首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a 42-year-old female patient with an interstitial 16 Mb deletion in 7q21.1-21.3 and a balanced reciprocal translocation between chromosomes 6 and 7 [karyotype 46,XX,t(6;7)(q23.3;q32.3)del(7)(q21.1q21.3)de novo]. We characterized the size and position of the deletion by tiling path array comparative genomic hybridization (CGH), and we mapped the translocation breakpoints on chromosomes 6 and 7 by FISH. The clinical features of this patient-severe mental retardation, short stature, microcephaly and deafness-are in accordance with previously reported patients with 7q21 deletions. Chromosome band 7q21.3 harbors a locus for split hand/split foot malformation (SHFM1), and part of this locus, including the SHFM1 candidate genes SHFM1, DLX5, and DLX6, is deleted. The absence of limb abnormalities in this patient suggests either a location of the SHFM1 causing factor distal to this deletion, or reduced penetrance of haploinsufficiency of a SHFM1 factor within the deleted interval.  相似文献   

2.
3.
Split hand-split foot malformation (SHFM) is characterized by hypoplasia/aplasia of the central digits with fusion of the remaining digits. SHFM is usually an autosomal dominant condition and at least five loci have been identified in humans. Mutation analysis of the DACTYLIN gene, suspected to be responsible for SHFM3 in chromosome 10q24, was conducted in seven SHFM patients. We screened the coding region of DACTYLIN by single-strand conformation polymorphism and sequencing, and found no point mutations. However, Southern, pulsed field gel electrophoresis and dosage analyses demonstrated a complex rearrangement associated with a approximately 0.5 Mb tandem duplication in all the patients. The distal and proximal breakpoints were within an 80 and 130 kb region, respectively. This duplicated region contained a disrupted extra copy of the DACTYLIN gene and the entire LBX1 and beta-TRCP genes, known to be involved in limb development. The possible role of these genes in the SHFM3 phenotype is discussed.  相似文献   

4.
Split hand-split foot malformation (SHFM) is a genetically heterogeneous limb developmental defect characterised by the absence of digital rays and syndactyly of the remaining digits. Three disease loci have recently been mapped to chromosomes 7q21 (SHFM1), Xq26 (SHFM2), and 10q25 respectively (SHFM3). We report the mapping of SHFM3 to chromosome 10q25 in two large SHFM families of French ancestry (Zmax for the combined families = 6.62 at theta = 0 for marker AFM249wc5 at locus D10S222). Two recombinant events reduced the critical region to a 9 cM interval (D10S1709-D10S1663) encompassing several candidate genes including a paired box gene PAX2 (Zmax = 5.35 at theta = 0). The fibroblast growth factor 8 (FGF 8), the retinol binding protein (RBP4), the zinc finger protein (ZNF32), and the homeobox genes HMX2 and HOX11 are also good candidates by both their position and their function.  相似文献   

5.
We report on three patients with split hand/foot malformation type 1 (SHFM1). We detected a deletion in two patients and an inversion in the third, all involving chromosome 7q21q22. We performed conventional chromosomal analysis, array comparative genomic hybridization and fluorescence in situ hybridization. Both deletions included the known genes associated with SHFM1 (DLX5, DLX6 and DSS1), whereas in the third patient one of the inversion break points was located just centromeric to these genes. These observations confirm that haploinsufficiency due to either a simultaneous deletion of these genes or combined downregulation of gene expression due to a disruption in the region between these genes and a control element could be the cause of the syndrome. We review previously reported studies that support this hypothetical mechanism.  相似文献   

6.
目的分析一例手足裂胎儿的临床特征以及基因组拷贝数变异(copy number variations,CNVs)的情况。方法收集孕期胎儿超声以及引产儿X线检查资料并进行总结。应用二代测序(next generation sequencing,NGS)检测引产儿的CNVs。用NGS及荧光原位杂交(fluorescence in situ hybridization,FISH)对其亲代进行分析,用实时荧光定量PCR对胎儿染色体异常区域的基因表达量进行检测。结果超声及X线检查提示胎儿右手及双足均呈"V"形开裂。NGS检测提示胎儿染色体7q21.3区存在约0.36 Mb的缺失。NGS及FISH检测提示其双亲均未携带相同的变异。实时荧光定量PCR结果提示胎儿DYNC1I1基因存在杂合缺失,而SEM1、DLX5、DLX6基因的拷贝数则未见异常。结论胎儿手足裂畸形的致病原因为7q21.3区微缺失,后者为新发变异。  相似文献   

7.
8.
Split-hand/split-foot malformation (SHFM) is a genetically heterogeneous disorder, with five known loci, that causes a lack of median digital rays, syndactyly, and aplasia or hypoplasia of the phalanges, metacarpals, and metatarsals. In the only known SHFM2 family, affected males and homozygous females exhibit monodactyly or bidactyly of the hands and lobster-claw feet. This family (1) was revisited to include additional subjects and genealogical data. All 39 affected males and three females fully expressed the SHFM, while 13 carrier females examined exhibited partial expression of SHFM. We narrowed the previously linked 22-Mb genetic interval on Xq24-q26 (2), by analyzing additional family members and typing additional markers. The results define a 5.1-Mb region with a new centromeric boundary at DXS1114 and a telomeric boundary at DXS1192. We did not identify mutations in the exons and exon/intron boundaries of 19 candidate genes. These data suggest that the mutation may lie in a regulatory region of one of these candidate genes or in another gene within the SHFM2 region with unclear role in limb development.  相似文献   

