首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increases in cadence may augment SV during submaximal cycling (> 65 % VO2max) via effects of increased muscle pump activity on preload. At lower workloads (45 - 65 % VO2max), SV tends to plateau, suggesting that effects of increases in cadence on pump activity have little influence on SV. We hypothesized that cadence-induced increases in CO at submaximal workloads, where SV tends to plateau, are due to elevations in HR and/or O2 extraction. SV, CO, HR, VO2, and delta a - vO2 were assessed at 80 and 100 rpm during workloads of 50 % (LO) or 65 % (HI) of VO2max in 11 male cyclists. No changes in SV were seen. CO was higher at 100 rpm in 10 of 11 subjects at LO (18.1 +/- 2.7 vs. 17.2 +/- 2.6 L/min). VO2 at both workloads was greater at 100 than 80 rpm as was HR (LO: 129 +/- 11 vs. 121 +/- 10 beats/min; HI: 146 +/- 13 vs. 139 +/- 14 beats/min) (p < 0.05). delta a - vO2 was greater at HI compared to LO at 80 (15.1 +/- 1.6 vs. 13.6 +/- 1.3 ml) and 100 rpm (16.0 +/- 1.7 vs. 15.1 +/- 1.6 ml) (p < 0.05). Results suggest that increases in O2 demand during low submaximal cycling (50 % VO2max) at high cadences are met by HR-induced increases in CO. At higher workloads (65 % VO2max), inability of higher cadences to increase CO and O2 delivery is offset by greater O2 extraction.  相似文献   

2.
3.
The aim of the study was to compare the cardiorespiratory and neuromuscular responses to water aerobics exercise performed with and without equipment. 15 women performed stationary jogging combined with elbow flexion/extension without equipment, with water-drag forces equipment and with water-floating equipment, at 2 submaximal cadences and at maximal cadence. Heart rate, oxygen uptake and electromyographic signal from biceps brachii, triceps brachii, biceps femoris and rectus femoris were collected during the exercise. The heart rate and oxygen uptake showed significantly higher values during the execution of the water aerobics exercise with either equipment compared to the execution without equipment. In addition, significant difference was found between submaximal cadences. For neuromuscular responses, no significant differences were found between the submaximal cadences for all muscles analyzed; however, significant differences were found between these submaximal cadences and the maximal cadence. Similarly, the results showed no significant differences between the execution of the exercise with or without equipment, except in the muscle activation of triceps brachii and biceps femoris, which was higher when using water-floating and water-drag forces equipment, respectively. In conclusion, the water aerobics exercise presented higher cardiorespiratory responses with equipment and also increased the cadence of execution. Nevertheless, neuromuscular responses were higher only at maximal cadence.  相似文献   

4.
PURPOSE: Previously we demonstrated that the method to reorder near-infrared spectroscopy (NIRS) parameters against crank angle could serve as a useful measure in providing circulatory dynamics and metabolic changes in a working muscle during pedaling exercise. To examine further applicability of this method, we investigated the effects of cycling experience and pedal cadence on the NIRS parameters. METHODS: Noncyclists (NON), triathletes (TRI), and cyclists (CYC) performed pedaling exercises at a work intensity of 75% VO2max while changing pedal cadence (50, 75, 85, and 95 rpm). Physiological and biomechanical responses and NIRS parameters were measured. RESULTS: NIRS measurements determined with the reordered NIRS change demonstrated significant differences depending on the factors. The bottom peak of reordered NIRS changes in muscle blood volume and oxygenation level shifted upward with an increase in pedal cadence in NON but remained unchanged in CYC. The reordered NIRS change demonstrated a temporary increase at the crank angle corresponding to the relaxation phase of the working muscle. This temporary increase was observed even in the highest pedal cadence in CYC. The difference in levels between the peak of the temporary increase and the bottom peak of reordered NIRS change (LPB-diff) for CYC at 85 rpm was significantly larger than that for NON. The results with NIRS parameters corresponded to changes in pedal force and myoelectric activity during pedal thrust. CONCLUSIONS: The bottom peak level of the reordered NIRS changes and LPB-diff determined for blood volume are available to detect noninvasively the differences in circulatory dynamics and metabolic change during pedaling exercises performed at different pedal cadences and also to estimate the difference of physiological and technical developments for endurance cycling in athletes.  相似文献   

