首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The substantia nigra pars reticulata belongs to the brain regions with the highest density of CB(1) cannabinoid receptors. Since the level of CB(1) receptor messenger RNA is very low in the pars reticulata, most of the receptors are probably localized on terminals of afferent axons. The hypothesis was tested that terminals of glutamatergic afferents of substantia nigra pars reticulata neurons possess CB(1) cannnabinoid receptors, the activation of which presynaptically modulates neurotransmission.Rat midbrain slices were superfused and the electrophysiological properties of substantia nigra pars reticulata neurons were studied with the patch-clamp technique. Focal electrical stimulation in the presence of bicuculline evoked excitatory postsynaptic currents mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate glutamate receptors. The excitatory postsynaptic currents were reduced by the metabotropic glutamate receptor agonist (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD; 10(-4)M). The mixed CB(1)/CB(2) cannabinoid receptor agonists R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2, 3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone (WIN55212-2; 10(-8)-10(-5)M) and (-)-cis-3-[2-hydroxy-4-(1, 1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55940; 10(-6)M) also produced inhibition. The maximal inhibition by WIN55212-2 was 54+/-6%. The CB(1) cannabinoid antagonist N-piperidino-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (SR141716A; 10(-6)M) prevented the effect of WIN55212-2, but had no effect when superfused alone. WIN55212-2 (10(-6)M) increased the amplitude ratio of two excitatory postsynaptic currents evoked with an interstimulus interval of 100ms. Currents evoked by short ejection of glutamate on to the surface of the slices were not changed by WIN55212-2.The results show that activation of CB(1) cannabinoid receptors inhibits glutamatergic synaptic transmission between afferent axons and neurons in the substantia nigra pars reticulata. The lack of effect of the cannabinoids on glutamate-evoked currents and the increase of the paired-pulse ratio indicate that the mechanism of action is presynaptic inhibition of transmitter release.  相似文献   

2.
Freiman I  Szabo B 《Neuroscience》2005,133(1):305-313
The globus pallidus receives its major glutamatergic input from the subthalamic nucleus and subthalamic nucleus neurons synthesize CB1 cannabinoid receptors. The hypothesis of the present work was that CB1 receptors are localized in terminals of subthalamo-pallidal glutamatergic axons and that their activation leads to presynaptic modulation of neurotransmission between these axons and globus pallidus neurons. Patch-clamp studies were carried out on oblique-sagittal mouse brain slices. The subthalamic nucleus was stimulated electrically and the resulting excitatory postsynaptic currents (EPSCs) were recorded in globus pallidus neurons. The mixed CB1/CB2 receptor agonist R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone mesylate (WIN55212-2; 3 x 10(-7) M) had no effect on EPSCs. WIN55212-2 (10(-5) M) decreased the amplitude of EPSCs by 44+/-8%. The inhibition by WIN55212-2 (10(-5) M) was prevented by the CB1 antagonist N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazolecarboxamide (10(-6) M). WIN55212-2 (10(-5) M) did not change the amplitude of spontaneous EPSCs (sEPSCs) recorded in globus pallidus neurons but lowered their frequency. Moreover, WIN55212-2 (10(-5) M) had no effect on currents elicited by direct activation of postsynaptic receptors on globus pallidus neurons by glutamate (10(-3) M) ejected from a pipette. In a final series of experiments, the firing of subthalamic nucleus neurons was recorded; WIN55212-2 (10(-5) M) did not change the firing of these neurons. The results show that activation of CB1 receptors inhibits glutamatergic neurotransmission between the subthalamic nucleus and the globus pallidus. Lack of effect of cannabinoids on the amplitude of sEPSCs and on currents evoked by direct stimulation of postsynaptic glutamate receptors indicates that the mechanism is presynaptic inhibition of glutamate release from axon terminals. Cannabinoids seem to act preferentially presynaptically: in contrast to their action on axon terminals, they have no effect on somadendritic receptors regulating firing rate. Cannabinoids elicit catalepsy in vivo. The observed inhibition of glutamatergic neurotransmission in the globus pallidus would favor catalepsy.  相似文献   

