首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Grafts of optic nerve were placed end-toend with the proximal stumps of severed common peroneal nerves in inbred mice. It was found that fraying the proximal end of adult optic nerve grafts to disrupt the glia limitans increased their chances of being penetrated by regenerating peripheral nerve fibres. Suturing grafts to the proximal stump also enhanced their penetration by axons. The maximum distance to which the axons grew through the CNS tissue remained about 1.5 mm from 2–12 weeks after grafting. Schwann cells were seldom identified in the grafts. Varicose and degenerating nerve fibres were often seen within the grafts. Some varicose profiles were shown to be the terminal parts of axons within the grafts. Axons containing clusters of organelles resembling synaptic vesicles became more abundant in the longerterm grafts. Immunohistochemical studies performed on sutured grafts using a polyclonal antiserum to neurofilaments confirmed the impressions given by the electron microscopical observations. Grafts of neonatal optic nerve lacked myelin debris but were not usually penetrated by regenerating peripheral axons within a 6-week period. Sixty minutes after the intravenous injection of horseradish peroxidase, reaction product could be detected in the extracellular spaces around blood vessels in all types of living optic nerve graft. This indicates that blood-borne macromolecules could penetrate the grafts. However the profiles of axons which were found within living optic nerve grafts had no obvious relationship to blood vessels and were usually surrounded by astrocytic processes. These results suggest that living astrocytes, rather than the absence of serum-derived trophic factors or the presence of CNS myelin, constitute the major barrier to the extension of axons and the migration of Schwann cells into CNS tissue.Supported by a grant from the Wellcome Trust  相似文献   

2.
Schwann cells contribute to efficient axonal regeneration after peripheral nerve injury and, when grafted to the central nervous system (CNS), also support a modest degree of central axonal regeneration. This study examined (1) whether Schwann cells grafted to the CNS exhibit normal patterns of differentiation and association with spinal axons and what signals putatively modulate these interactions, and (2) whether Schwann cells overexpressing neurotrophic factors enhance axonal regeneration. Thus, primary Schwann cells were transduced to hypersecrete human nerve growth factor (NGF) and were grafted to spinal cord injury sites in adult rats. Comparisons were made to nontransfected Schwann cells. From 3 days to 6 months later, grafted Schwann cells exhibited a phenotypic and temporal course of differentiation that matched patterns normally observed after peripheral nerve injury. Schwann cells spontaneously aligned into regular spatial arrays within the cord, appropriately remyelinated coerulospinal axons that regenerated into grafts, and appropriately ensheathed but did not myelinate sensory axons extending into grafts. Coordinate expression of the cell adhesion molecule L1 on Schwann cells and axons correlated with establishment of appropriate patterns of axon-Schwann cell ensheathment. Transduction of Schwann cells to overexpress NGF robustly increased axonal growth but did not otherwise alter the nature of interactions with growing axons. These findings suggest that signals expressed on Schwann cells that modulate peripheral axonal regeneration and myelination are also recognized in the CNS and that the modification of Schwann cells to overexpress growth factors significantly augments their capacity to support extensive axonal growth in models of CNS injury.  相似文献   

3.
The present work elucidates the connectivity of adult retinal ganglion cell axons regenerating through grafted peripheral nerve segments with co-grafted immature brain target cells. The optic nerve of rats was transected intraorbitally and its segment distal to the transection was replaced by a 3 cm length of peroneus communis graft, that is known to permit regeneration of a certain proportion of the severed axonal population. Five weeks after optic nerve transection and peripheral nerve transplantation the regenerating optic tract axons were guided into rat fetal mesencephalic co-grafts (E14-16) placed in superficial cavities prepared in the occipital cortex. The rationale of the experimental setup was based on the fact that regrowth of retinal axons started at the 6th day after transection, whereas the fastest-growing axons reached the distal end of the transplanted peripheral nerve 4 weeks later growing with a velocity of about 1.33 mm/day. Therefore, grafting the fetal superior colliculus at the time axons arrive distally resulted in ingrowth of several hundreds of retinal axons into this immature, retinoreceptive brain tissue. Retinal axons which penetrated the fetal grafts contacted tectal neurons and GFAP-immunoreactive glia and formed typical retinocollicular axonal arbors as detected by anterograde labeling with RITC from the retina. In addition, sprouting fibers from the adjacent adult cortical neurons penetrated frequently the fetal transplants. By 'bridging' lesions with peripheral nerve pieces and providing immature neurons as targets for growing neurites, this transplantation model is suitable for investigations on whether regenerating adult neurites are capable of reforming connections. The co-transplantation technique may serve as a tool for understanding whether interrupted circuitries in the central nervous system can be functionally restored over long distances by the use of peripheral nerve grafts and immature nervous system tissue.  相似文献   

