首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoarthritis (OA) is a most commonly multifactorial degenerative joint disease along with the aging population, particularly in postmenopausal women. During the onset of OA, articular cartilage and subchondral bone act in concert as a functional unit. This present study is to investigate the effects of early or late treatment with recombinant lubricin on the onset of osteoarthritis (OA) in ovariectomized (OVX) rats. We found that both early and late recombinant lubricin treatments attenuated the onset of OA by positive feedback loop between articular cartilage and subchondral bone, although late treatment contributed to a lesser effect compared with early treatment. Specifically, treatment with recombinant lubricin protected articular cartilage from degeneration, demonstrated by lower proteoglycan loss, lower OARSI scores, less calcification cartilage zone and reduced immunostaining for collagen X (Col X) and matrix metalloproteinase (MMP-13) but increased the expression of lubricin, in comparison with vehicle-treated OVX rat group. Further, chondroprotective effects of lubricin normalized bone remodeling in subchondral bone underneath. It's suggested that treatment with recombinant lubricin inhibited the elevation of TRAP and Osterix positive cells in OVX rats and led to the normalization of subchondral bone microarchitectures with the suppression of subsidence of bone volume ratio (BV/TV) and trabecular thickness (Tb.Th) and the increase of trabecular separation (Tb.Sp) in vehicle-treated OVX rats. What's more, the normalization of subchondral bone in turn attenuated the articular cartilage erosion by inhibiting vascular invasion from subchondral bone to calcified cartilage zone, exemplified by inhibiting the elevation of CD31 positive cells in calcified cartilage and angiography in subchondral bone. Together, these results shed light that both early and late recombinant lubricin treatments attenuate the onset of OA by balancing the interplay between articular cartilage and subchondral bone in OVX rats, while also providing a further rationale for its therapeutic targeting to postmenopausal OA and suggesting that treatment timing is a pivotal factor for better effect acquisition.  相似文献   

2.
3.
We previously showed that repetitive cyclic loading of the mouse knee joint causes changes that recapitulate the features of osteoarthritis (OA) in humans. By applying a single loading session, we characterized the temporal progression of the structural and compositional changes in subchondral bone and articular cartilage. We applied loading during a single 5‐minute session to the left tibia of adult (26‐week‐old) C57Bl/6 male mice at a peak load of 9.0N for 1,200 cycles. Knee joints were collected at times 0, 1, and 2 weeks after loading. The changes in articular cartilage and subchondral bone were analyzed by histology, immunohistochemistry (caspase‐3 and cathepsin K), and microcomputed tomography. At time 0, no change was evident in chondrocyte viability or cartilage or subchondral bone integrity. However, cartilage pathology demonstrated by localized thinning and proteoglycan loss occurred at 1 and 2 weeks after the single session of loading. Transient cancellous bone loss was evident at 1 week, associated with increased osteoclast number. Bone loss was reversed to control levels at 2 weeks. We observed formation of fibrous and cartilaginous tissues at the joint margins at 1 and 2 weeks. Our findings demonstrate that a single session of noninvasive loading leads to the development of OA—like morphological and cellular alterations in articular cartilage and subchondral bone. The loss in subchondral trabecular bone mass and thickness returns to control levels at 2 weeks, whereas the cartilage thinning and proteoglycan loss persist. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1941–1949, 2016.  相似文献   

