首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Ocimum basilicum (OB), also known as sweet basil, is a well known medicinal herb in traditional Chinese medicine preparations. In the present study, extracts and purified components of OB were used to identify possible antiviral activities against DNA viruses (herpes viruses (HSV), adenoviruses (ADV) and hepatitis B virus) and RNA viruses (coxsackievirus B1 (CVB1) and enterovirus 71 (EV71)). 2. The results show that crude aqueous and ethanolic extracts of OB and selected purified components, namely apigenin, linalool and ursolic acid, exhibit a broad spectrum of antiviral activity. Of these compounds, ursolic acid showed the strongest activity against HSV-1 (EC50 = 6.6 mg/L; selectivity index (SI) = 15.2), ADV-8 (EC50 = 4.2 mg/L; SI = 23.8), CVB1 (EC50 = 0.4 mg/L; SI = 251.3) and EV71 (EC50 = 0.5 mg/L; SI = 201), whereas apigenin showed the highest activity against HSV-2 (EC50 = 9.7 mg/L; SI = 6.2), ADV-3 (EC50 = 11.1 mg/L; SI = 5.4), hepatitis B surface antigen (EC50 = 7.1 mg/L; SI = 2.3) and hepatitis B e antigen (EC50 = 12.8 mg/L; SI = 1.3) and linalool showed strongest activity against AVD-II (EC50 = 16.9 mg/L; SI = 10.5). 3. No activity was noted for carvone, cineole, beta-caryophyllene, farnesol, fenchone, geraniol, beta-myrcene and alpha-thujone. 4. The action of ursolic acid against CVB1 and EV71 was found to occur during the infection process and the replication phase. 5. With SI values greater than 200, the potential use of ursolic acid for treating infection with CVB1 and EV71 merits further investigation.  相似文献   

2.
As an effort to search for new antiviral agents from traditional medicine, the hot water (HW) extract of twelve traditionally used medicinal plants in Taiwan was evaluated for their in vitro anti-herpes simplex viruses (HSV; including HSV-1 and HSV-2) and anti-adenoviruses (ADV; including ADV-3, ADV-8 and ADV-11) activities with a XTT-based colorimetric assay. Results showed that the tested HW extracts exhibited anti-HSV and anti-ADV activities at different magnitudes of potency. Among the twelve medicinal plants, Boussingaultia gracilis var. pseudobaselloides (Basellaceae) and Serissa japonica (Rubiaceae) possessed broad spectrum of antiviral activity. Ardisia squamulosa (Myrsinaceae) and Artemisai princeps var. orientalis (Compositae) were more effective in inhibiting ADV-8 replication than the other four viruses. Cell cytotoxic assay demonstrated that all tested HW extracts had CC50 values higher than their EC50 values. It was concluded that the twelve traditionally used medicinal plants in Taiwan possessed antiviral activity, and some of them merit further investigation.  相似文献   

3.
We investigated whether crude hop extracts and purified hop components representing every major chemical class of hop compound have antiviral activity. These hop constituents were tested for antiviral activity against bovine viral diarrhea virus (BVDV) as a surrogate model of hepatitis C virus (HCV), human immunodeficiency virus (HIV), influenza A virus (FLU-A), influenza B virus (FLU-B), rhinovirus (Rhino), respiratory syncytial virus (RSV), yellow fever virus (YFV), cytomegalovirus (CMV), hepatitis B virus (HBV), and herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). The extracts all failed to prevent the replication of HIV, FLU-A, FLU-B, RSV and YFV. A xanthohumol-enriched hop extract displayed a weak to moderate antiviral activity against BVDV (therapeutic index (TI)=6.0), HSV-2 (TI=>5.3), Rhino (TI=4.0) and HSV-1 (TI=>1.9) with IC(50) values in the low microg/ml range. Pure iso-alpha-acids demonstrated low to moderate antiviral activity against both BVDV (TI=9.1) and CMV (TI=4.2) with IC(50) values in the low microg/ml range. No antiviral activity was detected using beta-acids or a hop oil extract. Ultra-pure preparations (>99% pure) were used to show that xanthohumol accounted for the antiviral activity observed in the xanthohumol-enriched hop extract against BVDV, HSV-1 and HSV-2. Xanthohumol was found to be a more potent antiviral agent against these viruses than the isomer iso-xanthohumol. With Rhino, the opposite trend was observed with iso-xanthohumol showing superior antiviral activity to that observed with xanthohumol. Xanthohumol also showed antiviral activity against CMV, suggesting that it might have a generalized anti-herpesvirus antiviral activity. Again, superior antiviral activity was observed with the xanthohumol isomer against CMV. In summary, iso-alpha-acids and xanthohumol were shown to have a low-to-moderate antiviral activity against several viruses. These hop constituents might serve as interesting lead compounds from which more active anti-HCV, anti-Rhino and anti-herpesvirus antiviral agents could be synthesized.  相似文献   