3.
Yanovsky Y  Mades S  Misgeld U 《Neuroscience》2003,122(2):317-328
Both endocannabinoids through cannabinoid receptor type I (CB1) receptors and dopamine through dopamine receptor type D1 receptors modulate postsynaptic inhibition in substantia nigra by changing GABA release from striatonigral terminals. By recording from visually identified pars compacta and pars reticulata neurons we searched for a possible co-release and interaction of endocannabinoids and dopamine. Depolarization of a neuron in pars reticulata or in pars compacta transiently suppressed evoked synaptic currents which were blocked by GABA(A) receptor antagonists (inhibitory postsynaptic currents [IPSCs]). This depolarization-induced suppression of inhibition (DSI) was abrogated by the cannabinoid CB1 receptor antagonist AM251 (1 microM). A correlation existed between the degree of DSI and the degree of reduction of evoked IPSCs by the CB1 receptor agonist WIN55,212-2 (1 microM). The cholinergic receptor agonist carbachol (0.5-5 microM) enhanced DSI, but suppression of spontaneous IPSCs was barely detectable pointing to the existence of GABA release sites without CB1 receptors. In dopamine, but not in GABAergic neurons DSI was enhanced by the dopamine D1 receptor antagonist SCH23390 (3-10 microM). Both the antagonist for CB1 receptors and the antagonist for dopamine D1 receptors enhanced or reduced, respectively, the amplitudes of evoked IPSCs. This tonic influence persisted if the receptor for the other ligand was blocked. We conclude that endocannabinoids and dopamine can be co-released. Retrograde signaling through endocannabinoids and dopamine changes inhibition independently from each other. Activation of dopamine D1 receptors emphasizes extrinsic inhibition and activation of CB1 receptors promotes intrinsic inhibition.  相似文献   

4.
At present, little is known about the mechanisms by which cannabinoids exert their effects on the central nervous system. In this study, fluorescence imaging and electrophysiological techniques were used to investigate the functional relationship between cell surface cannabinoid type 1 (CB(1)) receptors and GABAergic synaptic transmission in cultured hippocampal neurons. CB(1) receptors were labelled on living neurons using a polyclonal antibody directed against the N-terminal 77 amino acid residues of the rat cloned CB(1) receptor. Highly punctate CB(1) receptor labelling was observed on fine axons and at axonal growth cones, with little somatic labelling. The majority of these sites were associated with synaptic terminals, identified either with immunohistochemical markers or by using the styryl dye FM1-43 to label synaptic vesicles that had undergone active turnover. Dual labelling of neurons for CB(1) receptors with either the inhibitory neurotransmitter GABA or its synthesising enzyme glutamate decarboxylase, demonstrated a strong correspondence. The immunocytochemical data was supported by functional studies using whole-cell patch-clamp recordings of miniature inhibitory postsynaptic currents (mIPSCs). The cannabinoid agonist WIN55,212-2 (100nM) markedly inhibited (by 77+/-6.3%) the frequency of pharmacologically-isolated GABAergic mIPSCs. The effects of WIN55,212-2 were blocked in the presence of the selective CB(1) receptor antagonist SR141716A (100nM).In conclusion, the present data show that cell surface CB(1) receptors are expressed at presynaptic GABAergic terminals, where their activation inhibits GABA release. Their presence on growth cones could indicate a role in the targeting of inhibitory connections during development.  相似文献   

5.
We present here the pharmacological characterization of cannabinoid-binding sites in zebrafish brain homogenates using radiolabeled binding techniques. The nonselective agonist [3H]-CP55940 binds with high affinity (KD = 0.50+/-0.06 nM and a Bmax = 1047+/-36.01 fmol/mg protein), displaying one binding site. The slightly CB2 selective agonist [3H]-WIN55212-2 also binds with high affinity to zebrafish brain membranes displaying two different binding sites with affinities KD1 = 0.35+/-0.09 nM and KD2 = 105.81+/-66.36 nM. Competition binding assays using [3H]-WIN55212-2 and several unlabeled ligands were performed. WIN55212-2 significantly displaced the tritiated ligand binding showing the two binding sites observed with its tritiated homologous, while the slightly selective CB1 cannabinoid ligand HU-210, the nonselective cannabinoid ligand CP55940 and the endogenous cannabinoid ligand anandamide presented one binding site. Also, the functionality of these cannabinoid sites was analyzed using the known [35S]GTPgammaS assay. All the agonist used presented an agonist profile and the rank order for potency was HU-210 > WIN55212-2 > CP55940 >anandamide. Our results provide evidence that, although some of the typical cannabinoid ligands for mammalian receptors do not fully recognize the cannabinoid-binding sites in zebrafish brain, the activity of the endogenous zebrafish cannabinoid system might not significantly differ from that displayed by the cannabinoid system described in other species. Hence the study of zebrafish cannabinoid activity may contribute to an understanding of the endogenous cannabinoid system in higher vertebrates.  相似文献   