4.
OBJECTIVE: The vascular invasion of bone marrow tissue into the subchondral plate is often observed in articular cartilage and we named it the subchondral bone absorption pit; however, its implication in the pathogenesis of osteoarthritis (OA) has been poorly understood. The purpose of this study was to evaluate its characteristics and roles in osteoarthritic conditions. METHODS: Articular cartilage specimens from 11 patients with medial type knee OA and 7 non-arthritic cadavers were analyzed with HE staining. OA sections were stained with safranin-O, TRAP (tartrate resistant acid phosphatase) and immunostained with anti-MMP-1, MMP-3, MMP-13, vitronectin receptor (VNR)-alpha chain, vimentin and bone morphogenic protein (BMP) 2/4 antibodies. RESULTS: Subchondral bone resorption pits were classified according to the extent of invasion: pits with bone marrow tissue were located within uncalcified cartilage below the tidemark in grade I and invaded beyond the tidemark in grade II, while no invasion was seen in grade 0. Grade II pits were dominant in OA compared to non-arthritic joints, especially medial condyles. Proteoglycan detected with safranin-O staining was lost around the tip of grade II pits and the density of pits was related to the modified Mankin Score. Cells in pits expressed vimentin, MMP-1, MMP-3 and MMP-13. Some polynuclear cells co-expressed VNR-alpha chain and MMP-13, whereas pits showed reparative features expressing BMP. CONCLUSION: These results suggest that subchondral bone resorption pits contribute to cartilage degradation by expressing matrix metalloproteinases in OA.  相似文献   

5.
Miller LM  Novatt JT  Hamerman D  Carlson CS 《BONE》2004,35(2):498-506
Osteoarthritis (OA) is a prevalent joint disease that affects more than 40 million Americans and is characterized by degeneration of the articular cartilage and thickening of the underlying subchondral bone. Although subchondral bone thickening has been implicated in articular cartilage degeneration, very little is known about the composition of subchondral bone in OA. In the present study, infrared microspectroscopy (IRMS) was used to determine the chemical composition of the calcified cartilage-subchondral bone plate in a monkey model of OA. Specifically, the levels of mineralization (mineral/protein ratio), carbonate accumulation (carbonate/protein ratio), crystallinity, and collagen structure were determined as a function of animal age and OA severity. OA severity was assessed using a grading scheme that included scores or measurements for several histomorphometric parameters including articular cartilage fibrillation or clefting, subchondral bone thickness, and numbers of tidemarks and chondrocyte clones. Individual scores and measurements were summarized using principal components (factor) analysis. Results demonstrated that the level of mineralization and carbonate content increased as a function of animal age. In addition, bone mineralization level increased as subchondral bone thickness increased. Dramatic increases in the mineralization level and carbonate accumulation were also observed as a function of the number of tidemarks. The presence of multiple tidemarks indicates the occurrence of one or more additional phases of cartilage calcification, suggesting that the observed compositional changes are due to cartilage mineralization. Our results support a reactivation of endochondral ossification that occurs with age, which is more pronounced in OA. No relationships were observed between mineral crystallinity and collagen cross-linking as a function of age or OA severity. In summary, compositional analysis of the mineralized plate beneath the articular cartilage in OA is characterized by thickened, overmineralized calcified cartilage or subchondral bone, which likely puts added mechanical stress on the joint, contributing to the progression of OA.  相似文献   

6.
目的 探讨骨性关节炎各组织成分中细胞冈子、金属基质蛋白酶等炎性物质表达水平与疾病的关系.方法 获取行OA组关节置换及创伤性股骨颈骨折组患者手术时的软骨、滑膜组织和软骨下骨,苏木素-伊红(HE)染色行软骨下骨组织形态计量分析,应用放射免疫测定肿瘤坏死因子(TNF)-α与门细胞介素(IL)-1β,以酶联免疫吸附试验(ELISA)测金属基质蛋白酶(MMP)-9蛋白表达水平,并将两组结果进行t检验,软骨下骨组织计量值与细胞因子水平进行相关分析.结果 OA组较非OA对照组软骨下骨骨形成增加,骨质硬化骨小梁数目增加并错乱;滑膜组织中MMP-9表达是调;软骨组织中MMP-9及IL-1 β较对照组提高;而在软骨下骨,MMP-9、TNF-α及IL-β均有增高,并且与软骨下骨组织学改变相关联.结论 证实了OA促炎症条件的病理学基础,并且炎性改变与软骨硬化及关节软骨退变相关.  相似文献   

