首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
The interaural time difference (ITD) is a major cue to sound localization along the horizontal plane. The maximum natural ITD occurs when a sound source is positioned opposite to one ear. We examined the ability of owls and humans to detect large ITDs in sounds presented through headphones. Stimuli consisted of either broad or narrow bands of Gaussian noise, 100 ms in duration. Using headphones allowed presentation of ITDs that are greater than the maximum natural ITD. Owls were able to discriminate a sound leading to the left ear from one leading to the right ear, for ITDs that are 5 times the maximum natural delay. Neural recordings from optic-tectum neurons, however, show that best ITDs are usually well within the natural range and are never as large as ITDs that are behaviorally discriminable. A model of binaural cross-correlation with short delay lines is shown to explain behavioral detection of large ITDs. The model uses curved trajectories of a cross-correlation pattern as the basis for detection. These trajectories represent side peaks of neural ITD-tuning curves and successfully predict localization reversals by both owls and human subjects.  相似文献   

2.
Bilateral cochlear implantation is intended to provide the advantages of binaural hearing, including sound localization and better speech recognition in noise. In most modern implants, temporal information is carried by the envelope of pulsatile stimulation, and thresholds to interaural time differences (ITDs) are generally high compared to those obtained in normal hearing observers. One factor thought to influence ITD sensitivity is the overlap of neural populations stimulated on each side. The present study investigated the effects of acoustically stimulating bilaterally mismatched neural populations in two related paradigms: rabbit neural recordings and human psychophysical testing. The neural coding of interaural envelope timing information was measured in recordings from neurons in the inferior colliculus of the unanesthetized rabbit. Binaural beat stimuli with a 1-Hz difference in modulation frequency were presented at the best modulation frequency and intensity as the carrier frequencies at each ear were varied. Some neurons encoded envelope ITDs with carrier frequency mismatches as great as several octaves. The synchronization strength was typically nonmonotonically related to intensity. Psychophysical data showed that human listeners could also make use of binaural envelope cues for carrier mismatches of up to 2–3 octaves. Thus, the physiological and psychophysical data were broadly consistent, and suggest that bilateral cochlear implants should provide information sufficient to detect envelope ITDs even in the face of bilateral mismatch in the neural populations responding to stimulation. However, the strongly nonmonotonic synchronization to envelope ITDs suggests that the limited dynamic range with electrical stimulation may be an important consideration for ITD encoding.  相似文献   

3.
The interaural time difference (ITD) is an important cue to localize sound sources. Sensitivity to ITD was measured in eight users of a cochlear implant (CI) in the one ear and a hearing aid (HA) in the other severely impaired ear. The stimulus consisted of an electric pulse train of 100 pps and an acoustic filtered click train. Just-noticeable differences (JNDs) in ITD were measured using a lateralization paradigm. Four subjects exhibited median JNDs in ITD of 156, 341, 254, and 91 μs; the other subjects could not lateralize the stimuli consistently. Only the subjects who could lateralize had average acoustic hearing thresholds at 1,000 and 2,000 Hz better than 100-dB SPL. The electric signal had to be delayed by 1.5 ms to achieve synchronous stimulation at the auditory nerves.
Jan WoutersEmail:
  相似文献   

4.
The use of binaural pitch stimuli to test for the presence of binaural auditory impairment in reading-disabled subjects has so far led to contradictory outcomes. While some studies found that a majority of dyslexic subjects was unable to perceive binaural pitch, others obtained a clear response of dyslexic listeners to Huggins’ pitch (HP). The present study clarified whether impaired binaural pitch perception is found in dyslexia. Results from a pitch contour identification test, performed in 31 dyslexic listeners and 31 matched controls, clearly showed that dyslexics perceived HP as well as the controls. Both groups also showed comparable results with a similar-sounding, but monaurally detectable, pitch-evoking stimulus. However, nine of the dyslexic subjects were found to have difficulty identifying pitch contours both in the binaural and the monaural conditions. The ability of subjects to correctly identify pitch contours was found to be significantly correlated to measures of frequency discrimination. This correlation may be attributed to the similarity of the experimental tasks and probably reflects impaired cognitive mechanisms related to auditory memory or auditory attention rather than impaired low-level auditory processing per se.  相似文献   