5.
Relationship between strength level and pedal rate   总被引:1,自引:0,他引:1  
The purpose of this study was to examine the relationship between strength capacity and preferred and optimal cadence in well trained cyclists. Eighteen cyclists participated in this study. Each subject completed three sessions. The initial session was to evaluate the maximal isokinetic voluntary contraction level of lower limb. The second session was an incremental test to exhaustion. During the third session subjects performed a constant cycling exercise (20 min) conducted at five randomly cadences (50, 70, 90, 110 rpm) and at the preferred cadence (FCC) at the power reached at ventilatory threshold. Cardiorespiratory and EMG values were recorded. A metabolic optimum (EOC) was observed at 63.5 +/- 7.8 rpm different from preferred cadence (FCC, 90.6 +/- 9.1 rpm). No difference was found between FCC and the neuromuscular optimal cadence (NOC, 93.5 +/- 4). Significant relationships were found between EOC, NOC and strength capacities (r = - 0.75 and - 0. 63), whereas FCC was only related with VO2max (r = 0.59). The main finding of this study was that during submaximal cycling energetically optimal cadence or neuromuscular optimum in trained cyclists was significantly related with strength capacity and whereas preferred cadence seems to be related with endurance training status of cyclists.  相似文献   

6.
Hand cycling is a popular form of wheeled mobility. This study evaluates biophysical differences between synchronous/asynchronous hand cycling. During submaximal hand cycling on a motor driven treadmill, 9 able-bodied subjects performed 2 series of 4 steady state exercise bouts at 1.11 to 2.78 m/s. Metabolic parameters, mean force on the handle bar, muscle activity and local perceived exertion in the upper body were determined. Mean power output was 35.4 +/- 7 W (v = 2.78 m/s). At this speed oxygen uptake was 1.11 +/- 0.25 and 1.26 +/- 0.26 l/min for the synchronous and asynchronous modes, respectively. Mechanical efficiency was significantly higher (v = 2.78 m/s: + 11.5 %) in synchronous cycling. Higher activity of m. obliquus externus and extensor carpi ulnaris was seen. Mean 2D total force and fraction effective force on the handle bar were lower in asynchronous hand cycling. Local perceived discomfort was higher in the asynchronous mode for different arm regions. Synchronous hand cycling is more efficient and at a lower metabolic cost. Mean muscle activation and the local perceived discomfort may explain some results. Future study should focus on combined time-based force and muscle activity characteristics. Synchronous hand cycling should be preferred during submaximal exercise in early rehabilitation.  相似文献   

7.
OBJECTIVES: To investigate the effect of three cycling cadences on a subsequent 3000 m track running performance in well trained triathletes. METHODS: Nine triathletes completed a maximal cycling test, three cycle-run succession sessions (20 minutes of cycling + a 3000 m run) in random order, and one isolated run (3000 m). During the cycling bout of the cycle-run sessions, subjects had to maintain for 20 minutes one of the three cycling cadences corresponding to 60, 80, and 100 rpm. The metabolic intensity during these cycling bouts corresponded approximately to the cycling competition intensity of our subjects during a sprint triathlon (> 80% VO(2)max). RESULTS: A significant effect of the prior cycling exercise was found on middle distance running performance without any cadence effect (625.7 (40.1), 630.0 (44.8), 637.7 (57.9), and 583.0 (28.3) seconds for the 60 rpm run, 80 rpm run, 100 rpm run, and isolated run respectively). However, during the first 500 m of the run, stride rate and running velocity were significantly higher after cycling at 80 or 100 rpm than at 60 rpm (p<0.05). Furthermore, the choice of 60 rpm was associated with a higher fraction of VO(2)max sustained during running compared with the other conditions (p<0.05). CONCLUSIONS: The results confirm the alteration in running performance completed after the cycling event compared with the isolated run. However, no significant effect of the cadence was observed within the range usually used by triathletes.  相似文献   