7.
8.
The elastic moduli of calcified cartilage and subchondral bone tissues were measured experimentally with use of a three-point bending test. Specimens were obtained from a bovine patella and the distal end of a bovine femur, from two different animals. Fifteen specimens were tested as “pure” subchondral bone beams, and 15 were tested as composite calcified cartilage/subchondral bone beams. A least-squares optimization scheme was used to obtain modulus values from the composite beams. The elastic modulus for subchondral bone calculated from the “pure” subchondral bone beams was 2.3 ± 1.5 GPa (3.9 ± 1.5 GPa for specimens from the femur and 1.6 ± 0.7 GPa for specimens from the patella). The composite beam optimization resulted in a modulus for subchondral bone of 5.7 ± 1.9 GPa and a modulus for calcified cartilage of 0.32 ± 0.25 GPa. The modulus for the calcified cartilage was more than an order of magnitude lower than the modulus of the underlying subchondral bone. This supports the idea that the zone of calcified cartilage forms a transitional zone of intermediate stiffness between the articular cartilage and the subchondral bone.  相似文献   

9.
Despite increasing evidence that subchondral bone contributes to osteoarthritis (OA) pathogenesis, little is known about local changes in bone structure compared to cartilage degeneration. This study linked structural adaptation of subchondral bone with histological OA grade. Twenty‐five osteochondral samples of macroscopically different degeneration were prepared from tibiae of 14 patients. Samples were scanned with micro‐computed tomography (μCT) and both conventional structural parameters and novel 3D parameters based on local patterns were analyzed from the subchondral plate and trabecular bone. Subsequently, samples were processed for histology and evaluated for OARSI grade. Each bone parameter and OARSI grade was compared to assess structural adaptation of bone with OA severity. In addition, thicknesses of cartilage, calcified cartilage, and subchondral plate were analyzed from histological sections and compared with subchondral bone plate thickness from μCT. With increasing OARSI grade, the subchondral plate became thicker along with decreased specific bone surface, while there was no change in tissue mineral density. Histological analysis showed that subchondral plate thickness from μCT also includes calcified cartilage. Entropy of local patterns increased with OA severity, reflecting higher tissue heterogeneity. In the trabecular compartment, bone volume fraction and both trabecular thickness and number increased with OARSI grade while trabecular separation and structure model index decreased. Also, elevation of local patterns became longitudinal in the subchondral plate and axial transverse in trabecular bone with increasing OARSI grade. This study demonstrates the possibility of radiological assessment of OA severity by structural analysis of bone. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 35:785–792, 2017.
  相似文献   

10.
《BONE》2013,54(2):340-349
Osteoporosis (OP) and osteoarthritis (OA) are major health problems in the increasing elderly population, particularly in postmenopausal women, but their relationship remains unclear. The present study investigated whether alendronate (ALN), a potent inhibitor of bone resorption, could protect articular cartilage from degeneration in a combined animal model of OP and OA induced by ovariectomy (OVX). Seventy-eight seven-month-old female Sprague–Dawley rats were assigned into five experimental groups: (1) sham-operated with vehicle treatment, (2) sham-operated with ALN treatment, (3) OVX with vehicle treatment, (4) ALN treatment starting at OVX, and (5) ALN treatment starting at eight weeks after OVX. Histological and micro-CT analyses, together with urine collagen degradation markers, indicated that early ALN treatment completely prevented both subchondral bone loss and cartilage surface erosion induced by OVX. Although late ALN treatment also inhibited subchondral bone loss and significantly reduced cartilage erosion in the OVX rats, these tissues did not completely recover even after 10-weeks of ALN treatment. Quantitative RT-PCR analyses showed that the protective effect of ALN correlated with increased ratio of OPG/RANKL in both subchondral bone and cartilage. Moreover, whereas OVX caused upregulation of expression of matrix metalloproteinases MMP-13 and MMP-9 in the articular cartilage and chondrocytes in the interface between the articular cartilage and subchondral bone, respectively, early ALN treatment blocked whereas late ALN treatment attenuated the upregulation of these catabolic enzymes in the corresponding tissues. Together, these data indicate that the subchondral bone loss plays an important role in OA pathogenesis in the combined OP and OA model and suggest that treatment timing is an important factor for the effectiveness of anti-resorptive drug therapy of combined OP and OA.  相似文献   

