stereoselective action at 5-HT1A receptors. The 2-adrenoceptor antagonist properties of 1-pyrimidinyl piperazine, a metabolite of buspirone, did not appear to be relevant to this action of buspirone as neither it nor idazoxan showed an anxiogenic-like profile. Neither chronic treatment with buspirone (1 mg/kg SC twice a day for 16 days) nor depletion of 5-HT withp-chlorophenylalanine changed the anxiogenic-like activity of buspirone in the elevated plus-maze test. These results suggest that an agonist action at postsynaptic 5-HT1A receptors mediates the anxiogenic-like effects of buspirone in the elevated plus-maze test and that this test may either be insensitive to certain classes of anxiolytics or is measuring something unrelated to human anxiety states.  相似文献   

12.
Summary The human saphenous vein preincubated with [3H]noradrenaline was used to determine the pharmacological properties of the release-inhibiting presynaptic serotonin (5-HT) receptor on the sympathetic nerves. The overflow of tritium evoked by transmural electrical stimulation (2 Hz) was concentration-dependently inhibited by drugs known to stimulate 5-HT receptors in the following rank order: oxymetazoline 5-HT 5-carboxamidotryptamine = 5-methoxytryptamine = sumatriptan > tryptamine > N,N(CH3)2-5-HT = yohimbine = 8-hydroxy-2-(di-n-propylamino)-tetraline. The potencies of these agonists in inhibiting overflow were significantly correlated with their affinities for 5-HT1B and 5-HT1D binding sites, but not with those for 5-HT1A or 5-HT1C binding sites. 5-Aminotryptamine, methysergide, ipsapirone, cyanopindolol, SDZ 21009 and metergoline dit not produce a significant inhibition. Metitepine and methysergide antagonized the inhibitory effect of 5-HT, whereas spiroxatrine, propranolol, ketanserin and ICS 205-930 did not.These data exclude the idea that the inhibitory presynaptic 5-HT receptor on the sympathetic nerves belongs to the 5-HT2 and 5-HT3 receptor class; the pattern of agonist potencies suggests that the receptor is very similar to the 5-HT1D receptor subtype. Send offprint requests to M. Gothert at the above address  相似文献   

13.
Summary The emetic effects of 5-hydroxytryptamine (5-HT) and 5-HT3 receptor agonists were investigated in the house musk shrew, Suncus murinus. 5-Hydroxytryptamine (5-HT; i.p., i.v., s.c.) and 2-methyl-5-HT (2-Me-5HT; i.p.) but not 5-hydroxyindoleacetic acid (i.p.) or 5-ethoxytryptamine (i.p.) induced emesis with very short latency. Tropisetron (ICS 205-930, a 5-HT3 receptor antagonist, s.c.) blocked the emesis induced by 5-HT (10 mg/kg, i.p.) and 2-Me-5-HT (5 mg/kg, i.p.) with respective ID50 values of 7.8 and 70.9 g/kg. Pindolol (5-HT1 receptor antagonist) and ketanserin (5-HT2 receptor antagonist) were about 100 times less potent than tropisetron. The emesis induced by 5-HT was prevented by surgical vagotomy but not by pretreatment with a combination of atropine (0.1 mg/kg, s.c.) and hexamethonium (10 mg/kg, s.c.). These results clearly indicate that 5-HT is emetogenic probably through a stimulation of peripheral 5-HT3 receptors. Send offprint requests to N. Matsuki at the above address  相似文献   