8.
PURPOSE: The purpose of this study was to investigate the influence of different cycling cadences on metabolic and kinematic parameters during subsequent running. METHODS: Eight triathletes performed two incremental tests (running and cycling) to determine maximal oxygen uptake (VO2max) and ventilatory threshold (VT) values, a cycling test to assess the energetically optimal cadence (EOC), three cycle-run succession sessions (C-R, 30-min cycle + 15-min run), and one 45-min isolated run (IR). EOC, C-R, and IR sessions were realized at an intensity corresponding to VT + 5%. During the cycling bouts of C-R sessions, subjects had to maintain one of the three pedaling cadences corresponding to the EOC (72.5 +/- 4.6 rpm), the freely chosen cadence (FCC; 81.2 +/- 7.2 rpm), and the theoretical mechanical optimal cadence (MOC, 90 rpm; Neptune and Hull, 1999). RESULTS: Oxygen uptake (VO2) increased during the 30-min cycling only at MOC (+12.0%) and FCC (+10.4%). During the running periods of C-R sessions, VO2, minute ventilation, and stride-rate values were significantly higher than during the IR session (respectively, +11.7%, +15.7%, and +7.2%). Furthermore, a significant effect of cycling cadence was found on VO2 variability during the 15-min subsequent run only for MOC (+4.1%) and FCC (+3.6%). CONCLUSION: The highest cycling cadences (MOC, FCC) contribute to an increase in energy cost during cycling and the appearance of a VO2 slow component during subsequent running, whereas cycling at EOC leads to a stability in energy cost of locomotion with exercise duration. Several hypotheses are proposed to explain these results such as changes in fiber recruitment or hemodynamic modifications during prolonged exercise.  相似文献   

9.
PURPOSE: To examine the influence of cadence, cycling experience, and aerobic power on delta efficiency during cycling and to determine the significance of delta efficiency as a factor underlying the selection of preferred cadence. METHODS: Delta efficiency (DE) was determined for 11 trained experienced cyclists (C), 10 trained runners (R), and 10 less-trained noncyclists (LT) at 50, 65, 80, 95, and 110 rpm. Preferred cadence (PC) was determined at 100, 150, and 200 W for C and R and at 75, 100, and 150 W for LT. Gas exchange at each power output (PO) was measured on a separate day, and the five cadences were randomly ordered on each occasion. It was hypothesized that: a) cyclists are most efficient at the higher cadences at which they are accustomed to training and racing, i.e., there will be a trend for DE to increase with increases in cadence; b) cyclists and runners will exhibit similar DE across the range of cadences tested; and c) DE of less-trained subjects will be lower than that of cyclists and runners. RESULTS: PCs of C and R were similar and did not change appreciably with PO (100 W:C, 95.6 +/- 10.8; R, 92.0 +/- 8.5: 150 W:C, 94.4 +/- 10.3; R, 92.9 +/- 7.8: 200 W:C, 92.2 +/- 7.2; R, 91.8 +/- 7.9 rpm). The PC of LT was significantly lower and decreased with increases in power output (75 W: 80.0 +/- 15.3; 100 W; 77.5 +/- 15.1; 150 W; 69.1 +/- 11.9 rpm). The first hypothesis was rejected because analysis of the cyclists' data alone revealed no systematic increase in DE as cadence was increased [F(4,40) = 0.272, P = 0.894]. Repeated measures ANOVA on all three groups revealed no group x cadence interaction [F(8,112) = 0.589, P = 0.785]. Again there was no systematic effect of cadence on DE [F(4,112) = 1.058, P = 0.381]. The second and third hypotheses were also rejected since there was no group main effect, i.e., DE of cyclists, runners, and less-trained subjects were not significantly different [F(2,28) = 1.397, P = 0.264]. CONCLUSION: Pedaling cadence did not have a dramatic effect on DE in any group. Muscular efficiency, as measured indirectly by delta efficiency, appears to remain relatively constant at approximately 24%, regardless of cycling experience or fitness level.  相似文献   