5.
Interaural timing cues are important for sound source localization and for binaural unmasking of speech that is spatially separated from interfering sounds. Users of a cochlear implant (CI) with residual hearing in the non-implanted ear (bimodal listeners) can only make very limited use of interaural timing cues with their clinical devices. Previous studies showed that bimodal listeners can be sensitive to interaural time differences (ITDs) for simple single- and three-channel stimuli. The modulation enhancement strategy (MEnS) was developed to improve the ITD perception of bimodal listeners. It enhances temporal modulations on all stimulated electrodes, synchronously with modulations in the acoustic signal presented to the non-implanted ear, based on measurement of the amplitude peaks occurring at the rate of the fundamental frequency in voiced phonemes. In the first experiment, ITD detection thresholds were measured using the method of constant stimuli for five bimodal listeners for an artificial vowel, processed with either the advanced combination encoder (ACE) strategy or with MEnS. With MEnS, detection thresholds were significantly lower, and for four subjects well within the physically relevant range. In the second experiment, the extent of lateralization was measured in three subjects with both strategies, and ITD sensitivity was determined using an adaptive procedure. All subjects could lateralize sounds based on ITD and sensitivity was significantly better with MEnS than with ACE. The current results indicate that ITD cues can be provided to bimodal listeners with modified sound processing.  相似文献   

6.
Electrical interaural time delay (ITD) discrimination was measured using 300-ms bursts applied to binaural pitch matched electrodes at basal, mid, and apical locations in each ear. Six bilateral implant users, who had previously shown good ITD sensitivity at a pulse rate of 100 pulses per second (pps), were assessed. Thresholds were measured as a function of pulse rate between 100 and 1,000 Hz, as well as modulation rate over that same range for high-rate pulse trains at 6,000 pps. Results were similar for all three places of stimulation and showed decreasing ITD sensitivity as either pulse rate or modulation rate increased, although the extent of that effect varied across subjects. The results support a model comprising a common ITD mechanism for high- and low-frequency places of stimulation, which, for electrical stimulation, is rate-limited in the same way across electrodes because peripheral temporal responses are largely place invariant. Overall, ITD sensitivity was somewhat better with unmodulated pulse trains than with high-rate pulse trains modulated at matched rates, although comparisons at individual rates showed that difference to be significant only at 300 Hz. Electrodes presenting with the lowest thresholds at 600 Hz were further assessed using bursts with a ramped onset of 10 ms. The slower rise time resulted in decreased performance in four of the listeners, but not in the two best performers, indicating that those two could use ongoing cues at 600 Hz. Performance at each place was also measured using single-pulse stimuli. Comparison of those data with the unmodulated 300-ms burst thresholds showed that on average, the addition of ongoing cues beyond the onset enhanced overall ITD sensitivity at 100 and 300 Hz, but not at 600 Hz. At 1,000 Hz, the added ongoing cues actually decreased performance. That result is attributed to the introduction of ambiguous cues within the physiologically relevant range and increased dichotic firing.  相似文献   

7.
Monaural rate discrimination and binaural interaural time difference (ITD) discrimination were studied as functions of pulse rate in a group of bilaterally implanted cochlear implant users. Stimuli for the rate discrimination task were pulse trains presented to one electrode, which could be in the apical, middle, or basal part of the array, and in either the left or the right ear. In each two-interval trial, the standard stimulus had a rate of 100, 200, 300, or 500 pulses per second and the signal stimulus had a rate 35 % higher. ITD discrimination between pitch-matched electrode pairs was measured for the same standard rates as in the rate discrimination task and with an ITD of +/− 500 μs. Sensitivity (d′) on both tasks decreased with increasing rate, as has been reported previously. This study tested the hypothesis that deterioration in performance at high rates occurs for the two tasks due to a common neural basis, specific to the stimulation of each electrode. Results show that ITD scores for different pairs of electrodes correlated with the lower rate discrimination scores for those two electrodes. Statistical analysis, which partialed out overall differences between listeners, electrodes, and rates, supports the hypothesis that monaural and binaural temporal processing limitations are at least partly due to a common mechanism.  相似文献   

8.
Temporal differences between the two ears are critical for spatial hearing. They can be described along axes of interaural time difference (ITD) and interaural correlation, and their processing starts in the brainstem with the convergence of monaural pathways which are tuned in frequency and which carry temporal information. In previous studies, we examined the bandwidth (BW) of frequency tuning at two stages: the auditory nerve (AN) and inferior colliculus (IC), and showed that BW depends on characteristic frequency (CF) but that there is no difference in the mean BW of these two structures when measured in a binaural, temporal framework. This suggested that there is little frequency convergence in the ITD pathway between AN and IC and that frequency selectivity determined by the cochlear filter is preserved up to the IC. Unexpectedly, we found that AN and IC neurons can be similar in CF and BW, yet responses to changes in interaural correlation in the IC were different than expected from coincidence patterns (“pseudo-binaural” responses) in the AN. To better understand this, we here examine the responses of bushy cells, which provide monaural inputs to binaural neurons. Using broadband noise, we measured BW and correlation sensitivity in the cat trapezoid body (TB), which contains the axons of bushy cells. This allowed us to compare these two metrics at three stages in the ITD pathway. We found that BWs in the TB are similar to those in the AN and IC. However, TB neurons were found to be more sensitive to changes in stimulus correlation than AN or IC neurons. This is consistent with findings that show that TB fibers are more temporally precise than AN fibers, but is surprising because it suggests that the temporal information available monaurally is not fully exploited binaurally.  相似文献   

