首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endosulfan-alpha is metabolized to a single metabolite, endosulfan sulfate, in pooled human liver microsomes (Km = 9.8 microM, Vmax = 178.5 pmol/mg/min). With the use of recombinant cytochrome P450 (P450) isoforms, we identified CYP2B6 (Km = 16.2 microM, Vmax = 11.4 nmol/nmol P450/min) and CYP3A4 (Km = 14.4 microM, Vmax = 1.3 nmol/nmol P450/min) as the primary enzymes catalyzing the metabolism of endosulfan-alpha, although CYP2B6 had an 8-fold higher intrinsic clearance rate (CL(int) = 0.70 microl/min/pmol P450) than CYP3A4 (CL(int) = 0.09 microl/min/pmol P450). Using 16 individual human liver microsomes (HLMs), a strong correlation was observed with endosulfan sulfate formation and S-mephenytoin N-demethylase activity of CYP2B6 (r(2) = 0.79), whereas a moderate correlation with testosterone 6 beta-hydroxylase activity of CYP3A4 (r(2) = 0.54) was observed. Ticlopidine (5 microM), a potent CYP2B6 inhibitor, and ketoconazole (10 microM), a selective CYP3A4 inhibitor, together inhibited approximately 90% of endosulfan-alpha metabolism in HLMs. Using six HLM samples, the percentage total normalized rate (% TNR) was calculated to estimate the contribution of each P450 in the total metabolism of endosulfan-alpha. In five of the six HLMs used, the percentage inhibition with ticlopidine and ketoconazole in the same incubation correlated with the combined % TNRs for CYP2B6 and CYP3A4. This study shows that endosulfan-alpha is metabolized by HLMs to a single metabolite, endosulfan sulfate, and that it has potential use, in combination with inhibitors, as an in vitro probe for CYP2B6 and 3A4 catalytic activities.  相似文献   

2.
Meperidine is an opioid analgesic metabolized in the liver by N-demethylation to normeperidine, a potent stimulant of the central nervous system. The purpose of this study was to identify the human cytochrome P450 (P450) enzymes involved in normeperidine formation. Our in vitro studies included 1) screening 16 expressed P450s for normeperidine formation, 2) kinetic experiments on human liver microsomes and candidate P450s, and 3) correlation and inhibition experiments using human hepatic microsomes. After normalization by its relative abundance in human liver microsomes, CYP2B6, CYP3A4, and CYP2C19 accounted for 57, 28, and 15% of the total intrinsic clearance of meperidine. CYP3A5 and CYP2D6 contributed to < 1%. Formation of normeperidine significantly correlated with CYP2B6-selective S-mephenytoin N-demethylation (r = 0.88, p < 0.0001 at 75 > microM meperidine, and r = 0.89, p < 0.0001 at 350 microM meperidine, n = 21) and CYP3A4-selective midazolam 1'-hydroxylation (r = 0.59, p < 0.01 at 75 microM meperidine, and r = 0.55, p < 0.01 at 350 microM meperidine, n = 23). No significant correlation was observed with CYP2C19-selective S-mephenytoin 4'-hydroxylation (r = 0.36, p = 0.2 at 75 microM meperidine, and r = 0.02, p = 0.9 at 350 microM meperidine, n = 13). An anti-CYP2B6 antibody inhibited normeperidine formation by 46%. In contrast, antibodies inhibitory to CYP3A4 and CYP2C8/9/18/19 had little effect (<14% inhibition). Experiments with thiotepa and ketoconazole suggested inhibition of microsomal CYP2B6 and CYP3A4 activity, whereas studies with fluvoxamine (a substrate of CYP2C19) were inconclusive due to lack of specificity. We conclude that normeperidine formation in human liver microsomes is mainly catalyzed by CYP2B6 and CYP3A4, with a minor contribution from CYP2C19.  相似文献   

3.
The role of cytochrome P-450s (CYPs) in S-mephobarbital N-demethylation was investigated by using human liver microsomes and cDNA-expressed CYPs. Among the 10 cDNA-expressed CYPs studied (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4), only CYP2B6 could catalyze S-mephobarbital N-demethylation. The apparent K(m) values of human liver microsomes for S-mephobarbital N-demethylation were close to that of cDNA-expressed CYP2B6 (about 250 microM). The N-demethylase activity of S-mephobarbital in 10 human liver microsomes was strongly correlated with immunodetectable CYP2B6 levels (r = 0.920, p<.001). Orphenadrine (300 microM), a CYP2B6 inhibitor, inhibited the N-demethylase activity of S-mephobarbital in human liver microsomes to 29% of control activity. Therefore, it appears that CYP2B6 mainly catalyzes S-mephobarbital N-demethylation in human liver microsomes.  相似文献   