10.
Competitive cyclists generally climb hills at a low cadence despite the recognized advantage in level cycling of high cadences. To test whether a high cadence is more economical than a low cadence during uphill cycling, nine experienced cyclists performed steady-state bicycling exercise on a treadmill under three randomized trials. Subjects bicycled at 11.3 km.h-1 up a 10% grade while 1) pedalling at 84 rpm in a sitting position-84 Sit, 2) pedalling at 41 rpm in a standing position-41 Stand, and 3) pedalling at 41 rpm in a sitting position-41 Sit. Heart rate (HR), oxygen consumption (VO2), ventilation (VE), and respiratory exchange ratio were measured continuously during 5-min trials and averaged over the last 2 min. Additionally, rating of perceived exertion was recorded during the fifth minute of each trial, and blood lactate concentration was recorded immediately before and after each trial. Significantly lower values for HR, VO2 and VE were recorded during 84 Sit (164 +/- 3 bpm, 51.8 +/- 0.8 ml.min-1 x kg-1, 94 +/- 5 l.min-1) than for either the 41 Stand (171 +/- 2 bpm, 53.1 +/- 0.7 ml.min-1 x kg-1, 105 +/- 6 l.min-1) o 41 Sit (168 +/- 2 bpm, 53.1 +/- 0.8 ml.min-1 x kg-1, 101 +/- 6 l.min-1) trials. No other differences were noted between trials for any of the measured variables. We conclude that uphill cycling is more economical at a high versus a low cadence.  相似文献   

11.

Objectives

To determine whether the integrated electromyographic signal of two lower limb muscles indicates preferred cadence during a two hour cycling task.

Methods

Eight male triathletes performed right isometric maximum voluntary contraction (MVC) knee extension and plantar flexion before (P1) and after (P2) a two hour laboratory cycle at 65% of maximal aerobic power. Freely chosen cadence (FCC) was also determined, also at 65% of maximal aerobic power, from five randomised three minute sessions at 50, 65, 80, 95, and 110 rpm. The integrated electromyographic signal of the vastus lateralis and gastrocnemius lateralis muscles was recorded during MVC and the cycle task.

Results

The FCC decreased significantly (p<0.01) from P1 (87.4 rpm) to P2 (68.6 rpm), towards the energetically optimal cadence. The latter did not vary significantly during the cycle task. MVC of the vastus lateralis and gastrocnemius lateralis decreased significantly (p<0.01) between P1 and P2 (by 13.5% and 9.6% respectively). The results indicate that muscle activation at constant power was not minimised at specific cadences. Only the gastrocnemius lateralis muscle was affected by a two hour cycling task (especially at 95 and 110 rpm), whereas vastus lateralis remained stable.

Conclusion

The decrease in FCC observed at the end of the cycle task may be due to changes in the muscle fibre recruitment pattern with increasing exercise duration and cadence.  相似文献   

12.
The purpose of this study was to examine the relationship between cadence and oxygen consumption with exercise duration. Ten triathletes who trained regularly were examined. The first test was always a maximal test to determine maximal oxygen uptake (VO2max). The other sessions were composed of six submaximal tests representing 80% of the maximal power reached with VO2max (Pmax). During these tests submaximal rides with a duration of 30 min were performed. Each test represented, in a randomised order, one of the following pedal rates: 50, 65, 80, 95, 110 rpm and a freely-chosen rate. VO2, respiratory parameters, and heart rate were monitored continuously. Two periods, between the 3rd and the 6th minute and between the 25th and the 28th minute, were analysed. Results showed that when VO2 and heart rate were plotted against cadence, each curve could be best described by a parabolic function, whatever the period. Furthermore, a significant effect of period was found on energetically optimal cadence (70 +/- 4.5 vs. 86 +/- 6.2 rpm, P < 0.05). Only during the second period was no significant difference found between freely-chosen cadence (83 +/- 6.9 rpm) and energetically optimal cadence (P > 0.05). In conclusion, our results suggest that during prolonged exercise triathletes choose a cadence that is close to the energetically optimal cadence. A change of muscle fibre recruitment pattern with exercise duration and cadence would explain the shift in energetically optimal rate towards a higher pedal rate observed at the end of exercise.  相似文献   