6.
Psychoactive effects of cannabinoids are thought to be mediated, at least in part, by suppression of both glutamate and GABA release via CB1 cannabinoid receptor. Two types of cannabinoid receptor (CB1 and CB2) have been cloned so far. The CB1 receptors are abundantly expressed in the nervous system, whereas CB2 receptors are limited to lymphoid organs (Matsuda et al., 1990; Munro et al., 1993). Immunocytochemical and electrophysiological studies revealed that in the hippocampus CB1 receptors are expressed on axon terminals of GABAergic inhibitory interneurons (Tsou et al., 1999; Katona et al., 1999) and activation of these receptors decreases GABA release (Hájos et al., 2000). Other physiological studies pointed out the involvement of CB1 receptors in the modulation of hippocampal glutamatergic synaptic transmission and long-term potentiation (Stella et al., 1997; Misner and Sullivan, 1999), but anatomical studies could not confirm the existence of CB1 receptors on glutamatergic terminals. Here we examined cannabinoid actions on both glutamatergic and GABAergic synaptic transmission in the hippocampus of wild type (CB1+/+) and CB1 receptor knockout mice (CB1-/-). The synthetic cannabinoid agonist WIN55,212-2 reduced the amplitudes of excitatory postsynaptic currents in both wild type and CB1-/- mice, while inhibitory postsynaptic currents were decreased only in wild type mice, but not in CB1-/- animals. Our findings are consistent with a CB1 cannabinoid receptor-dependent modulation of GABAergic postsynaptic currents, but a novel cannabinoid-sensitive receptor must be responsible for the inhibition of glutamatergic neurotransmission.  相似文献   

7.
Retrograde synaptic signaling by endogenous cannabinoids (endocannabinoids) is a recently discovered form of neuromodulation in various brain regions. In hippocampus, it is well known that endocannabinoids suppress presynaptic inhibitory neurotransmitter release in CA1 region. However, endocannabinoid signaling in CA3 region remains to be examined. Here we investigated whether presynaptic inhibition can be caused by activation of postsynaptic group I metabotropic glutamate receptors (mGluRs) and following presynaptic cannabinoid receptor type 1 (CB1 receptor) using mechanically dissociated rat hippocampal CA3 pyramidal neurons with adherent functional synaptic boutons. Application of group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) reversibly suppressed spontaneous inhibitory postsynaptic currents (IPSCs). In the presence of tetrodotoxin (TTX), frequency of miniature IPSCs was significantly reduced by DHPG, while there were no significant changes in minimum quantal size and sensitivity of postsynaptic GABAA receptors to the GABAA receptor agonist muscimol, indicating that this suppression was caused by a decrease in GABA release from presynaptic nerve terminals. Application of CB1 synthetic agonist WIN55212-2 (mesylate(R)-(+)-[2,3-dihydro-5-methyl-3-[4-morpholino)methyl]pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthyl)methanone) or endocannabinoid 2-arachidonoylglycerol also suppressed the spontaneous IPSC. The inhibitory effect of DHPG on spontaneous IPSCs was abolished by SR-141716 (5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide), a CB1 receptor antagonist. Furthermore, postsynaptic application of GDP-βS blocked the DHPG-induced inhibition of spontaneous IPSCs, indicating the involvement of endcannabinoid-mediated retrograde synaptic signaling. These results provide solid evidence for retrograde signaling from postsynaptic group I mGluRs to presynaptic CB1 receptors, which induces presynaptic inhibition of GABA release in rat hippocampal CA3 region.  相似文献   