4.
目的:本实验旨在研究CYP2C19基因型人肝微粒体中氟西汀N-去甲基代谢的酶促动力学特点并鉴定参与此代谢途径的细胞色素P-450酶。方法:测定基因型CYP2C19肝微粒体中去甲氟西汀形成的酶促动力学。鉴定氟西汀N-去甲基酶活性与细胞色素P-450 2C9,2C19,1A2和2D6酶活性的相关性,同时应用各种细胞色素P-450酶的选择性抑制剂和化学探针进行抑制实验,从而确定参与氟西汀N-去甲基代谢的细胞色素P-450酶。结果:去甲氟西汀生成的酶促动力学数据符合单酶模型,并具有Michaelis-Menten动力学特征。当底物浓度为氟西汀25μmol/L和100μmol/L时,去甲氟西汀(N-FLU)的生成率分别与甲磺丁脲3-羟化酶活性显著相关(r_1=0.821,P_1=0.001;r_2=0.668,P_2=0.013),当底物浓度为氟西汀100μmol/L时,N-FLU的生成率与S-美芬妥因4’-羟化酶活性显著相关(r=0.717,P=0.006)。PM肝微粒中磺胺苯吡唑和醋竹桃霉素对氟西汀N-去甲基代谢的抑制作用显著大于EM(73%vs 45%,P<0.01)。结论:在生理底物浓度下,CYP2C9是催化人肝微粒体中氟西汀N-去甲基代谢的主要CYP-450酶;而高底物浓度时,以CYP2C19的作用为主。  相似文献   

5.
Ketamine is a widely used drug for its anesthetic and analgesic properties; it is also considered as a drug of abuse, as many cases of ketamine illegal consumption were reported. Ketamine is N-demethylated by liver microsomal cytochrome P450 into norketamine. The identification of the enzymes responsible for ketamine metabolism is of great importance in clinical practice. In the present study, we investigated the metabolism of ketamine in human liver microsomes at clinically relevant concentrations. Liver to plasma concentration ratio of ketamine was taken into consideration. Pooled human liver microsomes and human lymphoblast-expressed P450 isoforms were used. N-demethylation of ketamine was correlated with nifedipine oxidase activity (CYP3A4-specific marker reaction), and it was also correlated with S-mephenytoin N-demethylase activity (CYP2B6-specific marker reaction). Orphenadrine, a specific inhibitor to CYP2B6, and ketoconazole, a specific inhibitor to CYP3A4, inhibited the N-demethylation of ketamine in human liver microsomes. In human lymphoblast-expressed P450, the activities of CYP2B6 were higher than those of CYP3A4 and CYP2C9 at three concentrations of ketamine, 0.005, 0.05, and 0.5 mM. When these results were extrapolated using the average relative content of these P450 isoforms in human liver, CYP3A4 was the major enzyme involved in ketamine N-demethylation. The present study demonstrates that CYP3A4 is the principal enzyme responsible for ketamine N-demethylation in human liver microsomes and that CYP2B6 and CYP2C9 have a minor contribution to ketamine N-demethylation at therapeutic concentrations of the drug.  相似文献   