13.
The purpose of this study was to compare the effect of two different types of cyclic severe exercise (running and cycling) on the VO2 slow component. Moreover we examined the influence of cadence of exercise (freely chosen [FF] vs. low frequency [LF]) on the hypothesis that: 1) a stride frequency lower than optimal and 2) a pedalling frequency lower than FF one could induce a larger and/or lower VO2 slow component. Eight triathletes ran and cycled to exhaustion at a work-rate corresponding to the lactate threshold + 50% of the difference between the work-rate associated with VO2max and the lactate threshold (delta 50) at a freely chosen (FF) and low frequency (LF: - 10 % of FF). The time to exhaustion was not significantly different for both types of exercises and both cadences (13 min 39 s, 15 min 43 s, 13 min 32 s, 15 min 05 s for running at FF and LF and cycling at FF and LF, respectively). The amplitude of the VO2 slow component (i.e. difference between VO2 at the last and the 3rd min of the exercise) was significantly smaller during running compared with cycling, but there was no effect of cadence. Consequently, there was no relationship between the magnitude of the VO2 slow component and the time to fatigue for a severe exercise (r = 0.20, p = 0.27). However, time to fatigue was inversely correlated with the blood lactate concentration for both modes of exercise and both cadences (r = - 0.42, p = 0.01). In summary, these data demonstrate that: 1) in subjects well trained for both cycling and running, the amplitude of the VO2 slow component at fatigue was larger in cycling and that it was not significantly influenced by cadence; 2) the VO2 slow component was not correlated with the time to fatigue. If the nature of the linkage between the VO2 slow component and the fatigue process remains unclear, the type of contraction regimen depending on exercise biomechanic characteristics seems to be determinant in the VO2 slow component phenomenon for a same level of training.  相似文献   

14.
PURPOSE: This study was conducted to determine the effect of high pedaling cadences on maximal cycling power output (W(max)). METHODS: Nine well-trained cyclists performed a continuous, incremental cycle-ergometer test to exhaustion (25 W increases every 3 min) either at 80, 100, or 120 rpm on three different occasions. RESULTS: W(max) was approximately 9% lower during 120 rpm in comparison with 80 and 100 rpm (335 +/- 9, 363 +/- 7, and 370 +/- 12 W, respectively; P < 0.05). During 120 rpm, ventilation rate (V(E)) increased above the increases in expired CO(2), which reduced the power output (PO) at the ventilatory anaerobic threshold (VT(2)) by 11% (P < 0.05). Gross efficiency (GE) did not differ among trials. At 120 rpm, capillary blood lactate concentration ([Lac]) increased above the 80-rpm trial (5.3 +/- 1.2 vs 3.0 +/- 0.7 mM at 300 W; P < 0.05), although pH was not reduced. At 120 rpm, expired CO(2) increased and reduced blood bicarbonate concentration ([HCO(3)(-)]) was reduced, maintaining blood pH similar to the other trials. CONCLUSION: A high pedaling cadence (i.e., 120 rpm) reduces performance (i.e., W(max)) and anaerobic threshold during an incremental test in well-trained cyclists. The data suggest that ventilatory anaerobic threshold (VT(2)) is a sensitive predictor of optimal pedaling cadence for performance, whereas blood pH or efficiency is not.  相似文献   