8.
The high density of cannabinoid receptors in the cerebellum and the degradation of motor coordination produced by cannabinoid intoxication suggest that synaptic transmission in the cerebellum may be strongly regulated by cannabinoid receptors. Therefore the effects of exogenous cannabinoids on synapses received by Purkinje cells were investigated in rat cerebellar slices. Parallel fiber-evoked (PF) excitatory postsynaptic currents (EPSCs) were strongly inhibited by bath application of the cannabinoid receptor agonist WIN 55212-2 (5 microM, 12% of baseline EPSC amplitude). This effect was completely blocked by the cannabinoid CB1 receptor antagonist SR 141716. It is unlikely that this was the result of alterations in axonal excitability because fiber volley velocity and kinetics were unchanged and a cannabinoid-induced decrease in fiber volley amplitude was very minor (93% of baseline). WIN 55212-2 had no effect on the amplitude or frequency of spontaneously occurring miniature EPSCs (mEPSCs), suggesting that the effect of CB1 receptor activation on PF EPSCs was presynaptically expressed, but giving no evidence for modulation of release processes after Ca(2+) influx. EPSCs evoked by climbing fiber (CF) stimulation were less powerfully attenuated by WIN 55212-2 (5 microM, 74% of baseline). Large, action potential-dependent, spontaneously occurring inhibitory postsynaptic currents (sIPSCs) were either severely reduced in amplitude (<25% of baseline) or eliminated. Miniature IPSCs (mIPSCs) were reduced in frequency (52% of baseline) but not in amplitude, demonstrating suppression of presynaptic vesicle release processes after Ca(2+) influx and suggesting an absence of postsynaptic modulation. The decrease in mIPSC frequency was not large enough to account for the decrease in sIPSC amplitude, suggesting that presynaptic voltage-gated channel modulation was also involved. Thus, while CB1 receptor activation reduced neurotransmitter release at all major classes of Purkinje cell synapses, this was not accomplished by a single molecular mechanism. At excitatory synapses, cannabinoid suppression of neurotransmitter release was mediated by modulation of voltage-gated channels in the presynaptic axon terminal. At inhibitory synapses, in addition to modulation of presynaptic voltage-gated channels, suppression of the downstream vesicle release machinery also played a large role.  相似文献   

9.
Cannabinoid CB1 receptors have been detected in retinas of numerous species, with prominent labeling in photoreceptor terminals of the chick and monkey. CB1 labeling is well-conserved across species, suggesting that CB1 receptors might also be present in photoreceptors of the tiger salamander. Synaptic transmission in vertebrate photoreceptors is mediated by L-type calcium currents-currents that are modulated by CB1 receptors in bipolar cells of the tiger salamander. Presence of CB1 receptors in photoreceptor terminals would therefore be consistent with presynaptic modulation of synaptic transmission, a role seen for cannabinoids in other parts of the brain. Here we report immunohistochemical and electrophysiological evidence for the presence of functional CB1 receptors in rod and cone photoreceptors of the tiger salamander. The cannabinoid receptor agonist WIN 55212-2 enhances calcium currents of rod photoreceptors by 39% but decreases calcium currents of large single cones by 50%. In addition, WIN 55212-2 suppresses potassium currents of rods and large single cones by 44 and 48%, respectively. Thus functional CB1 receptors, present in the terminals of rod and cone photoreceptors, differentially modulate calcium and potassium currents in rods and large single cones. CB1 receptors are therefore well positioned to modulate neurotransmitter release at the first synapse of the visual system.  相似文献   

10.
The psychoactive component of marijuana, delta9-tetrahydrocannabinol (THC) suppresses different functions of immunocytes, including the antimicrobicidal activity of macrophages. The triggering of cannabinoid receptors of CB1 and CB2 subtypes present on leukocytes may account for these effects. We investigated the influence of specific CB1 or CB2 receptor antagonists (SR141716A and SR144528, respectively) and nonselective CB1/CB2 cannabinoid receptor agonists (CP55,940 or WIN 55212-2) on macrophage infection by Brucella suis, an intracellular gram-negative bacteria. None of the compounds tested affected bacterial phagocytosis. By contrast, the intracellular multiplication of Brucella was dose-dependently inhibited in cells treated with 10-500 nM SR141716A and 1 microM SR141716A-induced cells exerted a potent microbicidal effect against the bacteria. SR144528, CP55,940, or WIN 55212-2 did not affect (or slightly potentiated) the growth of phagocytized bacteria. However, CP55,940 or WIN 55212-2 reversed the SR141716A-mediated effect, which strongly suggested an involvement of macrophage CB1 receptors in the phenomenon. SR141716A was able to pre-activate macrophages and to trigger an activation signal that inhibited Brucella development. The participation of endogenous cannabinoid ligand(s) in Brucella infection was discussed. Finally, our data show that SR141716A up-regulates the antimicrobial properties of macrophages in vitro and might be a pharmaceutical compound useful for counteracting the development of intramacrophagic gram-negative bacteria.  相似文献   