6.
Azelastine, an antiallergy and antiasthmatic drug, has been reported to be mainly N-demethylated to desmethylazelastine in humans. In the present study, Eadie-Hofstee plots of azelastine N-demethylation in human liver microsomes were biphasic. In microsomes from human B-lymphoblast cells, recombinant cytochrome P-450 (CYP)2D6 and CYP1A1 exhibited higher azelastine N-demethylase activity than did other CYP enzymes. On the other hand, recombinant CYP3A4 and CYP1A2 as well as CYP1A1 and CYP2D6 in microsomes from baculovirus-infected insect cells were active in azelastine N-demethylation. The K(M) value of the recombinant CYP2D6 (2.1 microM) from baculovirus-infected insect cells was similar to the K(M) value of the high-affinity (2.4+/-1.3 microM) component in human liver microsomes. On the other hand, the K(M) values of the recombinant CYP3A4 (51.1 microM) and CYP1A2 (125.4 microM) from baculovirus-infected insect cells were similar to the K(M) value of the low-affinity (79.7+/-12.8 microM) component in human liver microsomes. Bufuralol inhibited the high-affinity component, making the Eadie-Hofstee plot in human liver microsomes monophasic. Azelastine N-demethylase activity in human liver microsomes (5 microM azelastine) was inhibited by ketoconazole, erythromycin, and fluvoxamine (IC(50) = 0.08, 18.2, and 17.2 microM, respectively). Azelastine N-demethylase activity in microsomes from twelve human livers was significantly correlated with testosterone 6beta-hydroxylase activity (r = 0.849, p<.0005). The percent contributions of CYP1A2, CYP2D6, and CYP3A4 in human livers were predicted using several approaches based on the concept of correction with CYP contents or relative activity factors (RAFs). Our data suggested that the approach using RAF(CL) (RAF as the ratio of clearance) is most predictive of the N-demethylation clearance of azelastine because it best reflects the observed N-demethylation clearance in human liver microsomes. Summarizing the results, azelastine N-demethylation in humans liver microsomes is catalyzed mainly by CYP3A4 and CYP2D6, and CYP1A2 to a small extent (in average, 76.6, 21.8, and 3.9%, respectively), although the percent contribution of each isoform varied among individuals.  相似文献   

7.
Ketamine is metabolized by cytochrome P450 (CYP) leading to production of pharmacologically active products and contributing to drug excretion. We identified the CYP enzymes involved in the N-demethylation of ketamine enantiomers using pooled human liver microsomes and microsomes from human B-lymphoblastoid cells that expressed CYP enzymes. The kinetic data in human liver microsomes for the (R)- and (S)-ketamine N-demethylase activities could be analyzed as two-enzyme systems. The K(m) values were 31 and 496 microM for (R)-ketamine, and 24 and 444 microM for (S)-ketamine. Among the 12 cDNA-expressed CYP enzymes examined, CYP2B6, CYP2C9, and CYP3A4 showed high activities for the N-demethylation of both enantiomers at the substrate concentration of 1 mM. CYP2B6 had the lowest K(m) value for the N-demethylation of (R)- and (S)-ketamine (74 and 44 microM, respectively). Also, the intrinsic clearance (CL(int): V(max)/K(m)) of CYP2B6 for the N-demethylation of both enantiomers were 7 to 13 times higher than those of CYP2C9 and CYP3A4. Orphenadrine (CYP2B6 inhibitor, 500 microM) and sulfaphenazole (CYP2C9 inhibitor, 100 microM) inhibited the N-demethylase activities for both enantiomers (5 microM) in human liver microsomes by 60 to 70%, whereas cyclosporin A (CYP3A4 inhibitor, 100 microM) failed to inhibit these activities. In addition, the anti-CYP2B6 antibody inhibited these activities in human liver microsomes by 80%, whereas anti-CYP2C antibody and anti-CYP3A4 antibody failed to inhibit these activities. These results suggest that the high affinity/low capacity enzyme in human liver microsomes is mediated by CYP2B6, and the low affinity/high capacity enzyme is mediated by CYP2C9 and CYP3A4. CYP2B6 mainly mediates the N-demethylation of (R)- and (S)-ketamine in human liver microsomes at therapeutic concentrations (5 microM).  相似文献   

8.
Oxycodone undergoes N-demethylation to noroxycodone and O-demethylation to oxymorphone. The cytochrome P450 (P450) isoforms capable of mediating the oxidation of oxycodone to oxymorphone and noroxycodone were identified using a panel of recombinant human P450s. CYP3A4 and CYP3A5 displayed the highest activity for oxycodone N-demethylation; intrinsic clearance for CYP3A5 was slightly higher than that for CYP3A4. CYP2D6 had the highest activity for O-demethylation. Multienzyme, Michaelis-Menten kinetics were observed for both oxidative reactions in microsomes prepared from five human livers. Inhibition with ketoconazole showed that CYP3A is the high affinity enzyme for oxycodone N-demethylation; ketoconazole inhibited >90% of noroxycodone formation at low substrate concentrations. CYP3A-mediated noroxycodone formation exhibited a mean K(m) of 600 +/- 119 microM and a V(max) that ranged from 716 to 14523 pmol/mg/min. Contribution from the low affinity enzyme(s) did not exceed 8% of total intrinsic clearance for N-demethylation. Quinidine inhibition showed that CYP2D6 is the high affinity enzyme for O-demethylation with a mean K(m) of 130 +/- 33 microM and a V(max) that ranged from 89 to 356 pmol/mg/min. Activity of the low affinity enzyme(s) accounted for 10 to 26% of total intrinsic clearance for O-demethylation. On average, the total intrinsic clearance for noroxycodone formation was 8 times greater than that for oxymorphone formation across the five liver microsomal preparations (10.5 microl/min/mg versus 1.5 microl/min/mg). Experiments with human intestinal mucosal microsomes indicated lower N-demethylation activity (20-50%) compared with liver microsomes and negligible O-demethylation activity, which predict a minimal contribution of intestinal mucosa in the first-pass oxidative metabolism of oxycodone.  相似文献   

