首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forty-four male and female subjects with no history of falling and whose ages ranged from 10 to 68 years participated in a series of experiments to assess movement at the joints during gait while walking in a straight line, in pivot turns and in turns of 0.33 and 0.66 m diameter. Acceleration at the joints in the forward and side-to-side direction was measured by dual-axis accelerometers placed at the ankles, knees, hips, shoulders, and on the head. Eye movement was assessed from electrodes placed on the sides of the eyes. The results of the experiments showed that for people whose age was above 40 years, significant increases in the forward-back and side-to-side movements occurred at all joints and progressively increased with age. By age 60, adverse movement of the joints as much as quadrupled in many subjects when compared to people whose age was 20–30 years. The increase in joint acceleration occurred equally in the front-back and side-to-side planes. The mechanism of the increased joint movement may be due to tendon laxness, peripheral neuropathy or loss of central control of gait due to age. Accelerometry may be a much more sensitive technique to analyze abnormalities in gait than standard video or observational gait analysis. Results are given as mean (SD) unless otherwise stated.  相似文献   

2.
The use of functional magnetic resonance imaging (fMRI) to examine mental imagery of locomotion has become an attractive way to investigate supraspinal gait control in humans. Whereas cerebral activation patterns associated with walking along a straight line have already been investigated, data on activations associated with the initiation of turns and the maintenance of a curved path are sparse. Electrophysiological findings in animals show that electrical stimulation of the striatum induces a contraversive turn of eyes, head, and body. In the present study, fMRI was used to investigate brain activity in 12 healthy volunteers during mental imagery of walking along a curved path, walking straight ahead, and upright stance. The major findings were as follows: (1) A shift of activation to the hemisphere contralateral to the turn was found in the putamen, and—for initiation of the turn—in the caudate nucleus. These findings confirm the important role of the striatum in the initiation of movement and the execution of contraversive body turns. (2) Parahippocampal and fusiform gyri, known to be involved in visually guided navigation, showed more activity when walking along a curved path than when walking straight ahead. (3) Deactivations were found in the superior and medial temporal gyri, areas belonging to the multisensory and vestibular cortical network. This reduced activity may reflect the suppression of vestibular signal processing in favour of—potentially conflicting—visual input. (4) Mental imagery of walking along a curved path induced ipsiversive eye movements in most subjects, as did actually walking along a curve. These data complement earlier findings on the role of anticipatory eye movements during initiation of turns and suggest that there is a very close neurophysiologic relation between locomotion and its mental imagery.  相似文献   

3.
Peripheral neuropathy is the most common long-term complication in diabetes and is involved in changes in diabetic gait and posture. The regression of nerve function leads to various deficits in the sensory and motor systems, impairing afferent and efferent pathways in the lower extremities. This study aimed to examine how reduced plantar-afferent feedback impacts the gait pattern. Cutaneous sensation in the soles of both feet was experimentally reduced by means of intradermal injections of an anaesthetic solution, without affecting foot proprioception or muscles. Ten subjects performed level walking at a controlled velocity before and after plantar anaesthesia. Muscle activity of five leg-muscles, co-contraction ratios for the knee and ankle joint, ground reaction forces (GRF), spatiotemporal characteristics, joint angles and moments of the hip, knee and ankle were analysed. The intervention significantly lowered plantar sensation, reducing it to the level of sensory neuropathy. Spatiotemporal gait characteristics remained unchanged. The ankle joint was more dorsiflexed which coincided with increased tibialis anterior and decreased gastrocnemius medialis muscle activity during foot flat to mid-stance. In addition, the knee joint was more flexed accompanied by increased biceps femoris activity and higher internal knee-extension moment. With regard to gait dynamics, a delay of the first peak of the vertical GRF was observed. Increased soleus and tibialis anterior muscle activity were found during the end of stance. Short-term loss of plantar sensation affects lower-limb kinematics and gait dynamics, particularly during the first half of stance, and contributes to modified muscle-activation patterns during locomotion.  相似文献   