4.
Antiviral activities of biflavonoids   总被引:7,自引:0,他引:7  
Biflavonoids such as amentoflavone (1), agathisflavone (2), robustaflavone (3), hinokiflavone (4), volkensiflavone (5), rhusflavanone (7), succedaneflavanone (9), all isolated from Rhus succedanea and Garcinia multiflora, as well as their methyl ethers and acetates, volkensiflavone hexamethyl ether (6), rhusflavanone hexaacetate (8), and succedaneflavanone hexaacetate (10) were evaluated for their antiviral activities. The inhibitory activities against a number of viruses including respiratory viruses (influenza A, influenza B, respiratory syncytial, parainfluenza type 3, adenovirus type 5, and measles) and herpes viruses (HSV-1, HSV-2, HCMV, and VZV) were investigated. The results indicated that robustaflavone exhibited strong inhibitory effects against influenza A and influenza B viruses with EC50 values of 2.0 micrograms/ml and 0.2 microgram/ml, respectively, and selectivity index values (SI) of 16 and 454, respectively. Amentoflavone and agathisflavone also demonstrated significant activity against influenza A and B viruses. Amentoflavone and robustaflavone exhibited moderate anti-HSV-1 anti-HSV-2 activities with EC50 values of 17.9 micrograms/ml (HSV-1) and 48.0 micrograms/ml (HSV-2) and SI values of > 5.6 (HSV-1) and > 2.1 (HSV-2) for amentoflavone; EC50 values of 8.6 micrograms/ml (HSV-1) and 8.5 micrograms/ml (HSV-2), and SI values of > 11.6 (HSV-1) and > 11.8 (HSV-2) for robustaflavone. Rhusflavanone demonstrated inhibitory activities against influenza B, measles, and HSV-2 viruses with SI values of 9.3, 8 and > 6.4, respectively. Succedaneaflavanone exhibited inhibitory activities against influenza B virus and VZV with SI values of 15 and < 3.0, respectively.  相似文献   

5.
Dendrimers are a novel class of polyanionic macromolecules with broad-spectrum antiviral activities and minimal toxicities. A new generation of amide dendrimer, SPL7013, was evaluated as a lead microbicide candidate against herpes simplex viruses (HSV). The plaque reduction assays showed that the 50% effective concentrations (EC(50)) determined by pre-treatment of cells were 2.0 microg/ml for HSV-1 and 0.5 microg/ml for HSV-2. Inhibitory effects were also observed on HSV-infected cells with EC(50)s of 6.1 microg/ml for HSV-1 and 3.8 microg/ml for HSV-2. These are the mean values from the test results of six batches of SPL7013. SPL7013 was also shown to be equally potent against HSV drug-resistant strains. SPL7013 completely inhibited viral adsorption to Vero cells at concentrations of higher than 3 microg/ml. Analyzed by a LightCycler assay after treatment of HSV-infected cells for 17 h, SPL7013 showed strong inhibition of HSV DNA synthesis with EC(50)s of approximately 6.2 and 2.0 microg/ml for HSV-1 and HSV-2, respectively. SPL7013 retained its anti-HSV activity even after treatment at acidic pHs 3.0 and 4.0 for 2 h. The presence of 10% human serum proteins did not affect the anti-HSV activity of SPL7013. SPL7013 was not toxic to Vero cells up to the highest concentration tested (10,000 microg/ml). Effects on cell proliferation were tested on two epithelial cell lines in both stationary and dividing phases. The 50% cytotoxic concentrations (CC(50)) in all cases were greater than 10,000 microg/ml. Our data indicate that SPL7013 is a promising candidate for development as a vaginal microbicide and a therapeutic agent.  相似文献   