9.
The in vitro biotransformation of bupropion to hydroxybupropion was studied in human liver microsomes and microsomes containing heterologously expressed human cytochromes P450 (CYP). The mean (+/-S.E.) K(m) in four human liver microsomes was 89 (+/-14) microM. In microsomes containing cDNA-expressed CYPs, hydroxybupropion formation was mediated only by CYP2B6 at 50 microM bupropion (K(m) 85 microM). A CYP2B6 inhibitory antibody produced more than 95% inhibition of bupropion hydroxylation in four human livers. Bupropion hydroxylation activity at 250 microM was highly correlated with S-mephenytoin N-demethylation activity (yielding nirvanol), another CYP2B6-mediated reaction, in a panel of 32 human livers (r = 0.94). The CYP2B6 content of 12 human livers highly correlated with bupropion hydroxylation activity (r = 0.96). Thus bupropion hydroxylation is mediated almost exclusively by CYP2B6 and can serve as an index reaction reflecting activity of this isoform. IC(50) values for inhibition of a CYP2D6 index reaction (dextromethorphan O-demethylation) by bupropion and hydroxybupropion were 58 and 74 microM, respectively. This suggests a low inhibitory potency versus CYP2D6, the clinical importance of which is not established. Since bupropion is frequently coadministered with other antidepressants, IC(50) values (microM) for inhibition of bupropion hydroxylation were determined as follows: paroxetine (1.6), fluvoxamine (6.1), sertraline (3.2), desmethylsertraline (19.9), fluoxetine (59.5), norfluoxetine (4.2), and nefazodone (25.4). Bupropion hydroxylation was only weakly inhibited by venlafaxine, O-desmethylvenlafaxine, citalopram, and desmethylcitalopram. The inhibition of bupropion hydroxylation in vitro by a number of newer antidepressants suggests the potential for clinical drug interactions.  相似文献   

10.
Phosphorothioate compounds are used throughout the world as agricultural and domestic pesticides. Here, the activation of the phosphorothioate diazinon to diazoxon in human liver is described. In an initial study using three human liver microsomal samples, K(m) for diazoxon formation varied markedly (31, 208, and 660 microM; V(max) 1125, 685, and 1028 pmol/min/mg protein, respectively), suggesting the involvement of more than one P450 enzyme. A wide variation in activity was found using 50 microM diazinon as substrate, (11-648 pmol/min/mg protein, n = 15), whereas, with 500 microM, variation was less (164-978 pmol/min/mg protein). Among eight P450-catalyzed reactions, the putative high-affinity component (50 microM diazinon) correlated with S-mephenytoin 4'-hydroxylase activity (r = 0.686, p < 0.01), suggesting the involvement of CYP2C19. The putative low-affinity component (500 microM diazinon) correlated with both S-mephenytoin 4'-hydroxylase (r = 0.714; p < 0.005) and high-affinity phenacetin O-deethylase activity (r = 0.625; p < 0.05). This activity was partially inhibited by furafylline, troleandomycin, and ketoconazole. These data suggest contributions from CYP2C19, CYP1A2, and CYP3A4. None of the inhibitors affected the high-affinity component. Of seven heterologously expressed human P450 enzymes, CYP2C19 activated diazinon (500 microM) at the fastest rate, followed by CYP3A4, CYP1A2, and CYP2C9. Both hepatic microsomal S-mephenytoin 4'-hydroxylase and high-affinity phenacetin O-deethylase activities were strongly inhibited by diazinon (IC50 < 2.5 microM), while no effect was seen on midazolam 1'-hydroxylase activity. These data indicate that CYP2C19 is the major enzyme involved in diazinon activation in human liver, while other enzymes including CYP1A2 may play a more minor role.  相似文献   