9.
A second autosomal split hand/split foot locus maps to chromosome 10q24-q25   总被引:4,自引:1,他引:4  
Ectrodactyly (split hand/split foot malformation, SHSF) is ahuman limb malformation characterized by absent central digitalrays, deep median cleft, and syndactyly of remaining digits.The disorder is genetically heterogeneous, with at least twoloci thus far determined: an autosomal locus at 7q21 designatedSHFM1 and an X-linked locus at Xq26 designated SHFM2. Cytogeneticanalysis of sporadic SHSF patients and linkage studies in extendedpedigrees both suggest more than one autosomal locus exists.We report a novel SHSF locus suggested by a stillborn infantwith ectrodactyly and other malformations who inherited an unbalancedtranslocation resulting in monosomy 4p15.1–4pter and trisomyfor 10q25.2-qter. To investigate 10q25 as a possible split hand/splitfoot locus, microsatellite markers spanning 52 cM of 10q wereutilized for linkage analysis of a large autosomal dominantSHSF pedigree in which the region encompassing SHFM1 previouslywas excluded as containing the causative mutation. The markerD10S583 was fully informative in the family, giving a maximumLOD score of 4.21 at recombination  相似文献   

10.
We identified a family where five members had nonsyndromic ectrodactyly. There were three known instances of nonpenetrance. Although four individuals had unilateral cleft hand, one individual had more severe, bilateral and asymmetric absence of the digits. None had foot abnormalities. After exclusion of linkage of SHFM in this family to five known loci, a genome wide scan was performed with DNA from 5 affected and 15 unaffected members of this family. Suggestive evidence for linkage of ectrodactyly to 8q was obtained on the basis of a maximum LOD score of 2.54 at theta (max) = 0 with GAAT1A4. Critical recombinants place the ectrodactyly gene in this family in a 16 cM (21 Mb) interval between D8S1143 and D8S556. Mutational analysis of two candidate genes (FZD6, GDF6) did not identify any mutations in affected members of this family. Our data indicate further genetic heterogeneity for ectrodactyly and suggest the presence of an additional SHFM locus in chromosome region 8q21.11-q22.3.  相似文献   

11.
Dlx homeobox genes are mammalian homologs of the Drosophila Distal-less (Dll) gene. The Dlx/Dll gene family is of ancient origin and appears to play a role in appendage development in essentially all species in which it has been identified. In Drosophila, Dll is expressed in the distal portion of the developing appendages and is critical for the development of distal structures. In addition, human Dlx5 and Dlx6 homeobox genes have been identified as possible candidate genes for the autosomal dominant form of the split-hand/split-foot malformation (SHFM), a heterogeneous limb disorder characterized by missing central digits and claw-like distal extremities. Targeted inactivation of Dlx5 and Dlx6 genes in mice results in severe craniofacial, axial, and appendicular skeletal abnormalities, leading to perinatal lethality. For the first time, Dlx/Dll gene products are shown to be critical regulators of mammalian limb development, as combined loss-of-function mutations phenocopy SHFM. Furthermore, spatiotemporal-specific transgenic overexpression of Dlx5, in the apical ectodermal ridge of Dlx5/6 null mice can fully rescue Dlx/Dll function in limb outgrowth.  相似文献   

12.
Split-hand/split-foot malformation (SHFM, also called ectrodactyly) is a clinically variable and genetically heterogeneous group of limb malformations. Several SHFM loci have been mapped, including SHFM1 (7q21), SHFM2 (Xq26), SHFM3 (10q24), SHFM4 (3q27) and SHFM5 (2q31). To date, mutations in a gene (TP63) have only been identified for SHFM4. SHFM3 has been shown by pulsed-field gel electrophoresis to be caused by an approximately 500 kb DNA rearrangement at 10q24. This region contains a number of candidate genes for SHFM3, though which gene(s) is (are) involved in the pathogenesis of SHFM3 is not known. Our aim in this study was to improve the diagnosis of SHFM3, and to begin to understand which genes are involved in SHFM3. Here we show, using two different techniques, FISH and quantitative PCR that SHFM3 is caused by a minimal 325 kb duplication containing only two genes (BTRC and POLL). The data presented provide improved methods for diagnosis and begin to elucidate the pathogenic mechanism of SHFM3. Expression analysis of 13 candidate genes within and flanking the duplicated region shows that BTRC (present in three copies) and SUFU (present in two copies) are overexpressed in SHFM3 patients compared to controls. Our data suggest that SHFM3 may be caused by overexpression of BTRC and SUFU, both of which are involved in beta-catenin signalling.  相似文献   