4.
Motor imagery (MI) is widely used to study cognitive aspects of the neural control of action. Prior studies were mostly centred on hand and arm movements. Recently a few studies have used imagery tasks to explore the neurophysiology of human gait, but it remains unclear how to ascertain whether subjects actually perform imagery of gait as requested. Here we describe a new experimental protocol to quantify imagery of gait, by behaviourally distinguishing it from visual imagery (VI) processes and by showing its temporal correspondence with actual gait. Fourteen young healthy subjects performed two imagery tasks and an actual walking (AW) task. During both imagery tasks subjects were sitting on a chair and faced a computer screen that presented photographs of walking trajectories. During one task (MI), subjects had to imagine walking along the walking trajectory. During the other task (VI), subjects had to imagine seeing a disc moving along the walking trajectory. During the AW task, subjects had to physically walk along the same walking trajectory as presented on the photographs during the imagery tasks. We manipulated movement distance by changing the length of the walking trajectory, and movement difficulty by changing the width of the walking trajectory. Subjects reported onset and offset of both actual and imagined movements with a button press. The time between the two button presses was taken as the imagined or actual movement time (MT). MT increased with increasing path length and decreasing path width in all three tasks. Crucially, the effect of path width on MT was significantly stronger during MI and AW than during VI. The results demonstrate a high temporal correspondence between imagined and AW, suggesting that MI taps into similar cerebral resources as those used during actual gait. These results open the possibility of using this protocol for exploring neurophysiological correlates of gait control in humans.  相似文献   

5.
We have previously shown that control subjects use two distinct temporal strategies when stepping on an inclined surface during walking: one for level and 10 degrees surfaces and another for 20 and 30 degrees surfaces. These two temporal strategies were characterized by systematic shifts in the timing of muscle activity and peak joint angles. We examined whether cerebellar subjects with mild to moderate gait ataxia were impaired in their ability to select these two temporal strategies, adjust peak joint angle amplitudes, and/or adjust one joint appropriately with respect to movements and constraints at another joint. Subjects walked on a level surface and on different wedges (10, 20, and 30 degrees ) presented in the context of level walking. In a single trial, a subject walked on a level surface in approach to a wedge, took a single step on the wedge, and continued walking on an elevated level surface beyond the wedge. Cerebellar subjects used two temporal strategies, one for the level and 10 degrees surfaces and another for 20 and 30 degrees surfaces. Cerebellar strategies were similar to those used by controls except for the timing of ankle-joint movement on the steeper wedges. Cerebellar subjects adjusted the peak amplitudes of individual joint angles normally, with the exception of peak ankle plantarflexion. However, they exhibited greater trial-to-trial variability of peak hip and knee joint angles that increased as a function of wedge inclination. The most substantial deficit noted in the cerebellar group was in the relative movement of multiple joints. Cerebellar subjects demonstrated multijoint coordination deficits in all conditions, although these deficits were most pronounced during stance on the steeper wedges. On the 30 degrees wedge, cerebellar subjects showed abnormal relative movement of hip, knee, and ankle joints and the most substantial decomposition of movement. We speculate that to simplify multijoint control, cerebellar subjects decomposed their movement by fixing the ankle joint in a dorsiflexed position on the steepest wedges. Our results suggest that the cerebellum may not be critical in selecting the basic motor patterns for the two temporal strategies because cerebellar subjects produced appropriate timing shifts at most joints. Instead, our data suggest that the cerebellum is most critical for adjusting the relative movement of multiple joints, especially to accommodate external constraints.  相似文献   

6.
The purpose of this study was to determine whether the muscle vibration applied to the quadriceps has potential for augmenting muscle activity during gait in spinal cord injured (SCI) individuals. The effects of muscle vibration on muscle activity during robotic-assisted walking were measured in 11 subjects with spinal cord injury (SCI) that could tolerate weight-supported walking, along with five neurologically intact individuals. Electromyographic (EMG) recordings were made from the tibialis anterior (TA), medial gastrocnemius (MG), rectus femoris (RF), vastus lateralis (VL), and medial hamstrings (MH) during gait. Vibration was applied to the anterior mid-thigh using a custom vibrator oscillating at 80 Hz. Five vibratory conditions were tested per session including vibration applied during: (1) swing phase, (2) stance phase, (3) stance-swing transitions, (4) swing-stance transitions, and (5) throughout the entire gait cycle. During all vibration conditions, a significant increase in EMG activity was observed across both SCI and control groups in the RF, VL, and MH of the ipsilateral leg. In the SCI subjects, the VL demonstrated a shift toward more appropriate muscle timing when vibration was applied during stance phase and transition to stance of the gait cycle. These observations suggest that the sensory feedback from quadriceps vibration caused increased muscle excitation that resulted in phase-dependent changes in the timing of muscle activation during gait.  相似文献   