11.
The purpose of this study was to establish bupropion (BUP) hydroxylation as a selective in vitro marker of cytochrome P450 (CYP) 2B6 catalytic activity. Among a panel of 16 human liver microsomes (HLMs), BUP hydroxylase activity varied 80-fold when assayed at 500 microM substrate and significantly correlated with CYP2B6 blotting density (r(2) = 0.99) and S-mephenytoin N-demethylase activity (r(2) = 0.98). Kinetic analysis of BUP hydroxylation was performed in a subset of seven HLMs representative of the 80-fold range in activity. Sigmoidal kinetics suggestive of allosteric activation was observed in five HLMs exhibiting low or high activity; the mean apparent K(m) for BUP hydroxylation in these HLMs (130 microM) was similar to the K(m) for cDNA-expressed CYP2B6 (156 microM). Nonsaturable, biphasic kinetics was observed in two HLMs exhibiting low activity. Among a panel of cDNA-expressed P450 isoforms, CYP2B6 and CYP2E1 demonstrated the highest rates of BUP hydroxylation at 12 mM BUP (7.0 and 2.4 pmol/min/pmol of P450, respectively). The relative contributions of CYP2B6 and CYP2E1 to BUP hydroxylation were estimated by using immunoinhibitory monoclonal antibodies (MAB) to these enzymes. MAB-2B6 produced 88% maximum inhibition of BUP hydroxylation when assayed at 12 mM BUP in a high activity HLM, whereas MAB-2E1 produced 81% maximum inhibition in a low activity HLM. However, negligible inhibition by MAB-2E1 was observed when low and high activity HLMs were assayed at 500 microM BUP. These results demonstrate selectivity of BUP hydroxylation for CYP2B6 at 500 microM BUP, thereby validating its use as a diagnostic in vitro marker of CYP2B6 catalytic activity.  相似文献   

12.
A 1.57kb BamH1 fragment containing a full-length human debrisoquine 4-hydroxylase cytochrome P450 (CYP2D6) cDNA was inserted into the BglII site of the yeast expression plasmid pMA91 and the resulting recombinant plasmid, PELT1, introduced into Saccharomyces cerevisiae strain AH22. Microsomes prepared from AH22/pELT1 cells gave an absorption maximum at 448 nm and a P450 content of 67 +/- 31 pmol/mg of microsomal protein. No P450 was detectable in microsomes prepared from AH22/pMA91 control cells. A western blot of microsomes prepared from yeast transformed with pELT1 were probed with a monoclonal antibody to CYP2D6 and revealed a strong band with a molecular mass consistent with that of CYP2D6 from human liver microsomes. No corresponding band was observed with microsomes from control yeast transformed with pMA91 alone. Microsomes from AH22/pELT cells showed catalytic activity towards metoprolol (alpha-hydroxylation and O-demethylation, 0.17 and 0.78 nmol/mg protein/h, respectively); and towards sparteine (2- and 5-dehydrogenation, 1.82 and 0.59 nmol/mg protein/h, respectively). The inhibition of metoprolol metabolism by quinidine (Qd) was 200 times more potent than that of quinine (Qn), both for alpha-hydroxylation (Qd IC50 = 0.05 microM; Qn IC50 = 4 microM) and O-demethylation (Qd IC50 = 0.05 microM; Qn IC50 = 4 microM). Negligible metabolism of tolbutamide and S-mephenytoin, substrates of the 2C sub-family, and of p-nitrophenol, a substrate of CYP2E1, was detected, although a trace of the N-deethylated metabolite of lignocaine, thought to be metabolised by CYP3A4, was detected with microsomes from CYP2D6-expressing yeast cells. The results indicate that yeast cells containing human CYP2D6 cDNA express a functionally active form of the enzyme, the immunochemical and catalytic properties of which are consistent with those of human liver.  相似文献   

