首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

The use of bone marrow–derived mesenchymal stem cells (MSCs) has shown promise in cell‐based cartilage regeneration. A yet‐unsolved problem, however, is the unwanted up‐regulation of markers of hypertrophy, such as alkaline phosphatase (AP) and type X collagen, during in vitro chondrogenesis and the formation of unstable calcifying cartilage at heterotopic sites. In contrast, articular chondrocytes produce stable, nonmineralizing cartilage. The aim of this study was to address whether coculture of MSCs with human articular chondrocytes (HACs) can suppress the undesired hypertrophy in differentiating MSCs.

Methods

MSCs were differentiated in chondrogenic medium that had or had not been conditioned by parallel culture with HAC pellets, or MSCs were mixed in the same pellet with the HACs (1:1 or 1:2 ratio) and cultured for 6 weeks. Following in vitro differentiation, the pellets were transplanted into SCID mice.

Results

The gene expression ratio of COL10A1 to COL2A1 and of Indian hedgehog (IHH) to COL2A1 was significantly reduced by differentiation in HAC‐conditioned medium, and less type X collagen protein was deposited relative to type II collagen. AP activity was significantly lower (P < 0.05) in the cells that had been differentiated in conditioned medium, and transplants showed significantly reduced calcification in vivo. In mixed HAC/MSC pellets, suppression of AP was dose‐dependent, and in vivo calcification was fully inhibited. Chondrocytes secreted parathyroid hormone–related protein (PTHrP) throughout the culture period, whereas PTHrP was down‐regulated in favor of IHH up‐regulation in control MSCs after 2–3 weeks of chondrogenesis. The main inhibitory effects seen with HAC‐conditioned medium were reproducible by PTHrP supplementation of unconditioned medium.

Conclusion

HAC‐derived soluble factors and direct coculture are potent means of improving chondrogenesis and suppressing the hypertrophic development of MSCs. PTHrP is an important candidate soluble factor involved in this effect.
  相似文献   

2.
3.
4.

Objective

MicroRNA (miRNA) are a class of noncoding small RNAs that act as negative regulators of gene expression. MiRNA exhibit tissue‐specific expression patterns, and changes in their expression may contribute to pathogenesis. The objectives of this study were to identify miRNA expressed in articular chondrocytes, to determine changes in osteoarthritic (OA) cartilage, and to address the function of miRNA‐140 (miR‐140).

Methods

To identify miRNA specifically expressed in chondrocytes, we performed gene expression profiling using miRNA microarrays and quantitative polymerase chain reaction with human articular chondrocytes compared with human mesenchymal stem cells (MSCs). The expression pattern of miR‐140 was monitored during chondrogenic differentiation of human MSCs in pellet cultures and in human articular cartilage from normal and OA knee joints. We tested the effects of interleukin‐1β (IL‐1β) on miR‐140 expression. Double‐stranded miR‐140 (ds–miR‐140) was transfected into chondrocytes to analyze changes in the expression of genes associated with OA.

Results

Microarray analysis showed that miR‐140 had the largest difference in expression between chondrocytes and MSCs. During chondrogenesis, miR‐140 expression in MSC cultures increased in parallel with the expression of SOX9 and COL2A1. Normal human articular cartilage expressed miR‐140, and this expression was significantly reduced in OA tissue. In vitro treatment of chondrocytes with IL‐1β suppressed miR‐140 expression. Transfection of chondrocytes with ds–miR‐140 down‐regulated IL‐1β–induced ADAMTS5 expression and rescued the IL‐1β–dependent repression of AGGRECAN gene expression.

Conclusion

This study shows that miR‐140 has a chondrocyte differentiation–related expression pattern. The reduction in miR‐140 expression in OA cartilage and in response to IL‐1β may contribute to the abnormal gene expression pattern characteristic of OA.
  相似文献   