13.
The split hand/split foot malformation (SHFM) or ectrodactyly is a rare congenital heterogeneous limb developmental disorder with at least 6 associated loci. It is characterized by absence of central rays of hands and feet and fusion of remaining digits. It can present as an isolated malformation or in combination with additional anomalies (non-syndromic or syndromic ectrodactyly). This is a report of a 4 year old male child with SHFM with facial dysmorphism, profound sensorineural hearing loss, microcephaly and developmental delay associated with a large deletion of 7.242 MB on chromosome 7q21.2-q22.1. This is the region of SHFM1 (OMIM No. 183600) and deletions of varying sizes have been reported. We have reviewed the phenotypes and genotypes of this locus. The deletions with this severe phenotype are large and some of them detected on traditional karyotyping. The cases with submicroscopic deletions are few but show some correlation of genotype with phenotype which will help in counseling the families with prenatally or neonatally detected deletion at this locus.  相似文献   

14.
Split hand/split foot malformation (SHSF) has been described in several patients associated with cytogenetically visible rearrangements involving chromosome 7q. Characterisation of these patients has led to localisation of an autosomal dominant form of SHSF to 7q21-22; the locus has been designated SHFM1. We describe a patient with a complex, apparently balanced cytogenetic rearrangement, including a translocation breakpoint at 7q21.3 near the DSS1 gene. In addition to ectrodactyly of all four limbs, the patient has congenital deafness, submucous cleft palate, microcephaly, and mental retardation. This patient represents an additional case of syndromic ectrodactyly related to the SHFM1 gene region, which may be responsible for both syndromic and non-syndromic ectrodactyly.  相似文献   

15.
Split-hand/foot malformation (SHFM) is caused by mutations in TP63, DLX5, DLX6, FGF8, FGFR1, WNT10B, and BHLHA9. The clinical features of SHFM caused by mutations of these genes are not distinguishable. This implies that in normal situations these SHFM-associated genes share an underlying regulatory pathway that is involved in the development of the central parts of the hands and feet. The mutations in SHFM-related genes lead to dysregulation of Fgf8 in the central portion of the apical ectodermal ridge (AER) and subsequently lead to misexpression of a number of downstream target genes, failure of stratification of the AER, and thus SHFM. Syndactyly of the remaining digits is most likely the effects of dysregulation of Fgf-Bmp-Msx signaling on apoptotic cell death. Loss of digit identity in SHFM is hypothesized to be the effects of misexpression of HOX genes, abnormal SHH gradient, or the loss of balance between GLI3A and GLI3R. Disruption of canonical and non-canonical Wnt signaling is involved in the pathogenesis of SHFM. Whatever the causative genes of SHFM are, the mutations seem to lead to dysregulation of Fgf8 in AER cells of the central parts of the hands and feet and disruption of Wnt-Bmp-Fgf signaling pathways in AER.  相似文献   

16.
Non-random translocation involving the short arm of chromosome 19 are frequently observed in acute leukemias. Recent studies have shown that the 19p13 genes E2A and LYLl, both of which encode helix-loop-helix proteins, lie at two different translocation breakpoints in acute lymphoblastic leukemias (ALL). The E2A gene is involved by the t(1;19)(q23;p13) in acute pre-B-cell leukemias and the LYL1 gene is structurally altered by a t(7;19)(q34;p13) in T-cell ALL. To assess the role of these genes in other leukemia-associated translocations we mapped their locations with respect to the t(11;19)(q23;p13) and t(4;19)(q21;p13) translocation breakpoints carried by T-ALL cell lines SUP-T13 and SUP-T8a, respectively. In situ hybridization studies indicated that the E2A and LYL1 genes are physically distinct from the t(4;19) and t(11;19) breakpoints. Using these and other 19p13 translocation breakpoints as landmarks, we established a partial physical map of 19p: 19pter-E2A-INSR-LYL1-[t(4;19)]-19cen. These data should help guide molecular studies to further characterize 19p13 breakpoints and mapping of genes in this chromosomal region.  相似文献   

17.
18.
19.
In this communication we describe the clinical and molecular genetic findings in a family with a variable ectrodactyly linked to SHFM3. This is only the second detailed report of the clinical features of the SHFM3 linked syndrome in a large pedigree. Within this family the expressivity of the condition ranges from the classical ectrodactyly deformity to partial absence of the thumb and agenesis of the distal tip of the index finger. There is discordant limb severity, with the feet more severely affected than the hands. Two individuals have a nail dysplasia indicating the presence of a minor ectodermal component. A cleft palate was present in one individual. Radiological features of family members include short metacarpals with rounded proximal heads, agenesis of the radial ray, epiphysial coning, and an unusual supernumerary ossicle opposed to the distal phalanx of the left thumb. Genetic mapping studies in this family exclude p63 involvement and demonstrate that ectrodactyly in this pedigree is linked to the SHFM3 region on chromosome 10q24. A meiotic recombination event enabled exclusion of a maximum of 1.9 Mb of DNA from the previously known critical region thereby narrowing the critical interval to between D10S1265 and D10S222, with the minimal critical region being between D10S1240 and D10S1267. Further investigations are in progress to identify the gene within the SHFM3 critical region responsible for ectrodactyly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号