6.
Betulin, a pentacyclic triterpenoid, was isolated from the bark of Betula papyrifera. The antiviral efficacies of betulin on herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) were evaluated using viral plaque reduction assays on Vero cells. The results indicate that betulin is active against both HSV-1 and HSV-2 infections with the 50% effective concentrations (EC(50)) of 0.40 and 4.15 microg/ml, respectively. The cytotoxicity of betulin was examined on Vero cells using a neutral red uptake assay. The 50% cytotoxic concentration (CC(50)) of betulin was 73.1 microg/ml. A synergistic antiviral effect between betulin and acyclovir (ACV) was determined by drug combination studies. Strong and moderate synergistic antiviral effects were observed for betulin and ACV against HSV-1 when the concentrations of ACV and betulin were higher than 0.068 and 0.4 microg/ml, respectively. At the concentrations lower than these, additive effect was found. Synergistic antiviral effects were also found against HSV-2 at higher concentrations than for HSV-1, i.e. 0.45 microg/ml of ACV combined with 8.4 microg/ml of betulin.  相似文献   

7.
Coxsackie B virus type 1 (CVB1) infection is known to cause high morbidity and mortality in children, however, there is no effective drug for treating this disease. The present study aimed to examine the antiviral activity of Bupleurum kaoi (BK), a popular herbal drug for treating viral and bacterial infections, against CVB1 infection and its mechanisms of action. Our data showed that BK neutralized the CVB1-induced cytopathic effect in human neonatal foreskin fibroblast cell line (CCFS-1/KMC), with IC50 and EC50 values around 12.38 microg/ml and 50.93 microg/ml, respectively. Its CC50 and SI values were 883.56 microg/ml and 17.34, respectively. These results suggest that BK possessed anti-CVB1 activity, and showed no effect on CCFS-1 cell viability and growth at concentration 250 microg/ml. The time-of-addition studies showed that BK (50, 100 and 200 microg/ml) added at various time of preinfection (-1 to -3 h), coinfection (0 h) and postinfection (1-3 h) could inhibit CVB1 infection. Interestingly, BK also showed an inhibition on viral replication through the induction of IFN-alpha/beta expression. In conclusion, BK possessed antiviral activity against CVB1 infection. It interfered the early stage of viral replication and viral replication after infection through the induction of type I interferon expression.  相似文献   

8.
Coxsackie B virus type 1 (CVB1) infection is known to cause high morbidity and mortality in children, however, there is no effective drug for treating this disease. The present study aimed to examine the antiviral activity of xiao chai hu tang (XCHT), a popular herbal drug for treating viral and bacterial infections, against CVB1 infection and its mechanisms of action. Our data showed that XCHT neutralized the CVB1-induced cytopathic effect in human neonatal foreskin fibroblast cell line (CCFS-1/KMC), with IC50 (virus-induced cytopathic effect by 50%) and EC50 (concentration of 50% effectiveness) values around 12.39 and 50.93 microg/ml, respectively. Its CC50 (concentration of 50% cellular cytotoxicity) and SI (selective index) values were 945.75 microg/ml and 18.92, respectively. These results suggest that XCHT possessed anti-CVB1 activity, and showed no effect on CCFS-1 cell viability and growth at concentration 250 microg/ml. The time-of-addition studies showed that XCHT (50, 100 and 200 microg/ml) added at various time of preinfection (-1 to -3 h), coinfection (0 h) and postinfection (1 approximately 3 h) could inhibit CVB1 infection. Interestingly, XCHT also showed an inhibition on viral replication through the induction of IFN-alpha/beta expression. In conclusion, XCHT possessed antiviral activity against CVB1 infection. It interfered the early stage of viral replication (prophylactic effect) and viral replication after infection (therapeutic effect) through the induction of Type I interferon expression.  相似文献   