9.
In cochlear implant (CI) patients, temporal processing is often poorest at low listening levels, making perception difficult for low-amplitude temporal cues that are important for consonant recognition and/or speech perception in noise. It remains unclear how speech processor parameters such as stimulation rate and stimulation mode may affect temporal processing, especially at low listening levels. The present study investigated the effects of these parameters on modulation detection by six CI users. Modulation detection thresholds (MDTs) were measured as functions of stimulation rate, mode, and level. Results show that for all stimulation rate and mode conditions, modulation sensitivity was poorest at quiet listening levels, consistent with results from previous studies. MDTs were better with the lower stimulation rate, especially for quiet-to-medium listening levels. Stimulation mode had no significant effect on MDTs. These results suggest that, although high stimulation rates may better encode temporal information and widen the electrode dynamic range, CI patients may not be able to access these enhanced temporal cues, especially at the lower portions of the dynamic range. Lower stimulation rates may provide better recognition of weak acoustic envelope information.  相似文献   

10.
Binaural masking level differences (MLDs) were measured for 10 normal-hearing and 10 cochlear-impaired listeners, at 500 and 2 000 Hz. Maskers were either wide-band (approximately 2 000 Hz), or narrow-band (50 Hz). For wide-band maskers the noise pressure spectrum level was 50 dB/Hz, and for the narrow-band maskers the noise levels were 50 and 60 dB/Hz. At 500 Hz the hearing-impaired listeners show abnormally low MLDs in wide-band noise, but not in narrow-band noise. At 2 000 Hz, the hearing-impaired subjects show abnormally low MLDs only in narrow-band noise at the 50 dB/Hz level. The clinical implications of the results are considered.

La différence binaurale de niveau de masque en fonction de la fréquence, du niveau de masque et de la largeur de bande du masque chez les sujets normo-entendants et les sourds

Les différences binaurales de niveau de masque ont été mesurées à 500 et 2 000 Hz chez 10 sujets normo-entendants et chez 10 sujets à la cochlée atteinte. Les masques étaient soit à large bande (environ 2 000 Hz) soit à bande étroite (50 Hz). Pour les masques à large bande, le niveau du spectre de pression du bruit était de 50 dB/Hz, et pour les masques à bande étroite, de 50 et 60 dB/Hz. A 500 Hz les sujets sourds ont montré des MLDs anormalement faibles dans le bruit à bande large, mais pas dans le bruit à bande étroite. A 2 000 Hz, les sujets sourds ont motitré des MLDs anormalement faibles dans le bruit à bande étroite à 50 dB/Hz. Les implications cliniques de ces résultats sont considérées.  相似文献   

11.
The relation between binaural interaction type and spectro-temporal characteristics was studied for single units in the auditory midbrain of the grassfrog. Tonal and continuous wideband noise ensembles have been used as stimuli. Spectro-temporal sensitivities were determined for ipsi-, contra- and bilateral stimulus presentation by a closed sound system. Binaural interaction was classified in monaural EO (one ear excitatory), binaural EE (both ears excitatory) and EI (one ear excitatory, the other inhibitory) and purely inhibitory categories. Binaural interaction appeared to be rather invariant to alterations in stimulus intensity and type. A very clear correlation was observed between best frequency and binaural interaction type: EE units are predominantly of high best frequency, whereas EI units are predominantly of low best frequency. The correlation with latency was less significant: EE units tended to have somewhat shorter latencies that EI units. EO units take an intermediate position. Comparisons of ipsi-, contra- and bilateral spectro-temporal sensitivities, revealed differences in best frequency, latency and temporal discharge pattern. In some units a complex interplay of excitatory and inhibitory monaural influences was demonstrated. A number of units was recorded, which were characterized by multiple activation or suppression areas. The majority of these units exhibited frequency-dependent binaural interaction types. In some units it was noticed that binaural interaction type can be dependent on state of adaptation. A comparison of binaural interaction types of neighbouring units provided only weak evidence for a binaural organization in the anuran auditory midbrain, since simultaneously recorded pairs shared the same binaural interaction type only slightly more than expected by mere chance (chi 2-test, P less than 0.10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号