15.
PURPOSE: The purpose of this study was to determine gross mechanical efficiency (ME) at different power output (PO) levels of synchronous hand cycling and to evaluate the influence of increasing PO by changing crank rate or resistance in wheelchair users with experience in hand cycling. METHODS: Nine male participants with spinal cord injury randomly performed three maximal incremental hand cycling tests using a computer controlled cycle ergometer. Each test started at a PO level of 50 W with increments of 10 W. In the velocity protocol, PO was increased via crank rate while resistance was constant (VEL). In the resistance protocol PO was increased via resistance while crank rate was constant (RES). In the freely chosen frequency protocol, the participants could freely select their crank rate while resistance was automatically adjusted to obtain the desired PO (FCF). RESULTS: Peak physiological responses were similar in all three tests, whereas PO max was lower in VEL compared with RES and FCF. Similar values for gross ME were found in both RES and FCF protocols, although systematically higher and increasing crank rates were adopted throughout FCF. Nevertheless, differences in gross ME at comparable relative (RES > VEL at 60 and 80% of PO range: 14.09 and 14.40% vs 13.02 and 13.11%, respectively) and absolute (RES, FCF > VEL at 90 W: 14.47, 14.47, and 13.43%, respectively) PO levels were demonstrated. CONCLUSION: These results suggest that during synchronous hand cycling the freely chosen crank rate is not necessarily the most economical, that high crank rates result in a lower ME at a given PO and that freely chosen crank rates increase with increasing PO levels.  相似文献   

16.
This study investigated the effects of changing cadence and workload on pedaling technique. Eight cyclists were evaluated during an incremental maximal cycling and two 30-minute submaximal trials at 60 % and 80 % of maximal power output (W (60 %) and W (80 %), respectively). During submaximal 30-minute trials, they cycled for 10 minutes at a freely chosen cadence (FCC), 10 minutes at a cadence 20 % above FCC (FCC + 20 %), and 10 minutes at a cadence 20 % below FCC (FCC - 20 %). Pedal forces and kinematics were evaluated. The resultant force (RF), effective force (EF), index of effectiveness (IE) and IE during propulsive and recovery phase (IEprop and IErec, respectively) were computed. For W (60 %), FCC - 20 % and FCC presented higher EFmean (69 +/- 9 N and 66 +/- 14 N, respectively) than FCC + 20 % (52 +/- 14 N). FCC presented the highest IEprop (81 +/- 4 %) among the cadences (74 +/- 4 and 78 +/- 5 % for FCC - 20 % and FCC + 20 %, respectively). For W (80 %), FCC presented higher EFmean (81 +/- 5 N) than FCC + 20 % (72 +/- 10 N). The FCC - 20 % presented the lower IEprop (71 +/- 7 %) among the cadences. The EFmin was higher for W (80 %) than W (60 %) for all cadences. The IE was higher at W (80 %) (61 +/- 5 %) than W (60 %) (54 +/- 9 %) for FCC + 20 % (all p < 0.05). Lower cadences were more effective during the recovery phase for both intensities and FCC was the best technique during the propulsive phase.  相似文献   

17.
The purposes of this study are to determine the optimal cadence of individuals and to subsequently determine the effectiveness of the augmented feedback training program on cadence technique modification. Eighteen physically active subjects, 14 males and 4 females who are aged 18 to 23, were the volunteer subjects of the study. Each subject performed three sessions of exercise in a random order at the cadences of 60, 70, and 80 revolutions per minute (rpm). Myoelectric signals from the vastus lateralis muscle were recorded during the criterion exercise to determine the optimal cadence of individual subjects. They also participated in a 10-day cadence training program, during which the augmented feedback group was provided with cadence information, while the control group trained without the feedback. The time percentage of cadence error that deviated from the optimal cadence in the augmented feedback group was reduced significantly (p < 0.05) after 10 days of training, and the same result was shown in the retention test.  相似文献   