13.
In humans, the antimalarial drug chloroquine (CQ) is metabolized into one major metabolite, N-desethylchloroquine (DCQ). Using human liver microsomes (HLM) and recombinant human cytochrome P450 (P450), we performed studies to identify the P450 isoform(s) involved in the N-desethylation of CQ. In HLM incubated with CQ, only DCQ could be detected. Apparent Km and Vmax values (mean +/- S.D.) for metabolite formation were 444 +/- 121 microM and 617 +/- 128 pmol/min/mg protein, respectively. In microsomes from a panel of 16 human livers phenotyped for 10 different P450 isoforms, DCQ formation was highly correlated with testosterone 6beta-hydroxylation (r = 0.80; p < 0.001), a CYP3A-mediated reaction, and CYP2C8-mediated paclitaxel alpha-hydroxylation (r = 0.82; p < 0.001). CQ N-desethylation was diminished when coincubated with quercetin (20-40% inhibition), ketoconazole, or troleandomycin (20-30% inhibition) and was strongly inhibited (80% inhibition) by a combination of ketoconazole and quercetin, which further corroborates the contribution of CYP2C8 and CYP3As. Of 10 cDNA-expressed human P450s examined, only CYP1A1, CYP2D6, CYP3A4, and CYP2C8 produced DCQ. CYP2C8 and CYP3A4 constituted low-affinity/high-capacity systems, whereas CYP2D6 was associated with higher affinity but a significantly lower capacity. This property may explain the ability of CQ to inhibit CYP2D6-mediated metabolism in vitro and in vivo. At therapeutically relevant concentrations ( approximately 100 microM CQ in the liver), CYP2C8, CYP3A4, and, to a much lesser extent, CYP2D6 are expected to account for most of the CQ N-desethylation.  相似文献   

14.
1. The aim was to identify the cytochrome P450 (CYP) enzymes responsible for the N-demethylation of morphine in vitro. 2. In human liver microsomes, normorphine formation followed Michaelis-Menten kinetics with mean Km and Vmax of 12.4 +/- 2.2 mM and 1546 +/- 121 pmol min(-1) mg(-1), respectively. In microsomes from a panel of 14 human livers phenotyped for 10 CYP enzymes, morphine N-demethylation correlated with testosterone 6beta-hydroxylation (r=0.91, p<0.001) and paclitaxel 6-alpha hydroxylation (r=0.72, p<0.001), two specific markers of CYP3A4 and CYP2C8, respectively. Normorphine formation decreased when incubated in the presence of troleandomycin or quercetin (by 46 and 33-36%, respectively), which further corroborates the contribution of CYP3A4 and CYP2C8. 3. Among eight recombinant human CYP enzymes tested, CYP3A4 and CYP2C8 exhibited the highest intrinsic clearance. More than 90% of morphine N-demethylation could be accounted for via the action of both CYP3A4 and CYP2C8. 4. The in vitro findings suggest that hepatic CYP3A4, and to a lesser extent CYP2C8, play an important role in the metabolism of morphine into normorphine.  相似文献   

15.
The aim of this study was to re-examine the human hepatic metabolism of diclofenac, with special focus on the generation of minor hydroxylated metabolites implicated in the idiosyncratic hepatotoxicity of the drug. Different experimental approaches were used: human hepatocytes, human microsomes, and engineered cells expressing single human CYP (cytochromes P450). Human hepatocytes formed 3'-hydroxy-, 4'-hydroxy-, 5-hydroxy- 4',5-dihydroxy-, and N,5-dihydroxydiclofenac, as well as several lactams. Formation of 4'- and 5-hydroxydiclofenac by human liver microsomes followed a Michaelis-Menten kinetics (Km 9 +/- 1 microM; Vmax 432 +/- 15 pmol/min/mg and Km 43 +/- 5 microM; and Vmax 15.4 +/- 0.6 pmol/min/mg, respectively). Secondary metabolites were detected after incubation of 5-hydroxydiclofenac with human liver microsomes, yielding 4',5-dihydroxydiclofenac (Km 15 +/- 1 microM; Vmax 96 +/- 3 pmol/min/mg) and small amounts of N,5-dihydroxydiclofenac (non-Michaelis-Menten kinetics). Based on microsome studies and the incubations with human hepatocytes and engineered cells, we estimated that in vivo CYP2C9 would be exclusively responsible for the 4' hydroxylation of diclofenac (>99.5%) as well as 5-hydroxydiclofenac (>97%). CYP2C9 was exclusively responsible for the formation of 3'-hydroxydiclofenac. Multiple regression analysis evidenced that the rate of production of 5-hydroxydiclofenac in human microsomes followed the algorithm: 0.040 x S-mephenytoin 4'-hydroxylation + 0.083 x tolbutamide methylhydroxylation, (multiple correlation coefficient = 0.969). However, the incubation of diclofenac with cell lines expressing different human CYP suggested that 7 isoforms could be involved. Comparison of data obtained with CYP-expressing cells and human hepatocytes suggests that CYP2C8 > CYP2C19 approximately CYP2C18 > CYP2B6 are the isoforms implicated in the 5-hydroxylation of diclofenac in vivo.  相似文献   