11.
Using whole cell voltage-clamp recordings we investigated the effects of a synthetic cannabinoid (WIN55,212-2) on inhibitory inputs received by layer 2/3 pyramidal neurons in slices of the mouse auditory cortex. Activation of the type 1 cannabinoid receptor (CB1R) with WIN55,212-2 reliably reduced the amplitude of GABAergic inhibitory postsynaptic currents evoked by extracellular stimulation within layer 2/3. The suppression of this inhibition was blocked and reversed by the highly selective CB1R antagonist AM251, confirming a CB1R-mediated inhibition. Pairing evoked inhibitory postsynaptic currents (IPSCs) at short interstimulus intervals while applying WIN55,212-2 resulted in an increase in paired-pulse facilitation suggesting that the probability of GABA release was reduced. A presynaptic site of cannabinoid action was verified by an observed decrease in the frequency with no change in the amplitude or kinetics of action potential-independent postsynaptic currents (mIPSCs). When Cd(2+) was added or Ca(2+) was omitted from the recording solution, the remaining fraction of Ca(2+)-independent mIPSCs did not respond to WIN55,212-2. These data suggest that cannabinoids are capable of suppressing the inhibition of neocortical pyramidal neurons by depressing Ca(2+)-dependent GABA release from local interneurons.  相似文献   

12.
Endocannabinoid signaling, mediated by presynaptic CB1 cannabinoid receptors on neurons, is fundamental for the maintenance of synaptic plasticity by modulating neurotransmitter release from axon terminals. In the rodent basal forebrain, CB1 cannabinoid receptor-like immunoreactivity is only harbored by a subpopulation of cholinergic projection neurons. However, endocannabinoid control of cholinergic output from the substantia innominata, coincident target innervation of cholinergic and CB1 cannabinoid receptor-containing afferents, and cholinergic regulation of endocannabinoid synthesis in the hippocampus suggest a significant cholinergic-endocannabinergic interplay. Given the functional importance of the cholinergic modulation of endocannabinoid signaling, here we studied CB1 cannabinoid receptor distribution in cholinergic basal forebrain territories and their cortical projection areas in a prosimian primate, the gray mouse lemur. Perisomatic CB1 cannabinoid receptor immunoreactivity was unequivocally present in non-cholinergic neurons of the olfactory tubercule, and in cholecystokinin-containing interneurons in layers 2/3 of the neocortex. Significantly, CB1 cannabinoid receptor-like immunoreactivity was localized to cholinergic perikarya in the magnocellular basal nucleus. However, cortical cholinergic terminals lacked detectable CB1 cannabinoid receptor levels. A dichotomy of CB1 cannabinoid receptor distribution in frontal (suprasylvian) and parietotemporal (subsylvian) cortices was apparent. In the frontal cortex, CB1 cannabinoid receptor-containing axons concentrated in layers 2/3 and layer 6, while layer 4 and layer 5 were essentially devoid of CB1 cannabinoid receptor immunoreactivity. In contrast, CB1 cannabinoid receptors decorated axons in all layers of the parietotemporal cortex with peak densities in layer 2 and layer 4. In the hippocampus, CB1 cannabinoid receptor-containing terminals concentrated around pyramidal cell somata and proximal dendrites in the CA1-CA3 areas, and granule cell dendrites in the molecular layer of the dentate gyrus. CB1 cannabinoid receptors frequently localized to inhibitory GABAergic terminals while leaving glutamatergic boutons unlabeled. Aging did not affect either the density or layer-specific distribution of CB1 cannabinoid receptor-immunoreactive processes. We concluded that organizing principles of CB1 cannabinoid receptor-containing neurons and their terminal fields within the basal forebrain are evolutionarily conserved between rodents and prosimian primates. In contrast, the areal expansion and cytoarchitectonic differentiation of neocortical subfields in primates is associated with differential cortical patterning of CB1 cannabinoid receptor-containing subcortical and intracortical afferents.  相似文献   