11.
OBJECTIVE: To determine trabecular and subchondral bone metabolic changes in experimental canine osteoarthritis (OA). METHODS: OA was induced in 19 dogs by transection of the anterior cruciate ligament (ACL) of the right knee through a stab wound. Dogs were sacrificed at 8 (n=7) and 12 weeks (n=12) after surgery. Non-operated normal dogs (n=6) were used as controls. After sacrifice, samples were obtained from the weight-bearing area of medial tibial plateaus. Explants and cell cultures were prepared from subchondral and trabecular bone. Osteocalcin (Oc), cellular alkaline phosphatase (ALPase), urokinase plasminogen-activator (uPA), prostaglandin E2 (PGE2), metalloproteinase (MMP) and nitric oxide (NO) were measured using standard procedures. RESULTS: ALPase production was significantly increased only at week 12 in subchondral and trabecular bone, while an increase in Oc was noted at week 8. uPA and MMP activity were increased significantly at week 12 in subchondral bone, while PGE2 levels were significantly higher in subchondral and trabecular bone at week 12 compared to normal. A decrease in NO production appeared late at week 12 in trabecular bone, whereas NO levels from subchondral bone were significantly increased compared to normal at week 8. DISCUSSION: Intense bone remodeling takes place in both subchondral and trabecular bone in the knee following ACL transection. This process seems to occur around week 12, although Oc and NO appeared to be involved earlier at 8 weeks. These results suggest that not only subchondral but also trabecular bone metabolism is altered in this OA model.  相似文献   

12.
Pan J  Wang B  Li W  Zhou X  Scherr T  Yang Y  Price C  Wang L 《BONE》2012,51(2):212-217
Osteoarthritis (OA) is a degenerative joint disease and one of the leading causes of disability in the United States and across the world. As a disease of the whole joint, OA exhibits a complicated etiology with risk factors including, but not limited to, ageing, altered joint loading, and injury. Subchondral bone is hypothesized to be involved in OA development. However, direct evidence supporting this is lacking. We previously detected measurable transport of solute across the mineralized calcified cartilage in normal joints, suggesting a potential cross-talk between subchondral bone and cartilage. Whether this cross-talk exists in OA has not been established yet. Using two models that induced OA by either ageing or surgery (destabilization of medial meniscus, DMM), we tested the hypothesis that increased cross-talk occurs in OA. We quantified the diffusivity of sodium fluorescein (mol. wt. 376Da), a marker of small-sized signaling molecules, within calcified joint matrix using our newly developed fluorescence loss induced by photobleaching (FLIP) method. Tracer diffusivity was found to be 0.30±0.17 and 0.33±0.20μm(2)/s within the calcified cartilage and 0.12±0.04 and 0.07±0.03μm(2)/s across the osteochondral interface in the aged (20-24-month-old, n=4) and DMM OA joints (5-month-old, n=5), respectively, which were comparable to the control values for the contralateral non-operated joints in the DMM mice (0.48±0.13 and 0.12±0.06μm(2)/s). Although we did not detect significant changes in tissue matrix permeability in OA joints, we found i) an increased number of vessels invading the calcified cartilage (and sometimes approaching the tidemark) in the aged (+100%) and DMM (+50%) joints relative to the normal age controls; and ii) a 60% thinning of the subchondral bone and calcified cartilage layers in the aged joints (with no significant changes detected in the DMM joints). These results suggested that the capacity for cross-talk between subchondral bone and articular cartilage could be elevated in OA. Further studies are needed to identify the direction of the cross-talk, the signaling molecules involved, and to test whether subchondral bone initiates OA development and could serve as a pharmaceutical target for OA treatment. This article is part of a Special Issue entitled "Osteoarthritis".  相似文献   