9.
Eleven heterocyclic Schiff bases of aminohydroxyguanidine tosylate (SB-AHGs), compounds I-XI, were tested for antiviral activity against herpes simplex virus type 1 (HSV-1) and adenovirus type 5 (Ad 5) via plaque reduction and virus yield reduction assays. This work was undertaken to test the hypothesis that low molecular weight SB-AHGs (MW < 235 for the free SB) make better antiviral agents than high MW SB-AHGs (MW > 300). The plaque reduction assay method demonstrated that three compounds, I, VII and IX, had moderate activity against HSV-1, with 50% inhibitory concentration (IC50) values of 38.0, 23.5 and 52.1 microM, respectively. Against Ad 5, compounds I, VIII and XI exhibited moderate activity, with IC50 values of 52.7, 19.3 and 5.1 microM, respectively. Among the compounds screened, compound I (1-[(3'-hydroxy-6'-methyl-2'-pyridyl)methylene]amino-3-hydroxyguanidi ne tosylate) was the most promising antiviral candidate, with selectivity indices (SI) of 10.2 (HSV-1) and 7.6 (Ad 5), respectively. Virus yield reduction assays indicated that compound I had less antiviral potency against HSV-1 than against Ad 5. The antiviral effects of compound I at a high input virus multiplicity of infection (MOI > 5) indicated that compound I had effective anti-adenoviral activity at 24 h post infection. This work demonstrated that some of SB-AHGs only have moderate antiviral activities against Ad 5 and HSV-1 viruses. In general, low MW SB-AHGs have low cytotoxicities to the host cells.  相似文献   

10.
Benzastatin C, a 3-chloro-tetrahydroquinolone alkaloid from Streptomyces nitrosporeus, showed antiviral activity in a dose-dependant manner with EC50 values of 1.92, 0.53, and 1.99 microg/ml against herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), and vesicular stomatitis virus (VSV), respectively. In contrast, benzastatin D, the corresponding dechlorinated derivative, did not exhibit any antiviral activity. These results indicate that the antiviral activity of benzastatin C is mediated, in part, due to the chlorine moiety in its molecular structure.  相似文献   

11.
As part of our screening of antiviral agents from medicinal plants, 11 compounds from plant origin (Bupleurum rigidum and Scrophularia scorodonia), three saikosaponins, seven iridoids and one phenylpropanoid glycoside were tested in vitro against herpes simplex type I (HSV-1), vesicular stomatitis virus (VSV) and poliovirus type 1. Five of these compounds showed antiviral activity against VSV. The percentages of cellular viability at the non-toxic limit concentrations of the active compounds were: verbascoside 53.6 % at 500 microg/ml, 8-acetylharpagide 32.1 % at 500 microg/ml, harpagoside 43.3 % at 450 microg/ml, scorodioside 47.8 % at 500 microg/ml and buddlejasaponin IV 56.9 % at 25 microg/ml. Although none of the saikosaponins were active against HSV-1, the iridoid scorodioside showed moderate in vitro anti-HSV-1 activity (30.6 % at 500 microg/ml). However, none of the compounds tested in this survey had any effect against poliovirus.  相似文献   

12.
The antioxidant properties of Choto-san and its related constituents such as Chotoko and Choto-san without Chotoko, and phenolic compounds contained in Chotoko such as epicatechin, caffeic, acid and quercetin were evaluated. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging assay, the scavenging activity of Chotoko (IC(50) 14.3 microg/ml) was found to be higher than that of Choto-san (IC(50) 206.2 microg/ml) and Choto-san without Chotoko (IC(50) 244.3 microg/ml). Epicatechin (IC(50) 10.4 microM), caffeic acid (IC(50) 13.8 microM), and quercetin (IC(50) 7.1 microM) also revealed scavenging activity against DPPH radicals. Choto-san (IC(50) 67.7 microg/ml) exhibited stronger inhibitory activity against superoxide anion formation than Choto-san without Chotoko (IC(50) 92.4 microg/ml) but weaker activity than Chotoko (IC(50) 18.3 microg/ml). The generation of superoxide anion was also inhibited by epicatechin (IC(50) 175.2 microM), caffeic acid (IC(50) 141.7 microM), and quercetin (IC(50) 18.7 microM). In a hydroxyl radical-scavenging experiment, Choto-san (IC(50) 2.4 mg/ml), Chotoko (IC(50) 2.2 mg/ml), Choto-san without Chotoko (IC(50) 2.8 mg/ml), epicatechin (IC(50) 3.9 mM), caffeic acid (IC(50) 3.6 mM), and quercetin (IC(50) 1.9 mM) exhibited activity. In NG108-15 cells, when added simultaneously with H(2)O(2) (500 microM), Choto-san (250 microg/ml), Chotoko (250 microg/ml), Choto-san without Chotoko (500 microg/ml), epicatechin (200 microM), caffeic acid (200 microM), and quercetin (200 microM) effectively protected cells from oxidative damage. In conclusion, the present results provide evidence that Choto-san acts as an antioxidant and cytoprotective agent against oxidative damage, which is due at least partly to the phenolic compounds contained in Chotoko.  相似文献   