13.
Endocannabinoids, acting via type 1 cannabinoid receptors (CB1), are known to be involved in short-term synaptic plasticity via retrograde signaling. Strong depolarization of the postsynaptic neurons is followed by the endocannabinoid-mediated activation of presynaptic CB1 receptors, which suppresses GABA and/or glutamate release. This phenomenon is termed depolarization-induced suppression of inhibition (DSI) or excitation (DSE), respectively. Although both phenomena have been reported to be present in the basal ganglia, the anatomical substrate for these actions has not been clearly identified. Here we investigate the high-resolution subcellular localization of CB1 receptors in the nucleus accumbens, striatum, globus pallidus and substantia nigra, as well as in the internal capsule, where the striato-nigral and pallido-nigral pathways are located. In all examined nuclei of the basal ganglia, we found that CB1 receptors were located on the membrane of axon terminals and preterminal axons. Electron microscopic examination revealed that the majority of these axon terminals were GABAergic, giving rise to mostly symmetrical synapses. Interestingly, preterminal axons showed far more intense staining for CB1, especially in the globus pallidus and substantia nigra, whereas their terminals were only faintly stained. Non-varicose, thin unmyelinated fibers in the internal capsule also showed strong CB1-labeling, and were embedded in bundles of myelinated CB1-negative axons. The majority of CB1 receptors labeled by immunogold particles were located in the axonal plasma membrane (92.3%), apparently capable of signaling cannabinoid actions. CB1 receptors in this location cannot directly modulate transmitter release, because the release sites are several hundred micrometers away. Interestingly, both the CB1 agonist, WIN55,212-2, as well as its antagonist, AM251, were able to block action potential generation, but via a CB1 independent mechanism, since the effects remained intact in CB1 knockout animals. Thus, our electrophysiological data suggest that these receptors are unable to influence action potential propagation, thus they may not be functional at these sites, but are likely being transported to the terminal fields. The present data are consistent with a role of endocannabinoids in the control of GABA, but not glutamate, release in the basal ganglia via presynaptic CB1 receptors, but also call the attention to possible non-CB1-mediated effects of widely used cannabinoid ligands on action potential generation.  相似文献   

14.
Cannabinoids are known to inhibit neurotransmitter release in the CNS through CB1 receptors. The present study compares the effects of synthetic cannabinoids on acetylcholine (ACh) release in human and mice neocortex. We further investigated a possible endocannabinoid tone on CB1 receptors in human neocortex caused by endogenous agonists like anandamide or 2-arachidonylglycerol. Brain slices, incubated with [3H]-choline, were superfused and stimulated electrically under autoinhibition-free conditions to evoke tritium overflow assumed to represent ACh release. The first series of experiments was performed with 26 pulses, 60 mA, at 0.1 Hz. In mice neocortical slices, the cannabinoid receptor agonist WIN55212-2 decreased ACh release (pIC50=6.68, I(max)=67%). In the human neocortex the concentration-response curve of WIN55212-2 was bell-shaped and flat (I(max observed) approximately 30%). The estimated maximum possible inhibition, however, was much larger: I(max derived)=79%. Lec, the negative logarithm (lg) of the biophase concentration of endocannabinoids in 'WIN55212-2 units,' was -6.52, the pKd of WIN55212-2 was 7.47. The CB1 receptor antagonist/inverse agonist SR141716 enhanced ACh release in the human neocortex (by 38%) and prevented the inhibitory effect of WIN55212-2. The concentration-response curve of WIN55212-2 was changed in its shape including a shift to the right due to the presence of SR141716. A pA2 of this antagonist between 11.60 and 11.18 was obtained. SR141716 alone had no effect in mice neocortical slices. A partial agonist without inverse agonistic activity, O-1184, enhanced ACh release in the human neocortex. The endocannabinoid uptake-inhibitor AM404 decreased ACh release in human, but not in mice, neocortical slices. Change of the stimulation parameters (eight trains of pseudo-one-pulse bursts (4 pulses, 76 mA, 100 Hz), spaced by 45 s intervals) led to a stronger inhibitory effect of WIN55212-2, and abolished the disinhibitory effect of SR141716 and O-1184. The results show that activation of CB1 cannabinoid receptors leads to inhibition of ACh release in the human and mouse neocortex. The endocannabinoid tone is high in the human, but not in the mouse neocortex and is dependent on neuronal activity. SR141716 acts as a competitive CB1 receptor antagonist.  相似文献   