13.
Because SBM may contribute to cartilage breakdown in OA, experimental OA was induced in dogs by transecting the anterior cruciate ligament of the knee and treating with either CT or a placebo. CT significantly reduced both SBM and cartilage lesions. This study supports the use of CT in the treatment of canine experimental OA. INTRODUCTION: Because subchondral bone remodeling (SBM) may contribute to cartilage breakdown in osteoarthritis (OA), we evaluated to what extend calcitonin (CT) might affect cartilage and bone changes in the early stages of canine experimental OA. MATERIALS AND METHODS: Twelve dogs underwent transection of the anterior cruciate ligament (ACLT) of the right knee. After ACLT, each animal received a daily nasal spray delivering either 400 U of CT (CT-treated group; n = 6) or a placebo (PL-treated group; n = 6). At day 84 after surgery, animals were killed, and cartilage changes were graded. BMD and volume fraction (BVF) were assessed by pQCT in different regions of interest (ROIs) of the subchondral cancellous bone of tibial plateaus (TPs).Statistics included a 2 x 2 factorial analysis with +/-CT as one factor and +/-ACLT as the other. RESULTS AND CONCLUSIONS: Nonoperated (N-OP) knees were normal in both groups. In the PL-treated group, ACLT knees all exhibited OA changes, which predominated in the medial knee compartment. Furthermore, compared with N-OP knees, the BMD and BVF of ACLT joints were both markedly reduced in medial TP but not in lateral TP. In contrast, in the CT-treated group, cartilage OA lesions of ACLT knees were significantly reduced, and there was no difference in BMD and BFV between N-OP and ACLT knees. These findings suggest that the loss of subchondral trabeculae contributes to cartilage breakdown, possibly by enhancing cartilage deformation on joint loading. By counteracting bone loss, CT reduced cartilage OA lesions, and thus, might be useful in the treatment of OA in cruciate-deficient dogs.  相似文献   

14.
Subchondral bone is a candidate for treatment of osteoarthritis (OA). We investigated the effects of intra‐articular injection of hyaluronan (IAI‐HA) on subchondral bone in rabbit OA model. OA was induced by anterior cruciate ligament transection, with some rabbits receiving IAI‐HA. OA was graded morphologically, and expression of mRNA was assessed by real‐time RT‐PCR. Tissue sections were stained with hyaluronan‐binding protein, and penetration of fluorescent hyaluronan was assessed. The in vitro inhibitory effect of hyaluronan on MMP‐13 was analyzed in human osteoarthritic subchondral bone osteoblasts (OA Ob) by real‐time RT‐PCR and ELISA. Binding of hyaluronan to OA Ob via CD44 was assessed by immunofluorescence cytochemistry. Expression of MMP‐13 and IL‐6 mRNA in cartilage and subchondral bone, and morphological OA grade, increased over time. IAI‐HA ameliorated the OA grade and selectively suppressed MMP‐13 mRNA in subchondral bone. IAI‐HA enhanced the hyaluronan staining of subchondral bone marrow cells and osteocyte lacunae. Fluorescence was observed in the subchondral bone marrow space. In OA Ob, hyaluronan reduced the expression and production of MMP‐13, and anti‐CD44 antibody blocked hyaluronan binding to OA Ob. These findings indicate that regulation of MMP‐13 in subchondral bone may be a critical mechanism during IAI‐HA. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:354–360, 2011  相似文献   

15.
The canine 'groove' model, compared with the ACLT model of osteoarthritis   总被引:6,自引:0,他引:6  
OBJECTIVE: The frequently used anterior cruciate ligament transection (ACLT) model of osteoarthritis (OA) in the dog, makes use of a permanent trigger (joint instability) for inducing degenerative changes. The present study evaluates a canine model of degenerative cartilage damage, mimicking OA, which is induced without making use of permanent joint instability. METHODS: The articular cartilage of the weight-bearing areas of the femoral condyles in one knee of ten beagle dogs was damaged by making grooves, without damaging the subchondral bone. Surgery was followed by 10 weeks intensified loading of the affected joint. Subsequently, joint damage and inflammation were evaluated. The effects were compared with those of the ACLT model. RESULTS: Histological analysis showed chondrocyte clusters around cartilage lesions and moderate loss of proteoglycans in the 'groove' model. Synovial inflammation was mild. Biochemical analysis of cartilage showed changes in matrix proteoglycan turnover, proteoglycan content, and collagen damage, all characteristics of OA. Synovial fluid MMP-1, -3 and -13 activity was enhanced. Changes were found in condyles and plateau, were similar for all animals tested, and were similar to the changes observed in the ACLT model. CONCLUSION: The presently described canine 'groove' model shows characteristics identical to those seen in the ACLT model but differs in a way that the changes are induced without joint instability. The latter is expected to make the 'groove' model more sensitive to treatment.  相似文献   