18.
The effects of three different cadences and five different work rates on Gross (GE) and Delta Efficiency (DE) during cycle ergometry were studied. Fifteen well-trained cyclists exercised for 30 minutes at 60, 80, or 100 RPM on three different occasions. On each occasion, the load was increased every five minutes and corresponded to approximately 50, 60, 70, 80 and 90% of VO2max. During the last three minutes of each stage, steady-state energy expenditure was calculated while work rate was recorded. In addition, the oxygen cost of unloaded cycling (CUC) was also measured. GE was calculated as the ratio of work rate to the rate of energy expenditure, whereas DE was calculated as the reciprocal of the slope of this relationship at work rates between 50 and 90% of VO2max. The CUC corresponded to 0.66 +/- 0.03 l/min, 0.77 +/- 0.04 l/min and 1.04 +/- 0.04 l/min at 60 RPM, 80 RPM and 100 RPM, respectively (p less than 0.01 for all comparisons). GE was similar at all cadences when cycling at 80 and 90% VO2max. DE increased with increasing rpm and corresponded to 20.6 +/- 0.4%, 21.8 +/- 0.6%, and 23.8 +/- 0.4% at 60 RPM, 80 RPM and 100 RPM, respectively (p less than 0.01 for all comparisons). Therefore, when trained cyclists exercise intensely (80-90% VO2max), GE is similar at cadences of 60, 80 and 100 RPM, despite the significant increase in the CUC. Thus, it is possible that delta efficiency increases with increasing cadence.  相似文献   

19.
Preferred pedalling cadence in professional cycling   总被引:7,自引:0,他引:7  
PURPOSE: The aim of this investigation was to evaluate the preferred cycling cadence of professional riders during competition. METHODS: We measured the cadence of seven professional cyclists (28 +/- 1 yr) during 3-wk road races (Giro d'Italia, Tour de France, and Vuelta a Espa?a) involving three main competition requirements: uphill cycling (high mountain passes of approximately 15 km, or HM); individual time trials of approximately 50 km on level ground (TT); and flat, long ( approximately 190 km) group stages (F). Heart rate (HR) data were also recorded as an indicator of exercise intensity during HM, TT, and F. RESULTS: Mean cadence was significantly lower (P < 0.01) during HM (71.0 +/- 1.4 rpm) than either F and TT (89.3 +/- 1.0 and 92.4 +/- 1.3 rpm, respectively). HR was similar during HM and TT (157 +/- 4 and 158 +/- 3 bpm) and in both cases higher (P < 0.01) than during F (124 +/- 2 bpm). CONCLUSION: During both F and TT, professional riders spontaneously adopt higher cadences (around 90 rpm) than those previously reported in the majority of laboratory studies as being the most economical. In contrast, during HM they seem to adopt a more economical pedalling rate (approximately 70 rpm), possibly as a result of the specific demands of this competition phase.  相似文献   

20.
The purpose of this study was to determine the validity and reliability of a new mobile bike-powermeter, Polar S710, in laboratory and field conditions, against the SRM crankset. Eight trained subjects performed in a random order six uphill cycling trials of 6-min duration at three different intensities (60 %, 75 % and 90 % of peak power output [PPO]). In addition, 44 other cyclists performed in the laboratory three cycling bouts each of 5-min duration at three different pedal cadences (60, 90 and 110 rpm) at the same absolute intensity (approximately 150 W). Bias between the two devices was correlated (r = 0.79) with the mean power in field conditions; with the S710 reading higher (p < 0.001) by 7.4 +/- 5.1 % than the SRM in the range of power studied. In other words, the mean differences between the two devices increased as the exercise intensity increased. The mean power output obtained with S710 was significantly higher (p < 0.001) by 6.8 +/- 7.9 W (bias x divided-by random error = 1.042 x divided-by 1.049) than the power obtained with SRM in laboratory conditions. Ninety-five percent of the differences of power measured with the S710 ranged between 21.4 W above to 8.3 W below the SRM in laboratory conditions. Mean differences between the two devices increased as the pedalling cadence increased (0.6 +/- 3.8 %, 4.4 +/- 3.7 % and 7.8 +/- 4.4 % at cadence of 60, 90 and 110 rpm respectively). Coefficients of variation in mean power across the four field-based trials at 75 % PPO was 2.2 % and 1.9 % for S710 and SRM, respectively. In conclusion, the S710 recorded power outputs higher than the SRM system in both field and laboratory conditions. Pedalling cadence and exercise intensity influenced differences in mean power. These characteristics make S710 a useful device for recreational cyclists but not for elite cyclists or scientists who require a greater accuracy and validity. However, the limits of the present study (short-term duration testing; single tested variables as intensity, posture, pedalling cadence) require further investigation for generalizing the present results to extensive use in "real world" cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号