7.
The aim of this study was to investigate the contribution of feedback from large-diameter sensory fibers to the adaptation of soleus muscle activity after small ankle trajectory modifications during human walking. Small-amplitude and slow-velocity ankle dorsiflexion enhancements and reductions were applied during the stance phase of the gait cycle to mimic the normal variability of the ankle trajectory during walking. Patients with demyelination of large sensory fibers (Charcot-Marie-Tooth type 1A and antibodies to myelin-associated glycoprotein neuropathy) and age-matched controls participated in this study. The patients had absent light-touch sense in the toes and feet and absent quadriceps and Achilles tendon reflexes, indicating functional loss of large sensory fibers. Moreover, their soleus stretch reflex response consisted of a single electromyographic (EMG) burst with delayed onset and longer duration (P < 0.01) than the short- and medium-latency reflex responses observed in healthy subjects. In healthy subjects, the soleus EMG gradually increased or decreased when the ankle dorsiflexion was, respectively, enhanced or reduced. In the patients, the soleus EMG increased during the dorsiflexion enhancements; however, the velocity sensitivity of this response was decreased compared with the healthy volunteers. When the dorsiflexion was reduced, the soleus EMG was unchanged. These results indicate that the enhancement of the soleus EMG is mainly sensitive to feedback from primary and secondary muscle spindle afferents and that the reduction may be mediated by feedback from the group Ib pathways. This study provides evidence for the role of sensory feedback in the continuous adaptation of the soleus activity during the stance phase of human walking.  相似文献   

8.
Lower limb amputee gait evaluation is allowed by kinematic and ground reaction force analysis. Motion capture is a non invasive means of gait evaluation. A protocol taking account of the foot and lower limb joints has been proposed. Thirty-five subjects participated in this study. Stride parameters and spatiotemporal parameters were recorded in a database. Correlations were established between the metatarsophalangeal joint, the walking speed and the propulsive forces. These correlations underline the functional significance of feet in the propulsion phase. This study aims at comparative analysis between lower limb amputees and sound people and at prosthetic feet evaluation.  相似文献   

9.
Children with cerebral palsy frequently experience foot dragging and tripping during walking due to a lack of adequate knee flexion in swing (stiff-knee gait). Stiff-knee gait is often accompanied by an overly flexed knee during stance (crouch gait). Studies on stiff-knee gait have mostly focused on excessive knee muscle activity during (pre)swing, but the passive dynamics of the limbs may also have an important effect. To examine the effects of a crouched posture on swing knee flexion, we developed a forward-dynamic model of human walking with a passive swing knee, capable of stable cyclic walking for a range of stance knee crouch angles. As crouch angle during stance was increased, the knee naturally flexed much less during swing, resulting in a ‘stiff-knee’ gait pattern and reduced foot clearance. Reduced swing knee flexion was primarily due to altered gravitational moments around the joints during initial swing. We also considered the effects of increased push-off strength and swing hip flexion torque, which both increased swing knee flexion, but the effect of crouch angle was dominant. These findings demonstrate that decreased knee flexion during swing can occur purely as the dynamical result of crouch, rather than from altered muscle function or pathoneurological control alone.  相似文献   

10.
Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model's ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R2 value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention.  相似文献   

11.
目的采用正常人体单侧增高模拟下肢不等长,分析下肢不等长步态特征,研究下肢不等长对步态的影响,为下肢假肢穿戴者因下肢不等长引起的慢性疾病提供理论依据。方法通过单侧穿鞋增高人为制造下肢不等长,利用三维动态捕捉系统和地面反力采集设备采集受试者在正常步态和下肢不等长步态下的时空参数、地面反力和关节角度,并进行对比分析。结果下肢不等长步态与正常步态在步长、步长时间和单侧支撑期存在显著差异。下肢不等长步态左右腿足跟着地期垂直方向地面反力均大于正常步态,髋、膝、踝角度存在明显变化。结论下肢不等长是造成行走步态异常的重要原因,可能是下肢假肢穿戴者产生腿部关节疾病的原因。  相似文献   