16.
OBJECTIVE: To determine the effects of osteoarthritic (OA) subchondral osteoblasts on the metabolism of human OA chondrocytes in alginate beads. METHODS: Human chondrocytes were isolated from OA cartilage and cultured in alginate beads for 4 days in the absence or in the presence of osteoblasts isolated from non-sclerotic (N) or sclerotic (SC) zones of human OA subchondral bone in monolayer (co-culture system). Before co-culture, osteoblasts were incubated for 72 h with or without 1.7ng/ml interleukin (IL)-1beta, 100 ng/ml IL-6 with its soluble receptor (50 ng/ml) or 10 ng/ml oncostatin M (OSM). Aggrecan (AGG) and matrix metalloproteases (MMP)-3 and -13 mRNA levels in chondrocytes were quantified by real-time polymerase chain reaction. AGG production was assayed by a specific enzyme amplified sensitivity immunoassay. RESULTS: SC, but not N, osteoblasts induced a significant inhibition of AGG production and AGG gene expression by human OA chondrocytes in alginate beads, and significantly increased MMP-3 and MMP-13 gene expression by chondrocytes. When they were pre-incubated with IL-1beta, IL-6 or OSM, N osteoblasts inhibited AGG synthesis and increased MMP-3 and -13 gene expression by chondrocytes in alginate beads in a same order of magnitude as SC osteoblasts. CONCLUSIONS: These results demonstrate that SC OA subchondral osteoblasts could contribute to cartilage degradation by stimulating chondrocytes to produce more MMP and also by inhibiting AGG synthesis.  相似文献   

17.
目的:测定骨关节炎(OA)软骨及软骨下骨中呢啶并林(Pyr)含量的变化。判断Pyr在OA诊断和现活跃程度评价方面的作用。方法:复制成年兔膝关节OA模型,取有内髁主要负重区关节软骨及软骨下骨,采用高效液相色谱法(HPLC)测定其Pyr含量。结果:8周内,关节软骨中Pyr含量逐渐下降;软骨下骨中Pyr含量在模型术后早期下降,随后逐渐升高。结论:OA关节软骨及软骨下骨的Pyr含量随病程发生变化,可能是造  相似文献   

18.
目的观察膝关节原发性骨关节炎(osteoarthritis,OA)胫骨平台软骨和软骨下骨病理改变特点,对比内、外侧平台软骨和软骨下骨结构参数,探讨钙化层和软骨下骨在OA发病机制中的作用。方法取2009年10月-2011年5月行人工全膝关节置换术治疗的30例30膝原发性OA患者自愿捐赠的新鲜胫骨平台标本进行实验。其中男11例,女19例;年龄55~78岁,平均65.1岁。病程10~25年,平均16.6年;患膝内翻畸形1~23°,平均9.3°。大体观察胫骨平台后在内、外侧中央负重区取材,常规制备脱钙石蜡切片,行HE和番红O/固绿染色,观察关节软骨退变特点,参照Mankin评分标准评分并分期;观察钙化层及软骨下骨病理改变。应用Image Pro Plus 6.0图像分析软件测量软骨和软骨下骨结构参数,包括软骨全层(total articular cartilage,TAC)厚度、钙化层(articular calcified cartilage,ACC)厚度、ACC/TAC比值、软骨下骨板(subchondral bone plate,SCP)厚度以及骨小梁体积分数(trabecular bone volume,BV/TV)。结果大体观察内侧平台软骨退变较外侧严重,内侧平台软骨Mankin评分为(12.4±1.1)分,显著高于外侧平台的(8.3±1.6)分(t=12.173,P=0.000)。根据Mankin评分结果在60个标本中,14个为OA早期,可见软骨浅表层裂隙、潮线复制和软骨下骨增厚;19个为OA中期,可见软骨深层裂隙、多发软骨下骨吸收陷窝和明显增厚的软骨下骨;27个为OA晚期,可见软骨全层缺失、软骨内化骨和"象牙化"软骨下骨。软骨和软骨下骨结构参数测定示:内侧平台TAC厚度显著低于外侧平台,ACC/TAC比值、BV/TV及SCP厚度显著高于外侧平台,差异均有统计学意义(P<0.05)。内、外侧平台ACC厚度比较,差异无统计学意义(P>0.05)。结论钙化层和软骨下骨可能在OA发生与进展中发挥了重要作用。  相似文献   