16.
Nicotine C-oxidation by recombinant human cytochrome P450 (P450 or CYP) enzymes and by human liver microsomes was investigated using a convenient high-performance liquid chromatographic method. Experiments with recombinant human P450 enzymes in baculovirus systems, which co-express human nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH)-P450 reductase, revealed that CYP2A6 had the highest nicotine C-oxidation activities followed by CYP2B6 and CYP2D6; the K m values by these three P450 enzymes were determined to be 11.0, 105, and 132 μM, respectively, and the V max values to be 11.0, 8.2, and 8.6 nmol/min per nmol P450, respectively. CYP2E1, 2C19, 1A2, 2C8, 3A4, 2C9, and 1A1 catalysed nicotine C-oxidation only at high (500 μM) substrate concentration. CYP1B1, 2C18, 3A5, and 4A11 had no measurable activities even at 500 μM nicotine. In liver microsomes of 16 human samples, nicotine C-oxidation activities were correlated with CYP2A6 contents at 10 μM substrate concentration, whereas such correlation coefficients were decreased when the substrate concentration was increased to 500 μM. Contribution of CYP2B6 (as well as CYP2A6) was demonstrated by experiments with the effects of orphenadrine (and also coumarin and anti-CYP2A6) on the nicotine C-oxidation activities by human liver microsomes at 500 μM nicotine. CYP2D6 was found to have minor roles since quinidine did not inhibit microsomal nicotine C-oxidation at both 10 and 500 μM substrate concentrations. These results support the view that CYP2A6 has major roles for nicotine C-oxidation at lower substrate concentration and both CYP2A6 and 2B6 play roles at higher substrate concentrations in human liver microsomes. Received: 27 October 1998 / Accepted: 11 January 1999  相似文献   

17.
CYP2A6 is the principle enzyme metabolizing nicotine to its inactive metabolite cotinine. In this study, the selective probe reactions for each major cytochrome P450 (P450) were used to evaluate the specificity and selectivity of the CYP2A6 inhibitors methoxsalen, tranylcypromine, and tryptamine in cDNA-expressing and human liver microsomes. Phenacetin O-deethylation (CYP1A2), coumarin 7-hydroxylation (CYP2A6), diclofenac 4'-hydroxylation (CYP2C9), omeprazole 5-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), 7-ethoxy-4-trifluoromethylcoumarin deethylation (CYP2B6), p-nitrophenol hydroxylation (CYP2E1), and omeprazole sulfonation (CYP3A4) were used as index reactions. Apparent K(i) values for inhibition of P450s' (1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, and 3A4) activities showed that tranylcypromine, methoxsalen, and tryptamine have high specificity and relative selectivity for CYP2A6. In cDNA-expressing microsomes, tranylcypromine inhibited CYP2A6 (K(i) = 0.08 microM) with about 60- to 5000-fold greater potency relative to other P450s. Methoxsalen inhibited CYP2A6 (K(i) = 0.8 microM) with about 3.5- 94-fold greater potency than other P450s, except for CYP1A2 (K(i) = 0.2 microM). Tryptamine inhibited CYP2A6 (K(i) = 1.7 microM) with about 6.5- 213-fold greater potency relative to other P450s, except for CYP1A2 (K(i) = 1.7 microM). Similar results were also obtained with methoxsalen and tranylcypromine in human liver microsomes. R-(+)-Tranylcypromine, (+/-)-tranylcypromine, and S-(-)-tranylcypromine competitively inhibited CYP2A6-mediated metabolism of nicotine with apparent K(i) values of 0.05, 0.08, and 2.0 microM, respectively. Tranylcypromine [particularly R-(+) isomer], tryptamine, and methoxsalen are specific and relatively selective for CYP2A6 and may be useful in vivo to decrease smoking by inhibiting nicotine metabolism with a low risk of metabolic drug interactions.  相似文献   