12.
BackgroundKnee osteoarthritis (KOA) is associated with reduced quality of life due to knee pain and gait disturbance. However, the evaluation of KOA is mainly based on images and patient-reported outcome measures (PROMs), which are said to be insufficient for functional evaluation. Recently, gait analysis using an accelerometer has been used for functional evaluation of KOA patients. Nevertheless, evaluation of the entire body motion is insufficient. The aim of this study was to clarify the gait characteristics of KOA patients using the distribution of scalar products and the interval time of heel contact during spontaneous walking and to compare them with healthy subjects.MethodsParticipants wore a three-axis accelerometer sensor on the third lumbar vertebra and walked for 6 min on a flat path at a free walking speed. The sum of a composite vector (CV) scalar product and a histogram for distribution were used for body motion evaluation. The CV consisted of a synthesis of acceleration data from three axes. In addition to the summation of the CV, a histogram can be created to evaluate in detail the magnitude of the waves. The amount of variation was measured in the left–right and front–back directions. Variability was evaluated from the distribution of heel contact duration between both feet measured from the vertical acceleration.ResultsKOA patients showed a smaller sum of CV that converged to small acceleration in the distribution when compared with healthy subjects. In the KOA group, the amount of variation in the forward and backward directions was greater than that in the forward direction. The variability of heel–ground interval time was greater in the KOA group than in healthy subjects.ConclusionKOA patients walked with less overall body movement, with limited movable range of the knee joint and pain-avoiding motion. The gait of the KOA group was considered unstable, with long time intervals between peaks. The increase in the amount of forward variation was thought to be due to the effect of trunk forward bending during walking. The clinical relevance of this study is that it was possible to evaluate KOA patients’ gait quantitatively and qualitatively.  相似文献   

13.
Many patients with restless legs syndrome (Willis–Ekbom disease) complain of burning sensations in their feet associated with the desire to move, such that they seek cooler environments. This pilot study aimed to characterise the microvascular skin changes in 12 patients with restless legs syndrome compared with 12 age‐ and sex‐matched controls. Patients with moderate or severe restless legs syndrome and controls underwent detailed thermovascular assessment in a controlled temperature room at three different stages (normothermic phase 23 °C, hot phase 30 °C, cold phase 18 °C). Microvascular activity was recorded during all phases by bilateral great toe laser‐Doppler flowmetry and also by whole‐body thermography. Patient and control measurements were compared. The study protocol was well tolerated. Parameters extracted from the laser‐Doppler flowmetry measurements were used to model a logistic function using binary logistic regression. This demonstrated a statistically significant difference between patients with restless legs syndrome and healthy controls (< 0.001). Visual inspection of the body thermography image sequences showed increased lower limb movement in patients with restless legs syndrome patients compared with controls. Thermography analysis also showed significant differences between foot temperatures in patients with restless legs syndrome compared with controls during the hot phase (= 0.011). Notably, patients with restless legs syndrome had more uniform foot temperatures, whereas controls had a wider variability in surface temperature across the feet. This novel study demonstrates impaired microvascular circulation in patients with restless legs syndrome in comparison to matched controls and a potential mechanism for the sensation of burning feet. The protocol also provides an experimental paradigm to test therapeutic interventions for the future.  相似文献   

14.
During walking, the six legs of a stick insect can be coordinated in different temporal sequences or gaits. Leg coordination in each gait is controlled and stabilized by coordinating mechanisms that affect the action of the segmental neuronal networks for walking pattern generation. At present, the motor program for single walking legs in the absence of movement-related coordinating intersegmental influences from the other legs is not known. This knowledge is a prerequisite for the investigation of the segmental neuronal mechanisms that control the movements of a leg and to study the effects of intersegmental coordinating input. A stick insect single middle leg walking preparation has been established that is able to actively perform walking movements on a treadband. The walking pattern showed a clear division into stance and swing phases and, in the absence of ground contact, the leg performed searching movements. We describe the activity patterns of the leg muscles and motoneurons supplying the coxa-trochanteral joint, the femur-tibial joint, and the tarsal leg joints of the middle leg during both walking and searching movements. Furthermore we describe the temporal coordination between them. During walking movements, the coupling between the leg joints was phase-constant; in contrast during searching movements, the coupling between the leg joints was dependent on cycle period. The motor pattern of the single leg generated during walking exhibits similarities with the motor pattern generated during a tripod gait in an intact animal. The generation of walking movements also drives the activity of thoraco-coxal motoneurons of the deafferented and de-efferented thoraco-coxal leg joint in a phase-locked manner, with protractor motoneurons being active during swing and retractor motoneurons being active during stance. These results show that for the single middle leg, a basic walking motor pattern is generated sharing similarities with the tripod gait and that the influence of the motor pattern generated in the distal leg joints is sufficient for driving the activity of coxal motoneurons so an overall motor pattern resembling forward walking is generated.  相似文献   