5.
OBJECTIVE: Functional suitability and phenotypic stability of ectopic transplants are crucial factors in the clinical application of mesenchymal stem cells (MSCs) for articular cartilage repair, and might require a stringent control of chondrogenic differentiation. This study evaluated whether human bone marrow-derived MSCs adopt natural differentiation stages during induction of chondrogenesis in vitro, and whether they can form ectopic stable cartilage that is resistant to vascular invasion and calcification in vivo. METHODS: During in vitro chondrogenesis of MSCs, the expression of 44 cartilage-, stem cell-, and bone-related genes and the deposition of aggrecan and types II and X collagen were determined. Similarly treated, expanded articular chondrocytes served as controls. MSC pellets were allowed to differentiate in chondrogenic medium for 3-7 weeks, after which the chondrocytes were implanted subcutaneously into SCID mice; after 4 weeks in vivo, samples were evaluated by histology. RESULTS: The 3-stage chondrogenic differentiation cascade initiated in MSCs was primarily characterized by sequential up-regulation of common cartilage genes. Premature induction of hypertrophy-related molecules (type X collagen and matrix metalloproteinase 13) occurred before production of type II collagen and was followed by up-regulation of alkaline phosphatase activity. In contrast, hypertrophy-associated genes were not induced in chondrocyte controls. Whereas control chondrocyte pellets resisted calcification and vascular invasion in vivo, most MSC pellets mineralized, in spite of persisting proteoglycan and type II collagen content. CONCLUSION: An unnatural pathway of differentiation to chondrocyte-like cells was induced in MSCs by common in vitro protocols. MSC pellets transplanted to ectopic sites in SCID mice underwent alterations related to endochondral ossification rather than adopting a stable chondrogenic phenotype. Further studies are needed to evaluate whether a more stringent control of MSC differentiation to chondrocytes can be achieved during cartilage repair in a natural joint environment.  相似文献   

6.
OBJECTIVE: The proinflammatory chemokine interleukin-8 (IL-8) induces chondrocyte hypertrophy. Moreover, chondrocyte hypertrophy develops in situ in osteoarthritic (OA) articular cartilage and promotes dysregulated matrix repair and calcification. Growth plate chondrocyte hypertrophy is associated with expression of the type III sodium-dependent inorganic phosphate (Pi) cotransporter phosphate transporter/retrovirus receptor 1 (PiT-1). This study was undertaken to test the hypothesis that IL-8 promotes chondrocyte hypertrophy by modulating chondrocyte PiT-1 expression and sodium-dependent Pi uptake, and to assess differential roles in this activity. METHODS: The selective IL-8 receptor CXCR1 and the promiscuous chemokine receptor CXCR2 were used. Human knee OA cartilage, cultured normal bovine knee chondrocytes, and immortalized human articular chondrocytic CH-8 cells were transfected with CXCR1/CXCR2 chimeric receptors in which the 40-amino acid C-terminal cytosolic tail domains were swapped and site mutants of a CXCR1-specific region were generated. RESULTS: Up-regulated PiT-1 expression was detected in OA cartilage. IL-8, but not IL-1 or the CXCR2 ligand growth-related oncogene alpha, induced PiT-1 expression and increased sodium-dependent Pi uptake by >40% in chondrocytes. The sodium/phosphate cotransport inhibitor phosphonoformic acid blocked IL-8-induced chondrocyte hypertrophic differentiation. Signaling mediated by kinase Pyk-2 was essential for IL-8 induction of PitT-1 expression and Pi uptake. Signaling through the TSYT(346-349) region of the CXCR1 cytosolic tail, a region divergent from the CXCR2 cytosolic tail, was essential for IL-8 to induce Pi uptake. CONCLUSION: Our results link low-grade IL-8-mediated cartilaginous inflammation in OA to altered chondrocyte differentiation and disease progression through PiT-1 expression and sodium-dependent Pi uptake mediated by CXCR1 signaling.  相似文献   

7.
8.
9.
10.

Background

This study aimed to investigate the expression levels and relationship of bone morphogenetic proteins (BMPs) signaling molecules and microRNA-140 (miR-140) in human osteoarthritis (OA) chondrocytes.

Materials and Methods

Different stage chondrocytes (normal cartilage, mid-stage OA and advanced-stage OA) were isolated from cartilage samples according to Kellgren and Lawrence criteria. The effect of miR-140 on BMPs signaling was evaluated by transfecting miR-140 mimic or inhibitor into chondrocytes. The expression of responsive genes was measured using real-time polymerase chain reaction and Western blotting analysis.