14.
The selective serotonin(5-HT)1A receptor agonists 8-OH-DPAT and ipsapirone were tested in selectively inbred Wistar rats, with high preference [70–90%: defined as the ratio of ethanol (EtOH) to total fluid intake] for EtOH (10% v/v) over water in a two-bottle free choice situation. Rats were injected shortly before the overnight test session (8:00p.m.–8:00a.m.). EtOH and water consumption were determined in 20-min intervals; food consumption after the session. 8-OH-DPAT (ED50: 2.4 mg/kg, SC) and ipsapirone (ED50: 12.5 mg/kg, SC) reduced EtOH preference in a dose-dependent manner. In addition, 8-OH-DPAT increased total fluid intake, whereas ipsapirone enhanced total food intake. The EtOH preference reduction was time-dependent and reached a maximum within the second 4 h after application of 8-OH-DPAT (–73%) and ipsapirone (–72%). The preference reducing effect of ipsapirone (20 mg/kg, PO) was completely blocked by the nonselective 5-HT1A antagonist spiperone (0.05 mg/kg, SC). Local application of 8-OH-DPAT (10 µg, 0.5 µl) into the dorsal raphe nucleus (DRN, a brain area rich in somatodendritic 5-HT1A autoreceptors), reduced the EtOH preference significantly as compared to the saline injection in the same animal (–12%, 8:00–12:00p.m.). Only marginal effects on ingestion behavior were observed after micro-injection into the nucleus accumbens. Reduction of brain 5-HT levels by pretreatment with the 5-HT synthesis inhibitor pCPA (2×150 mg/kg, IP) resulted in a short lasting, marked reduction (–54%) and a long lasting, small attenuation of the EtOH preference. Total food consumption was strongly decreased but returned soon to normal; total fluid intake was only slightly decreased. The EtOH preference reducing effect of ipsapirone (5 and 20 mg/kg, SC) was attenuated in pCPA-pretreated rats. The present data suggest that 5-HT1A receptor ligands reduce EtOH preference via stimulation of 5-HT1A receptors in the DRN. The possibility of additional mechanism(s) is discussed.  相似文献   

15.
Rationale Reduced central serotonin (5-HT) activity has been associated with impulsive choice behaviour, but there is no consensus about the precise nature of these effects. Behavioural and neurochemical effects of 5-HT1A agonists such as buspirone depend critically on the dose and the duration of treatment. We thus undertook a parametric study of the effects of acute and chronic buspirone on the performance on a test of delayed gratification, as well as on the efflux of serotonin and dopamine (DA) in cortical and subcortical regions in rats.Objectives Three experiments examined (i) the effects of acute buspirone on impulsive choice and how such effects were modified by prior chronic exposure to buspirone; (ii) the effects of chronic buspirone on impulsive choice; (iii) the effects on impulsive choice of a selective 5-HT1A antagonist, WAY-100635 tested alone and in combination with buspirone; (iv) the effects of chronic and acute buspirone on 5-HT and DA efflux in anaesthetised rats.Methods In experiment 1, rats previously trained on the delayed gratification task were tested with acute buspirone (0.5, 1 and 2 mg/kg). The same rats were then treated with chronic buspirone (1 mg/kg/day) over the next 65 days, and the effects of acute buspirone (1 mg/kg) re-determined at 20, 45 and 65 days of chronic treatment. In experiment 2, two groups of rats trained on the delayed gratification task were treated either with saline or buspirone (1 mg/kg/day) continually for 65 days before being tested with acute buspirone (1 mg/kg), WAY-100635 (0.08 mg/kg), or a combination of the two drugs. In experiment 3, rats received the same regimen of buspirone dosing as in experiment 2, before receiving in-vivo microdialysis for 5-HT and DA in the ventral hippocampus, nucleus accumbens and medial prefrontal cortex.Results Acute buspirone dose dependently increased the choice for the small, immediate reinforcer (impulsive choice) but the effects of 1 mg/kg were reversed on chronic administration of buspirone. This increased choice of the large, delayed reinforcer, which was not accompanied by any changes in baseline (non-drugged) performance, was blocked by the 5-HT1A receptor antagonist WAY-100635. The chronic buspirone regimen did not alter buspirone-evoked reductions in 5-HT efflux in hippocampus but did lead to a differential effect of acute buspirone in medial prefrontal cortex, with the chronic buspirone and saline groups exhibiting decreases and increases in efflux, respectively. There were no systematic changes in DA efflux under any condition.Conclusions These findings show that the effects of acute buspirone on impulsive choice are reversed following chronic treatment and are mediated by 5-HT1A receptors, and suggest, in addition, that the behavioural effects may involve changes in 5-HT functioning in medial prefrontal cortex.  相似文献   

16.

Rationale

Compounds that activate the 5-HT2A receptor, such as lysergic acid diethylamide (LSD), act as hallucinogens in humans. One notable exception is the LSD congener lisuride, which does not have hallucinogenic effects in humans even though it is a potent 5-HT2A agonist. LSD and other hallucinogens have been shown to disrupt prepulse inhibition (PPI), an operational measure of sensorimotor gating, by activating 5-HT2A receptors in rats.