15.
The effects of cannabinoid agonists on noxious heat-evoked firing of 62 spinal wide dynamic range (WDR) neurons were examined in urethan-anesthetized rats (1 cell/animal). Noxious thermal stimulation was applied with a Peltier device to the receptive fields in the ipsilateral hindpaw of isolated WDR neurons. To assess the site of action, cannabinoids were administered systemically in intact and spinally transected rats and intraventricularly. Both the aminoalkylindole cannabinoid WIN55,212-2 (125 microg/kg iv) and the bicyclic cannabinoid CP55,940 (125 microg/kg iv) suppressed noxious heat-evoked activity. Responses evoked by mild pressure in nonnociceptive neurons were not altered by CP55,940 (125 microg/kg iv), consistent with previous observations with another cannabinoid agonist, WIN55,212-2. The cannabinoid induced-suppression of noxious heat-evoked activity was blocked by pretreatment with SR141716A (1 mg/kg iv), a competitive antagonist for central cannabinoid CB1 receptors. By contrast, intravenous administration of either vehicle or the receptor-inactive enantiomer WIN55,212-3 (125 microg/kg) failed to alter noxious heat-evoked activity. The suppression of noxious heat-evoked activity induced by WIN55,212-2 in the lumbar dorsal horn of intact animals was markedly attenuated in spinal rats. Moreover, intraventricular administration of WIN55,212-2 suppressed noxious heat-evoked activity in spinal WDR neurons. By contrast, both vehicle and enantiomer were inactive. These findings suggest that cannabinoids selectively modulate the activity of nociceptive neurons in the spinal dorsal horn by actions at CB1 receptors. This modulation represents a suppression of pain neurotransmission because the inhibitory effects are selective for pain-sensitive neurons and are observed with different modalities of noxious stimulation. The data also provide converging lines of evidence for a role for descending antinociceptive mechanisms in cannabinoid modulation of spinal nociceptive processing.  相似文献   

16.
The heart slows during expiration and heart rate increases during inspiration. This cardiorespiratory interaction is thought to occur by increased inhibitory synaptic events to cardiac vagal neurons during inspiration. Since cholinergic receptors have been suggested to be involved in this cardiorespiratory interaction, we tested whether endogenous cholinergic activity modulates GABAergic and glycinergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus, whether nicotine can mimic this facilitation, and we examined the nicotinic receptors involved. Cardiac vagal neurons in the rat were labeled with a retrograde fluorescent tracer and studied in an in vitro slice using patch-clamp techniques. Application of neostigmine (10 microM), an acetylcholinerase inhibitor, significantly increased the frequency of both GABAergic and glycinergic inhibitory postsynaptic currents (IPSCs) in cardiac vagal neurons. Exogenous application of nicotine increased the frequency and amplitude of both GABAergic and glycinergic IPSCs. The nicotinic facilitation of both GABAergic and glycinergic IPSCs were insensitive to 100 nM alpha-bungarotoxin but were abolished by dihydro-beta-erythrodine (DHbetaE) at a concentration (3 microM) specific for alpha4beta2 nicotinic receptors. In the presence of TTX, nicotine increased the frequency of GABAergic and glycinergic miniature synaptic events, which were also abolished by DHbetaE (3 microM). This work demonstrates that there is endogenous cholinergic facilitation of GABAergic and glycinergic synaptic inputs to cardiac vagal neurons, and activation of alpha4beta2 nicotinic receptors at presynaptic terminals facilitates GABAergic and glycinergic neurotransmission to cardiac vagal neurons. Nicotinic facilitation of inhibitory neurotransmission to premotor cardiac parasympathetic neurons may be involved in generating respiratory sinus arrhythmia.  相似文献   

17.
[N-(piperidin-1-yl)-5-(4-chlorophenyl)-4-methyl-1H-pyrazole-3-carboxyamide] (SR 141716A), a selective cannabinoid CB1 receptor antagonist, injected into the paraventricular nucleus of the hypothalamus (PVN) of male rats, induces penile erection. This effect is mediated by the release of glutamic acid, which in turn activates central oxytocinergic neurons mediating penile erection. Double immunofluorescence studies with selective antibodies against CB1 receptors, glutamic acid transporters (vesicular glutamate transporters 1 and 2 (VGlut1 and VGlut2), glutamic acid decarboxylase-67 (GAD67) and oxytocin itself, have shown that CB1 receptors in the PVN are located mainly in GABAergic terminals and fibers surrounding oxytocinergic cell bodies. As GABAergic synapses in the PVN impinge directly on oxytocinergic neurons or on excitatory glutamatergic synapses, which also impinge on oxytocinergic neurons, these results suggest that the blockade of CB1 receptors decreases GABA release in the PVN, increasing in turn glutamatergic neurotransmission to activate oxytocinergic neurons mediating penile erection. Autoradiography studies with [(3)H](-)-CP 55,940 show that chronic treatment with SR 141716A for 15 days twice daily (1 mg/kg i.p.) significantly increases the density of CB1 receptors in the PVN. This increase occurs concomitantly with an almost twofold increase in the pro-erectile effect of SR 141716A injected into the PVN as compared with control rats. The present findings confirm that PVN CB1 receptors, localized mainly in GABAergic synapses that control in an inhibitory fashion excitatory synapses, exert an inhibitory control on penile erection, demonstrating for the first time that chronic blockade of CB1 receptors by SR 141716A increases the density of these receptors in the PVN. This increase is related to an enhanced pro-erectile effect of SR 141716A, which is still present 3 days after the end of the chronic treatment.  相似文献   