Results

There was a significant reduction in miR-140 and SOX9 expression in OA groups compared to the normal group, and there was a further reduction in the severe OA group compared to the moderate OA group. Compared with the normal group, the expression of ALK1, SMAD1, COL10A1 and MMP3 was higher in the OA groups, whereas the expression of COL2A1 was lower in the OA groups. In the moderate OA group, transfection with miR-140 mimic increased SMAD1, SOX9 and COL2A1 expression, but decreased COL10A1 expression. However, there was an opposite effect after transfecting miR-140 inhibitor with decreased SMAD1, SOX9 and COL2A1 expression, and increased COL10A1 expression. Interestingly, the biological effect of transfecting miR-140 mimic or inhibitor was similar in the severe OA group. SMAD1 and COL2A1 protein production followed the same pattern as their expression profile.

Conclusions

miR-140 suppresses chondrocytes hypertrophy by controlling the BMPs signaling pathway, which highlights the importance of miR-140 in the maintenance of chondrocyte homeostasis and opens up novel avenues in OA therapeutic strategies.  相似文献   

11.
12.
13.
OBJECTIVE: To investigate whether the abnormal expression of matrix metalloproteinases (MMPs) 3, 9, and 13 and ADAMTS-4 by human osteoarthritic (OA) chondrocytes is associated with epigenetic "unsilencing." METHODS: Cartilage was obtained from the femoral heads of 16 patients with OA and 10 control patients with femoral neck fracture. Chondrocytes with abnormal enzyme expression were immunolocalized. DNA was extracted, and the methylation status of the promoter regions of MMPs 3, 9, and 13 and ADAMTS-4 was analyzed with methylation-sensitive restriction enzymes, followed by polymerase chain reaction amplification. RESULTS: Very few chondrocytes from control cartilage expressed the degrading enzymes, whereas all clonal chondrocytes from late-stage OA cartilage were immunopositive. The overall percentage of non-methylated sites was increased in OA patients (48.6%) compared with controls (20.1%): 20% versus 4% for MMP-13, 81% versus 47% for MMP-9, 57% versus 30% for MMP-3, and 48% versus 0% for ADAMTS-4. Not all CpG sites were equally susceptible to loss of methylation. Some sites were uniformly methylated, whereas in others, methylation was generally absent. For each enzyme, there was 1 specific CpG site where the demethylation in OA patients was significantly higher than that in controls: at -110 for MMP-13, -36 for MMP-9, -635 for MMP-3, and -753 for ADAMTS-4. CONCLUSION: This study provides the first evidence that altered synthesis of cartilage-degrading enzymes by late-stage OA chondrocytes may have resulted from epigenetic changes in the methylation status of CpG sites in the promoter regions of these enzymes. These changes, which are clonally transmitted to daughter cells, may contribute to the development of OA.  相似文献   

14.
15.
目的 检测并分析SOX9基因在软骨发育过程中的表达规律;构建其质粒并转染至培养的骨髓源基质细胞(BMSCs)中,通过细胞培养观察SOX9基因对BMSCs生长特性的影响,为可能的骨关节炎(OA)基因治疗提供理论基础.方法 用基因芯片技术建立妊娠胎鼠肢芽软骨发育过程的基因表达谱,分析SOX9基因在软骨发育过程中的表达规律;用噻唑蓝(MTT)法、免疫组织化学、苏木素-伊红(HE)染色、反转录-聚合酶链反应(RT-PCR)及酶联免疫吸附试验(ELISA)法检测SOX9基因转染MSCs的效果及产物的表达.结果 SOX9基因在软骨发育过程中的软骨形成关键期表达显著上调;pDC316-SOX-9质粒转染骨髓基质细胞后可促进骨髓基质细胞的增殖,细胞有向软骨细胞分化趋势.结论 SOX9能够促进软骨形成,SOX9基因质粒转染的MSCs可望在软骨组织工程临床治疗中得到更广泛的运用.  相似文献   

16.
17.
The two major aggrecanases involved in osteoarthritis (OA) are ADAMTS-4 and ADAMTS-5. Knock-out studies suggested that ADAMTS-5, but not ADAMTS-4, is the major aggrecanase in murine OA. However, studies of human articular cartilage suggest that ADAMTS-4 also contributes to aggrecan degradation in human OA. This study investigated ADAMTS-4 in human OA. While ADAMTS-4 was virtually absent in control cartilage, numerous ADAMTS-4 immuno-positive chondrocytes were present in OA cartilage and their numbers increased with disease severity. RT-PCR confirmed expression, especially in the surface zone. DNA methylation was lost at specific CpG sites in the ADAMTS-4 promoter in OA chondrocytes, suggesting that the increased gene expression was more than a simple up-regulation, but involved loss of DNA methylation at specific CpG sites, resulting in a heritable and permanent expression of ADAMTS-4 in OA chondrocytes. These results suggest that ADAMTS-4 is epigenetically regulated and plays a role in aggrecan degradation in human OA. K. S. C. Cheung and K. Hashimoto contributed equally to the study and should be considered joint first authors. K. S. C. Cheung dedicates this work to his mother, Mimi Lai Wah Tam, and to Dr. Man Cho Kowk as a token of their love, effort and support for his medical career.  相似文献   

18.
19.