19.
Osteoarthritis (OA) affects both cartilage and bone tissues, and the subsequent breakdown of the two tissues appears to be interrelated. The interest in the role of subchondral bone changes with OA is growing, and one suggestion is that a simple inverse correlation exists between the cartilage loss and increased bone mineral density. In this work the STR/ort mouse is used as a model for human OA, in order to investigate disease progression. The aim of the work is to elucidate the tempero-spatial relationships between bone and cartilage architecture and determine whether a simple inverse correlation is satisfactory.We employ 3D whole joint quantitative imaging techniques for assessment of subchondral bone and articular cartilage. The knee joints of mice aged 3, 4, 7 and 10 months are scanned with μCT and then the tibial plateaus are scanned with CLSM. The results show that depending on site (medial and lateral), compartment (epiphyseal, metaphyseal, cortical), and age (3, 4, 7, 10 months), the subchondral bone undergoes changes that lead to an altered architecture. This is primarily seen as densification of the cortex and epiphysis in the STR/ort mice, with a significant change occurring between 7 and 10 months, while the medial cartilage thickness is significantly reduced after 7 months.Using a novel multimodal imaging approach, morphometric changes in the murine osteoarthritic knee joint are elucidated. It is seen that a complex interplay of events – both spatially and temporally – is involved in OA onset and progression. The initial measured differences between the two strains suggest a possible morphological phenotype involved in OA resistance/vulnerability. Temporally the changes have a strong strain:age dependence, although no separate timeline of events between the two tissues could be discerned. Spatially, the changes to medial and lateral morphometry across the cartilage and bone, indicate a relationship to altered joint mechanics.  相似文献   

20.
In osteoarthritis (OA), cartilage degradation is accompanied by subchondral bone changes. The pathogenesis and physiology of bone changes in OA are still unclear. The changes in subchondral bone architecture and cartilage damage were compared in differently induced experimental models of OA. Experimental OA was induced bilaterally by anterior cruciate ligament transection (ACLT) or by cartilage trauma (Groove model); bilateral sham surgery served as control. Lysylpyridinoline (LP, bone resorption) and C‐telopeptide of type II collagen (CTX‐II, cartilage breakdown) were measured over time. At 20 weeks after surgery, the subchondral cortical plate and trabecular bone of the tibia were analyzed by micro–computed tomography (µCT) and cartilage degeneration was analyzed histologically and biochemically. In both models, cartilage degeneration and cortical subchondral plate thinning were present. CTX‐II levels were elevated over time in both models. Subchondral trabecular bone changes were observed only in the ACLT model, not in the Groove model. Correspondingly, LP levels were elevated over time in the ACLT model and not in the Groove model. Interestingly, the trabecular bone changes in the ACLT model were extended to the metaphyseal area. The early decrease in plate thickness, present in both models, as was cartilage damage, suggests that plate thinning is a phenomenon that is intrinsic to the process of OA independent of the cause/induction of OA. On the other hand, trabecular changes in subchondral and metaphyseal bone are not part of a common pathway of OA development and may be induced biomechanically in the destabilized and less loaded ACLT joint. © 2010 American Society for Bone and Mineral Research  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号