13.
The recent West Nile virus (WNV) outbreak in the United States has increased the need to identify effective therapies for this disease. A chemotherapeutic approach may be a reasonable strategy because the virus infection is typically not chronic and antiviral drugs have been identified to be effective in vitro against other flaviviruses. A panel of 34 substances was tested against infection of a recent New York isolate of WNV in Vero cells and active compounds were also evaluated in MA-104 cells. Some of these compounds were also evaluated in Vero cells against the 1937 Uganda isolate of the WNV. Six compounds were identified to be effective against virus-induced CPE with 50% effective concentrations (EC50) less than 10 microg/ml and with a selectivity index (SI) of greater than 10. Known inhibitors of orotidine monophosphate decarboxylase and inosine monophosphate dehydrogenase involved in the synthesis of GTP, UTP, and TTP were most effective. The compounds 6-azauridine, 6-azauridine triacetate, cyclopententylcytosine (CPE-C), mycophenolic acid and pyrazofurin appeared to have the greatest activities against the New York isolate, followed by 2-thio-6-azauridine. Anti-WNV activity of 6-azauridine was confirmed by virus yield reduction assay when the assay was performed 2 days after initial infection in Vero cells. The neutral red assay mean EC50 of ribavirin was only 106 microg/ml with a mean SI of 9.4 against the New York isolate and only slightly more effective against the Uganda isolate. There were some differences in the drug sensitivities of the New York and Uganda isolates, but when comparisons were made by categorizing drugs according to their modes of action, similarities of activities between the two isolates were identified.  相似文献   

14.
A series of dialkyl esters of purine and pyrimidine N-[2-(phosphonomethoxy)ethyl] derivatives substituted at position 2, 6, or 8 of the purine base or position 2, 4, or 5 of the pyrimidine base were prepared by alkylation of the appropriate heterocyclic base with 2-chloroethoxymethylphosphonate diester in the presence of sodium hydride, cesium carbonate, or 1,8-diazabicyclo[5,4, 0]undec-7-ene (DBU) in dimethylformamide. Additional derivatives were obtained by the transformations of the bases in the suitably modified intermediates bearing reactive functions at the base moiety. The diesters were converted to the corresponding monoesters by sodium azide treatment, while the free acids were obtained from the diester by successive treatment with bromotrimethylsilane and hydrolysis. None of the PME derivatives in the pyrimidine series, their 6-aza or 3-deaza analogues, exhibited any activity against DNA viruses or retroviruses tested, except for the 5-bromocytosine derivative. Substitution of the adenine ring in PMEA at position 2 by Cl, F, or OH group decreased the activity against all DNA viruses tested. PMEDAP was highly active against HSV-1, HSV-2, and VZV in the concentration range (EC50) of 0.07-2 microg/mL. Also the 2-amino-6-chloropurine derivative was strongly active (EC50 = 0.1-0. 4 microg/mL) against herpes simplex viruses and (EC50 = 0.006-0.3 microg/mL) against CMV and VZV. PMEG was the most active compound of the whole series against DNA viruses (EC50 approximately 0.01-0.02 microg/mL), though it exhibited significant toxicity against the host cells. The base-modified compounds did not show any appreciable activity against DNA viruses except for 7-deazaPMEA (IC50 approximately 7.5 microg/mL) against HIV-1 and MSV. The neutral (diisopropyl, diisooctyl) diesters of PMEA were active against CMV and VZV, while the corresponding monoesters were inactive. The diisopropyl ester of the 2-chloroadenine analogue of PMEA showed substantially (10-100x) higher activity against CMV and VZV than the parent phosphonate. Also, the diisopropyl and diisooctyl ester of PMEDAP inhibited CMV and VZV, but esterification of the phosphonate residue did not improve the activity against either MSV or HIV.  相似文献   

15.
Kim JW  Hong JH 《Archiv der Pharmazie》2005,338(12):577-581
In this study, we synthesized novel 4'-hydroxymethyl branched thioapiosyl nucleosides. The thioapiosyl sugar moiety was constructed using sequential ozonolysis and reduction. The natural bases (uracil, thymine, cytosine, and adenine) were efficiently coupled using the Vorbrüggen glycosyl condensation procedure (persilyated base and TMSOTf). The antiviral activities of the synthesized compounds were evaluated against HIV-1, HSV-1, HSV-2, and HCMV. Compound 19 showed moderate anti-HIV activity (EC(50) = 19.3 microg/mL) without exhibiting any cytotoxicity up to 100 microM.  相似文献   