18.
The cannabinoid receptor CB1 is found in abundance in brain neurons, whereas CB2 is essentially expressed outside the brain. In the neocortex, CB1 is observed predominantly on large cholecystokinin (CCK)-expressing interneurons. However, physiological evidence suggests that functional CB1 are present on other neocortical neuronal types. We investigated the expression of CB1 and CB2 in identified neurons of rat neocortical slices using single-cell RT-PCR. We found that 63% of somatostatin (SST)-expressing and 69% of vasoactive intestinal polypeptide (VIP)-expressing interneurons co-expressed CB1. As much as 49% of pyramidal neurons expressed CB1. In contrast, CB2 was observed in a small proportion of neocortical neurons. We performed whole cell recordings of pyramidal neurons to corroborate our molecular findings. Inhibitory postsynaptic currents (IPSCs) induced by a mixed muscarinic/nicotinic cholinergic agonist showed depolarization-induced suppression of inhibition and were decreased by the CB1 agonist WIN-55212-2 (WIN-2), suggesting that interneurons excited by cholinergic agonists (mainly SST and VIP neurons) possess CB1. IPSCs elicited by a nicotinic receptor agonist were also reduced in the presence of WIN-2, suggesting that neurons excited by nicotinic agonists (mainly VIP neurons) indeed possess CB1. WIN-2 largely decreased excitatory postsynaptic currents evoked by intracortical electrical stimulation, pointing at the presence of CB1 on glutamatergic pyramidal neurons. All WIN-2 effects were strongly reduced by the CB1 antagonist AM 251. We conclude that CB1 is expressed in various neocortical neuronal populations, including glutamatergic neurons. Our combined molecular and physiological data suggest that CB1 widely mediates endocannabinoid effects on glutamatergic and GABAergic transmission to modulate cortical networks.  相似文献   

19.
Localization of cannabinoid CB 1 receptors on GABAergic interneurons in the rat hippocampal formation was studied by double-labeling immunohistochemistry with confocal microscopy. Virtually all CB1-immunoreactive neurons (95%) are GABAergic. CB 1 fluorescence showed a punctate pattern. In contrast, the GABA fluorescence was distributed homogeneously, suggesting that while CB 1 receptors and GABA exist in the same cells they are not localized in the same subcellular compartments. Although virtually all CB1 neurons were GABAergic, many GABAergic neurons did not contain CB1 receptors. GABAergic interneurons in the hippocampal formation can be further divided into subpopulations with distinct connections and functions, using cell markers such as neuropeptides and calcium binding proteins. CB1 receptors were highly co-localized with cholecystokinin and partially co-localized with calretinin and calbindin, but not with parvalbumin. This suggests that cannabinoids may modulate GABAergic neurotransmission at the synapses on the soma and at synapses on the proximal dendrites of the principal neurons, as well as at synapses on other GABAergic interneurons.  相似文献   

20.
In the inner retina, ganglion cells (RGCs) integrate and process excitatory signal from bipolar cells (BCs) and inhibitory signal from amacrine cells (ACs). Using multiple labeling immunohistochemistry, we first revealed the expression of the cannabinoid CB1 receptor (CB1R) at the terminals of ACs and BCs in rat retina. By patch-clamp techniques, we then showed how the activation of this receptor dichotomously regulated miniature inhibitory postsynaptic currents (mIPSCs), mediated by GABAA receptors and glycine receptors, and miniature excitatory postsynaptic currents (mEPSCs), mediated by AMPA receptors, of RGCs in rat retinal slices. WIN55212-2 (WIN), a CB1R agonist, reduced the mIPSC frequency due to an inhibition of L-type Ca2+ channels no matter whether AMPA receptors were blocked. In contrast, WIN reduced the mEPSC frequency by suppressing T-type Ca2+ channels only when inhibitory inputs to RGCs were present, which could be in part due to less T-type Ca2+ channels of cone BCs, presynaptic to RGCs, being in an inactivation state under such condition. This unique feature of CB1R-mediated retrograde regulation provides a novel mechanism for modulating excitatory synaptic transmission in the inner retina. Moreover, depolarization of RGCs suppressed mIPSCs of these cells, an effect that was eliminated by the CB1R antagonist SR141716, suggesting that endocannabinoid is indeed released from RGCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号