15.
While it is known that certain pathologies may impact on left-right symmetry of gait, little is known about the mechanisms that contribute to gait symmetry or how high in the hierarchy of the control of gait symmetry is regulated in humans. To assess the contribution of cognitive function to gait symmetry, we measured gait asymmetry (GA) in three subject groups, patients with Parkinson's disease (PD, n = 21), idiopathic elderly fallers (n = 15), and healthy elderly controls (n = 11). All subjects walked, under two walking conditions: usual walking and dual tasking (cognitive loading) condition. For each subject, the swing time (SW) was calculated and averaged across strides for the left and right feet (SWL and SWR). GA was defined as: 100 x /ln(SWR/SWL)/. For both the PD patients and the elderly fallers GA values were significantly higher during the usual walking condition, as compared with the control group (P < 0.01). In addition, for both the PD patients and the elderly fallers, GA significantly increased when they walked and performed a dual task, compared with the usual walking condition (P < 0.003). In contrast, dual tasking did not affect the GA of the healthy controls (P = 0.518). GA was associated with gait speed and gait variability, but no correlations were found between GA and the asymmetry of the classic PD motor symptoms. Thus, the results suggest that the ability to generate a steady, rhythmic walk with a bilaterally coordinated gait does not rely heavily on mental attention and cognitive resources in healthy older adults. In contrast, however, when gait becomes impaired and less automatic, GA apparently relies on cognitive input and attention.  相似文献   

16.
The purpose of this study was to evaluate the discriminant and concurrent (criterion-related) validity of a recently introduced floor-based photocell system (Optogait, Microgate, Bolzano, Italy) with a validated electronic walkway for the assessment of spatiotemporal gait parameters. Fifteen patients (mean age ± standard deviation: 65 ± 7 years) with total knee arthroplasty and 15 healthy matched control subjects were asked to walk at different velocities while gait variables were recorded simultaneously by the two instruments. The Optogait and the criterion instrument detected the same differences in walking parameters between patients and controls. Intraclass correlation coefficients ranged between 0.933 (swing time) and 0.999 (cycle time, cadence and walking speed). Cycle time and stance time were significantly longer, while swing time, step length, cadence and walking speed were significantly lower for Optogait (p < 0.001) compared to the criterion instrument. The Optogait system demonstrated high discriminant and concurrent validity with an electronic walkway for the assessment of spatiotemporal gait parameters in orthopedic patients and healthy controls. However, the two measuring instruments cannot be used interchangeably for quantitative gait analysis, and further validation of floor-based photocell technology is warranted.  相似文献   

17.
Summary This study investigated the effect of initial stance configuration on automatic postural responses in humans. Subjects were tested in both bipedal and quadrupedal stance postures. The postural responses to horizontal translations of the supporting surface were measured in terms of the forces at the ground, movement of the body segments, and electromyographic (EMG) activity. Postural responses to the same perturbations changed with initial stance posture; these responses were biomechanically appropriate for restoring centre of mass. A change in stance configuration prior to platform movement led to a change in both the spatial and temporal organization of evoked muscle activation. Specifically, for the same direction of platform movement, during bipedal stance muscles on one side of the lower limb were activated in a distal to proximal sequence; during quadrupedal stance, muscles on the opposite side of the lower limb were activated and in a proximal to distal sequence. The most significant finding was an asymmetry in the use of the upper limbs and the lower limbs during postural corrections in quadrupedal stance. Whereas antagonists of the upper limb were either co-activated or co-inhibited, depending on the direction of translation, lower limb antagonists were reciprocally activated and inhibited. Human subjects in a quadrupedal stance posture used the lower limbs as levers, protracting or retracting the hips in order to propel the trunk back to its original position with respect to the hands and feet. Postural responses of the subjects during quadrupedal stance were remarkably similar to those of cats subjected to similar perturbations of the supporting surface. Furthermore, the same predominance of lower limb correction is characteristic of both species, suggesting that the standing cat is a good model for studying postural control in humans.  相似文献   