16.
We describe the antiviral activity of plant lectins with specificity for different glycan structures against the severe acute respiratory syndrome coronavirus (SARS-CoV) and the feline infectious peritonitis virus (FIPV) in vitro. The SARS-CoV emerged in 2002 as an important cause of severe lower respiratory tract infection in humans, and FIPV infection causes a chronic and often fatal peritonitis in cats. A unique collection of 33 plant lectins with different specificities were evaluated. The plant lectins possessed marked antiviral properties against both coronaviruses with EC(50) values in the lower microgram/ml range (middle nanomolar range), being non-toxic (CC(50)) at 50-100 microg/ml. The strongest anti-coronavirus activity was found predominantly among the mannose-binding lectins. In addition, a number of galactose-, N-acetylgalactosamine-, glucose-, and N-acetylglucosamine-specific plant agglutinines exhibited anti-coronaviral activity. A significant correlation (with an r-value of 0.70) between the EC(50) values of the 10 mannose-specific plant lectins effective against the two coronaviruses was found. In contrast, little correlation was seen between the activity of other types of lectins. Two targets of possible antiviral intervention were identified in the replication cycle of SARS-CoV. The first target is located early in the replication cycle, most probably viral attachment, and the second target is located at the end of the infectious virus cycle.  相似文献   

17.
Dendrimers are macromolecules with broad-spectrum antiviral activity and minimal toxicity effective in animal models in preventing transmission of herpes simplex virus (HSV) infection. In order to further understand the mechanism of action, and toxicity profiles of the dendrimer SPL-2999 against HSV, we investigated in vitro activities as follows: modified plaque reduction assays for SPL-2999 showed that 50% effective concentrations (EC(50)) determined by pre-treatment of cells with SPL-2999 were 0.5 microg/ml (30 nM) for HSV-2 and 1 microg/ml (60 nM) for HSV-1, respectively. SPL-2999 was not toxic to Vero cells at concentration up to the highest tested (CC(50) greater than 1000 microg/ml). SPL-2999 appears to completely inhibit both viral adsorption and penetration to Vero cells at concentrations of higher than 3 microg/ml. Additionally, virus yield reduction assay showed that SPL-2999 was effective on cells already infected with HSV with EC(90)s (effective concentration giving 90% virus yield reduction) approximately 29.2 microg/ml for HSV-1 and 6.7 microg/ml for HSV-2. When Vero cells were infected with HSV at moi (multiplicity of infection) of 0.01 pfu/cell, the infected cells could be completely protected from viral cytopathic effect (CPE) by SPL-2999 with EC(90)s (effective concentration that protects 90% of cells from virus lysis) of 15 microg/ml for HSV-1 and 10 microg/ml for HSV-2. Results from Southern blot hybridization indicated that SPL-2999 inhibited DNA synthesis in HSV infected cells. We conclude that SPL-2999 inhibits both HSV entry into susceptible cells and late stages of HSV replication. Our data indicate that SPL-2999 is a potent inhibitor of both HSV-1 and -2 with the potential for further development as either a topical microbicide or a therapeutic agent.  相似文献   

18.
Supercritical CO(2) fluid extraction (SFE-CO(2)) was used to extract volatiles from Patrinia Villosa Juss. An orthogonal test L(9) (3)(4) including pressure, temperature, dynamic extraction time and modifier was performed to get the optimal conditions. Extract 1 was obtained by the optimal extraction condition 1: pressure=35 MPa, T=45 degrees C, dynamic extraction time=2.0 h and V(modifier (MeOH))=0% as guided by the index 1: the free radical scavenging activities in vitro against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid) diammonium salt (ABTS). Extract 2 obtained by the optimal extraction condition 2: pressure=25 MPa, T=55 degrees C, dynamic time=2.5h and V(modifier (MeOH))=20% was guided by the index 2: the yield of the volatiles. The results showed that extract 1 possessed stronger antioxidant activity (EC(50)=32.01 microg/ml to DPPH and 50.90 microg/ml to ABTS(+)) than the extract 2 (EC(50)=95.62 microg/ml to DPPH and 99.78 microg/ml to ABTS(+)). Subsequently, the chemical compositions of the two extracts were identified by gas chromatography-mass spectrometry. Forty-six compounds were identified from extract 1, and the total volatile consisted of hydrocarbon (49.65%), aldehyde (16.66%), fatty acid (22.38%), terpene (9.04%) and little alcoholic. From extract 2, 32 compounds were identified, in which hydrocarbon, aldehyde, fatty acid and terpene possessed 58.21%, 5.97%, 13.19% and 21.79%, respectively. This is the first report of using SFE to extract the volatiles from P. Villosa Juss (a wild vegetable and medicine plant) and first time to systematically evaluate the volatiles' antioxidant activity and chemical composition.  相似文献   