Objective

We tested whether lisuride disrupts PPI in male Sprague–Dawley rats. Experiments were also conducted to identify the mechanism(s) responsible for the effect of lisuride on PPI and to compare the effects of lisuride to those of LSD.

Results

Confirming a previous report, LSD (0.05, 0.1, and 0.2 mg/kg, s.c.) reduced PPI, and the effect of LSD was blocked by pretreatment with the selective 5-HT2A antagonist MDL 11,939. Administration of lisuride (0.0375, 0.075, and 0.15 mg/kg, s.c.) also reduced PPI. However, the PPI disruption induced by lisuride (0.075 mg/kg) was not blocked by pretreatment with MDL 11,939 or the selective 5-HT1A antagonist WAY-100635 but was prevented by pretreatment with the selective dopamine D2/D3 receptor antagonist raclopride (0.1 mg/kg, s.c).

Conclusions

The effect of LSD on PPI is mediated by the 5-HT2A receptor, whereas activation of the 5-HT2A receptor does not appear to contribute to the effect of lisuride on PPI. These findings demonstrate that lisuride and LSD disrupt PPI via distinct receptor mechanisms and provide additional support for the classification of lisuride as a non-hallucinogenic 5-HT2A agonist.  相似文献   

17.

Rationale

Indirect-acting serotonin (5-HT) receptor agonists can enhance the antinociceptive effects of morphine; however, the specific 5-HT receptor subtype(s) mediating this enhancement is not established.

Objective

This study examined interactions between morphine and both 5-HT1A and 5-HT2A receptor agonists in rats using measures of antinociception (radiant heat tail flick and warm water tail withdrawal), drug discrimination (3.2 mg/kg morphine versus saline), and locomotion.

Methods

Male Sprague–Dawley rats (n?=?7-8 per group) were used to examine the effects of morphine alone and in combination with DOM (5-HT2A agonist) and 8-OH-DPAT (5-HT1A agonist).

Results

DOM did not modify antinociceptive or discriminative stimulus effects while modestly attenuating locomotor-stimulating effects of morphine; the effect of DOM (0.32 mg/kg) on morphine-induced locomotion was prevented by the 5-HT2A receptor-selective antagonist MDL 100907. In contrast, 8-OH-DPAT (0.032–0.32 mg/kg) fully attenuated the antinociceptive effects (both procedures), did not modify the discriminative stimulus effects, and enhanced (0.32 mg/kg) the locomotor-stimulating effects of morphine. These effects of 8-OH-DPAT were prevented by the 5-HT1A receptor-selective antagonist WAY100635.

Conclusion

Agonists acting at 5-HT1A or 5-HT2A receptors do not modify all effects of mu opioid receptor agonists in a similar manner. Moreover, interactions between 5-HT and opioid receptor agonists vary significantly between rats and nonhuman primates, underscoring the value of comparing drug interactions across a broad range of conditions and in multiple species.  相似文献   

18.
Intracerebroventricular administration of selective agonist of serotonin 5-HT7 receptor LP44 (4-[2-(methylthio)phenyl]-N-(1,2,3,4-tetrahydro-1-naphthalenyl)-1-pyperasinehexanamide hydrochloride; 10.3, 20.5 or 41.0 nmol) produced considerable hypothermic response in CBA/Lac mice. LP44-induced (20.5 nmol) hypothermia was significantly attenuated by the selective 5-HT7 receptor antagonist SB 269970 (16.1 fmol, i.c.v.) pretreatment. At the same time, intraperitoneal administration of LP44 in a wide range of doses 1.0, 2.0 or 10.0 mg/kg (2.0, 4.0, 20.0 μmol/kg) did not cause considerable hypothermic response. These findings indicate the implication of central, rather than peripheral 5-HT7 receptors in the regulation of hypothermia. The comparison of LP44-induced (20.5 nmol) hypothermic reaction in eight inbred mouse strains (DBA/2J, CBA/Lac, C57BL/6, BALB/c, ICR, AKR/J, C3H and Asn) was performed and a significant effect of genotype was found.In the same eight mouse strains, functional activity of 5-HT1A and 5-HT3 receptors was studied. The comparison of hypothermic responses produced by 5-HT7 receptor agonist LP44 (20.5 nmol, i.c.v.) and 5-HT1A receptor agonist 8-OH-DPAT 1.0 mg/kg, i.p. (3.0 μmol/kg), 5-HT3 receptor agonist m-CPBG (40.0 nmol, i.c.v.) did not reveal considerable interstrain correlations between 5-HT7 and 5-HT1A or 5-HT3 receptor-induced hypothermia. The selective 5-HT7 receptor antagonist SB 269970 (16.1 fmol, i.c.v.) failed to attenuate the hypothermic effect of 8-OH-DPAT 1.0 mg/kg, i.p. (3.0 μmol/kg) and m-CPBG (40.0 nmol, i.c.v.) indicating that the brain 5-HT7 receptor is not involved in the hypothermic effects of 8-OH-DPAT or m-CPBG. The obtained results suggest that the central 5-HT7 receptor plays an essential role in the mediation of thermoregulation independent of 5-HT1A and 5-HT3 receptors.  相似文献   