18.
In light of the movement control problems reported for patients with Parkinson's disease (PD), we examined the lower extremity control strategies used by these subjects to stop walking in planned and unplanned situations. We compared how patients with PD and age and gender-matched control subjects modulated lower extremity muscular activity and ground reaction forces during planned and unplanned stoppings. The main findings were that control subjects did not alter muscle activation from planned to unplanned stopping, relative to stance limb kinetic events; they just increased the amplitude of the response (by approximately 800%). We speculate that these data provide preliminary evidence in support of a stereotypical sequence of muscle activation for gait termination whether planned or unplanned. In contrast, subjects with PD appeared to adopt a different strategy when stopping unexpectedly compared to planned stopping. Additional data show that subjects with PD required additional steps to stop walking when stopping unexpectedly as compared to control subjects.  相似文献   

19.
《Annals of anatomy》2014,196(6):471-478
In locomotion, ligaments and muscles have been recognized to support the arch of the foot. However, it remains unclear to what extent the passive and active structures of the lower extremity support the longitudinal arch of the foot during walking. In this study, the mechanical function of the plantar aponeurosis (PA) is investigated by elongation measurements in vivo during the stance phase of gait, in combination with measurements of the mechanical properties of the PA in vitro.Fluoroscopy was used to measure the dynamic changes in PA length and the angular motion of the metatarsophalangeal joint of the first ray, measured during the stance phase (StPh) in 11 feet. Simultaneously, ground forces were measured. Additionally, four cadaver feet delivered topographic information relating to the PA, and three autopsy specimens of PA served to determine the in vitro mechanical properties of PA.The present study revealed a non-significant peak average PA shortening of 0.48% at about 32.5% StPh, followed by a significant average peak elongation of 3.6% at 77.5% StPh. This average peak elongation of 3.6% corresponds to a force of 292 N, as estimated by mechanical testing of the autopsy PA specimens. Considering the maximum peak elongation measured in one volunteer of 4.8% at 76% StPh, a peak PA load of 488 N might be expected. Hence, with an average body weight of 751 N, as allocated to the 11 investigated feet, this maximum peak force would correspond to about 0.65 × body weight.As far as we are aware, this is the first report on a dynamic fluoroscopic study of the PA in gait with an appreciable number of feet (11 feet).In conclusion, muscles contribute to support of the longitudinal arch of the foot and can possibly relax the PA during gait. The ‘windlass effect’ for support of the arch in this context is therefore questionable.  相似文献   

20.
Patients with Parkinson's disease (PD) often experience freezing of gait, a debilitating phenomenon during which the subject suddenly becomes unable to start walking or to continue to move forward. Little is known about the gait of those subjects with PD who experience freezing of gait or the pathophysiology of freezing. One possibility is that freezing of gait is a truly paroxysmal phenomenon and that the usual walking pattern of subjects who experience freezing of gait is not different than that of other patients with PD who do not experience these transient episodes of freezing of gait. On the other hand, a recent study noted gait changes just prior to freezing and concluded that dyscontrol of the cadence of walking contributes to freezing. To address this question, we compared the gait of PD subjects with freezing of gait to PD subjects without freezing of gait. Given the potential importance of the dyscontrol of the cadence of walking in freezing, we focused on two aspects of gait dynamics: the average stride time (the inverse of cadence, a measure of the walking pace or rate) and the variability of the stride time (a measure of "dyscontrol," arrhythmicity and unsteadiness). We found that although the average stride time was similar in subjects with and without freezing, stride-to-stride variability was markedly increased among PD subjects with freezing of gait compared to those without freezing of gait, both while "on" (P<0.020) and "off" (P<0.002) anti-parkinsonian medications. Further, we found that increased gait variability was not related to other measures of motor control (while off medications) and levodopa apparently reduced gait variability, both in subjects with and without freezing. These results suggest that a paradigm shift should take place in our view of freezing of gait. PD subjects with freezing of gait have a continuous gait disturbance: the ability to regulate the stride-to-stride variations in gait timing and maintain a stable walking rhythm is markedly impaired in subjects with freezing of gait. In addition, these findings suggest that the inability to control cadence might play an important role in this debilitating phenomenon and highlight the key role of dopamine-mediated pathways in the stride-to-stride regulation of walking. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号