19.
A new class of 5-(1-cyanamido-2-haloethyl)-2'-deoxyuridines (4-6) and arabinouridines (7, 8) were synthesized by the regiospecific addition of halogenocyanamides (X-NHCN) to the 5-vinyl substituent of the respective 5-vinyl-2'-deoxyuridine (2) and 2'-arabinouridine (3). Reaction of 2 with sodium azide, ceric ammonium nitrate, and acetonitrile-methanol or water afforded the 5-(1-hydroxy-2-azidoethyl)-(10) and 5-(1-methoxy-2-azidoethyl)-2'-deoxyuridines (11). In vitro antiviral activities against HSV-1-TK(+) (KOS and E-377), HSV-1-TK(-), HSV-2, VZV, HCMV, and DHBV were determined. Of the newly synthesized compounds, 5-(1-cyanamido-2-iodoethyl)-2'-deoxyuridine (6) exhibited the most potent anti-HSV-1 activity, which was equipotent to acyclovir and superior to 5-ethyl-2'-deoxyuridine (EDU). In addition, it was significantly inhibitory for thymidine kinase deficient strain of HSV-1 (EC(50) = 2.3-15.3 microM). The 5-(1-cyanamido-2-haloethyl)-2'-deoxyuridines (4-6) all were approximately equipotent against HSV-2 and were approximately 1.5- and 15-fold less inhibitory for HSV-2 than EDU and acyclovir, respectively. Compounds 4-6 were all inactive against HCMV but exhibited appreciable antiviral activity against VZV. Their anti-VZV activity was similar or higher to that of EDU and approximately 5-12-fold lower than that of acyclovir. The 5-(1-cyanamido-2-haloethyl)-(7,8) analogues of arabinouridine were moderately inhibitory for VZV and HSV-1 (strain KOS), whereas compounds 10 and 11 were inactive against herpes viruses. Compounds 5 and 6 also demonstrated modest anti-hepatitis B virus activity against DHBV (EC(50) = 19.9-23.6 microM). Interestingly, the related 5-(1-azido-2-bromoethyl)-2'-deoxyuridine (1n) analogue proved to be markedly inhibitory to DHBV replication (EC(50) = 2.6-6.6 microM). All compounds investigated exhibited low host cell toxicity to several stationary and proliferating host cell lines as well as mitogen-stimulated proliferating human T lymphocytes.  相似文献   

20.
With the aim of identifying novel lead compounds active against emergent human infectious diseases, a series of 2,3-dihydro-4H-pyridinone derivatives has been prepared and evaluated for antiviral activity. Compounds were evaluated in vitro in cell-based assays for cytotoxicity and against a wide spectrum of viruses. In the antiviral screening, several compounds showed to be fairly active against viruses belonging to the Flaviviridae family. The Pestiviruses (bovine viral diarrhoea virus) were inhibited by 4a cis (CC(50) > 100 μm; EC(50) = 14 μm), compounds 4c cis and 6a showed a significant activity against Flaviviruses (Yellow Fever Virus) (CC(50) > 100 μm; EC(50) = 18μm, CC(50) > 100 μm; EC(50) = 10 μm). Among these, compound 6a displayed great inhibitory activity against Hepaciviruses (hepatitis C virus) in replicon assay [CC(50) > 100 μm; EC(50) (1b) = 4 μm]. In vitro inhibitory activity against the HCV RNA-dependent RNA polymerase (NS5B) of title compounds is discussed. The antiviral screening of viral strains indicated that compound 6a can be selected as promising tool in novel anti-flaviviruses development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号