19.
Four non-selective 5-HT2C/5-HT2A receptor antagonists, mianserin (2–8 mg/kg), 1-naphthyl piperazine (1-NP) (0.5–1 mg/kg), ICI 169,369 (20 mg/kg) and LY 53857 (5 mg/kg), increased punished responding for a food reward in the rat Geller-Seifter test 30 min after subcutaneous (SC) administration. This property was shared by the benzodiazepine anxiolytic chlordiazepoxide (5 mg/kg SC). However, the selective 5-HT2A receptor antagonists ketanserin (0.2–1 mg/kg SC) and altanserin (0.5, 1 mg/kg SC) had little effect. The 5-HT1A, 5-HT1B and-adrenergic receptor antagonists pindolol and cyanopindolol (6 mg/kg SC) did not affect punished responding either, nor did the 5-HT1D receptor partial agonist and 2 adrenergic receptor antagonist yohimbine (2.5 mg/kg SC) or the histamine H1 receptor antagonist mepyramine (1 mg/kg SC). Unpunished responding was also modestly increased after some doses of the 5-HT2C/5-HT2A receptor antagonists. However, this effect was inconsistent and was also seen after chlordiazepoxide. Furthermore, it was not associated with the increase in punished responding observed in rats orally treated with mianserin (10, 20 mg/kg), 1-NP (10, 20 mg/kg) or ICI 169,369 (50 mg/kg). The action of the 5-HT2C/5-HT2A receptor antagonists tested is therefore consistent with anxiolysis. The results also strongly suggest that this effect is mediated by blockade of the 5-HT2C receptor, although the possibility of 5-HT2B receptor mediation is discussed.  相似文献   

20.

BACKGROUND AND PURPOSE

Treatment of Parkinson''s disease (PD) with L-DOPA eventually causes abnormal involuntary movements known as dyskinesias in most patients. Dyskinesia can be reduced using compounds that act as direct or indirect agonists of the 5-HT1A receptor, but these drugs have been reported to worsen PD features and are known to produce ‘5-HT syndrome’, symptoms of which include tremor, myoclonus, rigidity and hyper-reflexia.

EXPERIMENTAL APPROACH

Sprague-Dawley rats were given unilateral nigrostriatal dopamine lesions with 6-hydroxydopamine. Each of the following three purportedly anti-dyskinetic 5-HT compounds were administered 15 min before L-DOPA: the full 5-HT1A agonist ±-8-hydroxy-2-dipropylaminotetralin (±8-OH-DPAT), the partial 5-HT1A agonist buspirone or the 5-HT transporter inhibitor citalopram. After these injections, animals were monitored for dyskinesia, 5-HT syndrome, motor activity and PD akinesia.

KEY RESULTS

Each 5-HT drug dose-dependently reduced dyskinesia by relatively equal amounts (±8-OH-DPAT ≥ citalopram ≥ buspirone), but 5-HT syndrome was higher with ±8-OH-DPAT, lower with buspirone and not present with citalopram. Importantly, with or without L-DOPA, all three compounds provided an additional improvement of PD akinesia. All drugs tempered the locomotor response to L-DOPA suggesting dyskinesia reduction, but vertical rearing was reduced with 5-HT drugs, potentially reflecting features of 5-HT syndrome.

CONCLUSIONS AND IMPLICATIONS

The results suggest that compounds that indirectly facilitate 5-HT1A receptor activation, such as citalopram, may be more effective therapeutics than direct 5-HT1A receptor agonists because they exhibit similar anti-dyskinesia efficacy, while possessing a reduced side effect profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号