Objective

Osteoarthritis is characterized by an imbalance in cartilage homeostasis, which could potentially be corrected by mesenchymal stem cell (MSC)–based therapies. However, in vivo implantation of undifferentiated MSCs has led to unexpected results. This study was undertaken to establish a model for preconditioning of MSCs toward chondrogenesis as a more effective clinical tool for cartilage regeneration.

Methods

A coculture preconditioning system was used to improve the chondrogenic potential of human MSCs and to study the detailed stages of chondrogenesis of MSCs, using a human MSC line, Kp‐hMSC, in commitment cocultures with a human chondrocyte line, hPi (labeled with green fluorescent protein [GFP]). In addition, committed MSCs were seeded into a collagen scaffold and analyzed for their neocartilage‐forming ability.

Results

Coculture of hPi‐GFP chondrocytes with Kp‐hMSCs induced chondrogenesis, as indicated by the increased expression of chondrogenic genes and accumulation of chondrogenic matrix, but with no effect on osteogenic markers. The chondrogenic process of committed MSCs was initiated with highly activated chondrogenic adhesion molecules and stimulated cartilage developmental growth factors, including members of the transforming growth factor β superfamily and their downstream regulators, the Smads, as well as endothelial growth factor, fibroblast growth factor, insulin‐like growth factor, and vascular endothelial growth factor. Furthermore, committed Kp‐hMSCs acquired neocartilage‐forming potential within the collagen scaffold.

Conclusion

These findings help define the molecular markers of chondrogenesis and more accurately delineate the stages of chondrogenesis during chondrocytic differentiation of human MSCs. The results indicate that human MSCs committed to the chondroprogenitor stage of chondrocytic differentiation undergo detailed chondrogenic changes. This model of in vitro chondrogenesis of human MSCs represents an advance in cell‐based transplantation for future clinical use.
  相似文献   

20.

Objective

The proinflammatory chemokine interleukin‐8 (IL‐8) induces chondrocyte hypertrophy. Moreover, chondrocyte hypertrophy develops in situ in osteoarthritic (OA) articular cartilage and promotes dysregulated matrix repair and calcification. Growth plate chondrocyte hypertrophy is associated with expression of the type III sodium‐dependent inorganic phosphate (Pi) cotransporter phosphate transporter/retrovirus receptor 1 (PiT‐1). This study was undertaken to test the hypothesis that IL‐8 promotes chondrocyte hypertrophy by modulating chondrocyte PiT‐1 expression and sodium‐dependent Pi uptake, and to assess differential roles in this activity.

Methods

The selective IL‐8 receptor CXCR1 and the promiscuous chemokine receptor CXCR2 were used. Human knee OA cartilage, cultured normal bovine knee chondrocytes, and immortalized human articular chondrocytic CH‐8 cells were transfected with CXCR1/CXCR2 chimeric receptors in which the 40–amino acid C‐terminal cytosolic tail domains were swapped and site mutants of a CXCR1‐specific region were generated.

Results

Up‐regulated PiT‐1 expression was detected in OA cartilage. IL‐8, but not IL‐1 or the CXCR2 ligand growth‐related oncogene α, induced PiT‐1 expression and increased sodium‐dependent Pi uptake by >40% in chondrocytes. The sodium/phosphate cotransport inhibitor phosphonoformic acid blocked IL‐8–induced chondrocyte hypertrophic differentiation. Signaling mediated by kinase Pyk‐2 was essential for IL‐8 induction of PitT‐1 expression and Pi uptake. Signaling through the TSYT346–349 region of the CXCR1 cytosolic tail, a region divergent from the CXCR2 cytosolic tail, was essential for IL‐8 to induce Pi uptake.

Conclusion

Our results link low‐grade IL‐8–mediated cartilaginous inflammation in OA to altered chondrocyte differentiation and disease progression through PiT‐1 expression and sodium‐dependent Pi uptake mediated by CXCR1 signaling.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号