18.
Pilocarpine is a cholinergic agonist that is metabolized to pilocarpic acid by serum esterase. In this study, we discovered a novel metabolite in human urine after the oral administration of pilocarpine hydrochloride, and we investigated the metabolic enzyme responsible for the metabolite formation. The structure of the metabolite was identified as 3-hydroxypilocarpine by liquid chromatography-tandem mass spectrometry and NMR analyses and by comparing to the authentic metabolite. To clarify the human cytochrome P450 (P450) responsible for the metabolite formation, in vitro experiments using P450 isoform-selective inhibitors, cDNA-expressed human P450s (Supersomes; CYP1A2, -2A6, -2B6, -2C9, -2C19, -2D6, -2E1, and -3A4), and liver microsomes from different donors were conducted. The formation of 3-hydroxypilocarpine in human liver microsomes was strongly inhibited (>90%) by 200 microM coumarin. Other selective inhibitors of CYP1A2 (furafylline and alpha-naphthoflavone), CYP2C9 (sulfaphenazole), CYP2C19 [(S)-mephenytoin], CYP2E1 (4-methylpyrazole), CYP2D6 (quinidine), and CYP3A4 (troleandomycin) had a weak inhibitory effect (<20%) on the formation. The highest formation activity was expressed by recombinant CYP2A6. The K(m) value for recombinant CYP2A6 was 3.1 microM, and this value is comparable with that of human liver microsomes (1.5 microM). The pilocarpine 3-hydroxylation activity was correlated with coumarin 7-hydroxylation activity in 16 human liver microsomes (r = 0.98). These data indicated that CYP2A6 is the main enzyme responsible for the 3-hydroxylation of pilocarpine. In conclusion, we identified a novel metabolite of pilocarpine, 3-hydroxypilocarpine, and we clarified the involvement of CYP2A6 in the formation of this molecule in human liver microsomes.  相似文献   

19.
Clinically, cimetidine therapy impairs the clearance of various drugs metabolized by CYP2D6, such as desipramine and sparteine. Cimetidine is known to reversibly inhibit CYP2D6 in vitro; however, Ki values are greater than plasma concentrations observed in vivo. There is evidence suggesting that this drug may act as an inactivator of cytochrome P450 (P450) enzymes after metabolic activation. Therefore, the purpose of this study was to determine whether cimetidine acts as a mechanism-based inactivator of CYP2D6. Dextromethorphan O-demethylation was used as a probe of CYP2D6 activity. The Vmax and Km of this reaction were 0.82 +/- 0.06 nmol/min/nmol of P450 and 4.1 +/- 0.1 microM, respectively, in pooled human liver microsomes; and 15.9 +/- 0.8 nmol/min/nmol P450 and 1.4 +/- 0.6 microM, respectively, with recombinant CYP2D6. With human liver microsomes, cimetidine competitively inhibited CYP2D6 (Ki = 38 +/- 5 microM) and was a mixed inhibitor of recombinant CYP2D6 (Ki = 103 +/- 17 microM). Preincubation of human liver microsomes with cimetidine and NADPH did not increase the inhibitory potency of cimetidine; however, preincubation with recombinant CYP2D6 resulted in enzyme inactivation that could be attenuated by the CYP2D6 inhibitor quinidine. The KI and kinact were estimated to be 77 microM and 0.03 min-1, respectively, and the half-life of inactivation was 25 min. Therefore, cimetidine may represent a class of compounds capable of inactivating specific cytochromes P450 in vivo, but for which conditions may not be achievable in vitro using human liver microsomes.  相似文献   

20.
The enzyme kinetics of the initial hydroxylation of ethylbenzene to form 1-phenylethanol were determined in human liver microsomes. The individual cytochrome P450 (CYP) forms catalysing this reaction were identified using selective inhibitors and recombinant preparations of hepatic CYPs. Production of 1-phenylethanol in hepatic microsomes exhibited biphasic kinetics with a high affinity, low Km, component (mean Km = 8 microM; V(max) = 689 pmol/min/mg protein; n = 6 livers) and a low affinity, high Km, component (Km = 391 microM; V(max) = 3039 pmol/min/mg protein; n = 6). The high-affinity component was inhibited 79%-95% (mean 86%) by diethyldithiocarbamate, and recombinant CYP2E1 was shown to metabolise ethylbenzene with low Km (35 microM), but also low (max) (7 pmol/min/pmol P450), indicating that this isoform catalysed the high-affinity component. Recombinant CYP1A2 and CYP2B6 exhibited high V(max) (88 and 71 pmol/min/pmol P450, respectively) and high Km (502 and 219 microM, respectively), suggesting their involvement in catalysing the low-affinity component. This study has demonstrated that CYP2E1 is the major enzyme responsible for high-affinity side chain hydroxylation of ethylbenzene in human liver microsomes. Activity of this enzyme in the population is highly variable due to induction or inhibition by physiological factors, chemicals in the diet or some pharmaceuticals. This variability can be incorporated into the risk assessment process to improve the setting of occupational exposure limits and guidance values for biological monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号