4.
Adult glia are capable of at least limited myelination of CNS axons. However, it is difficult to quantitate their myelination or migratory capacities and to examine contributions of the CNS environment or exogenous factors that might promote or inhibit this process in situ. We have therefore developed a mouse tissue culture system in which optic nerve glia (in the form of appropriately handled optic nerve) are added to chemically demyelinated cerebellar axons. Optic nerve up to postnatal day 411 (P411) contains cells that can migrate out of the nerve into the cerebellar explant and form myelin around its axons. The success rate for myelin formation in these cultures is 57% for immature (P7-11) glia and 55% for adult (P50-411) glia. Computer-generated reconstructions of cultures containing immature (P8) and adult (P89 and P139) nerves demonstrate that in all 3 cases the glia may migrate more than 0.6 mm before myelinating axons, assuming the shortest possible track. Both the age limit for myelination and distance limit for migration, if any, remain to be determined for these adult glia. In successful cultures, myelin always directly abuts the optic nerve surface, whether or not it also extends further, suggesting that migrating glia may depend upon contact guidance by myelin-receptive axons. We conclude that this culture system is a useful model of adult CNS myelin regeneration, in which one can examine the influence of potential trophic or toxic factors on specific aspects of myelinating glial cell behavior.  相似文献   

5.
Analysis of the effectiveness of allografts and immunosuppression in the repair of nerve defects in the adult peripheral nervous system (PNS) has a long experimental and clinical history. There is little information, however, on the use of allografts in peripheral nerve (PN) transplantation into the injured central nervous system (CNS). We assessed the ability of PN allografts (from Dark-Agouti rats) to support regeneration of adult rat retinal ganglion cell (RGC) axons in immunosuppressed host Lewis rats. PN allografts were sutured onto intraorbitally transected optic nerves. Three weeks after grafting, regenerating RGC axon numbers were determined using retrograde fluorescent labelling, and total axons within PN grafts were assessed using pan-neurofilament immunohistochemistry. In the absence of immunosuppression, PN allografts contained few axons and there were very few labelled RGC. These degenerate grafts contained many T cells and macrophages. Systemic (intraperitoneal) application of the immunosuppressants cyclosporin-A or FK506 reduced cellular infiltration into allografts and resulted in extensive axonal regrowth from surviving RGCs. The average number of RGCs regenerating axons into immunosuppressed allografts was not significantly different from that seen in PN autografts in rats sham-injected with saline. Many pan-neurofilament-positive axons, a proportion of which were myelinated, were seen in immunosuppressed allografts, particularly in proximal regions of the grafts toward the optic nerve-PN interface. This study demonstrates that PN allografts can support axonal regrowth in immunosuppressed adult hosts, and points to possible clinical use in CNS repair.  相似文献   

6.
The ability of long acellular nerve grafts to support axonal regeneration was examined using inbred rats. Grafts (40 mm long) of tibial/plantar nerves were used either as live grafts or after freeze-drying to render the grafts acellular. The grafts were sutured to the proximal stump of severed tibial nerves in host animals which were then killed 1-12 weeks later. Axons rapidly regenerated through the living grafts but only extended 10-20 mm into the acellular grafts. This distance was achieved by 6 weeks and thereafter no significant further axonal extension occurred in the acellular grafts. A few naked axons lacking Schwann cell contact were identified in all acellular grafts, but became more numerous near the distal extent of axonal penetration into 6-12 week grafts. These axons contained large numbers of neurofilaments. When the distal 20 mm of 6 week acellular grafts (segments into which axons had not penetrated) were sutured to freshly severed tibial nerves, axons grew readily into the grafted tissue to a maximum distance of 9 mm. It is therefore likely that the limits to axonal regeneration through initially acellular grafts were set by factors intrinsic to the severed nerve. It is suggested that the limited migratory powers of Schwann cells may be one such factor. The concept that basal lamina tubes are not essential for axonal regeneration but may act as low resistance pathways for both axonal elongation and Schwann cell migration is discussed.  相似文献   

7.
The damaged septohippocampal pathway was utilized to study the axonal regeneration of injured neurons. Semipermeable tubes, 2-mm long, were placed in the axis of the transected septohippocampal pathway of adult rats. In a first series of experiments, empty tubes were implanted. Even six weeks after the operation, no regenerated axons were observed in the conduit. In a second series of experiments, in order to validate our approach, segments of pre-degenerated sciatic nerves were introduced into the tubes. Under these experimental conditions, acetylcholinesterase (AChE)-containing regenerated axonal processes were detected in the grafted sciatic nerves. Glial fibrillary acidic protein (GFAP)-immunodetection showed that astroglial cells and astrocyte processes were able to progress on and into the peripheral grafts. At the electron microscopic level, axons were observed in close contact with Schwann cells which myelinated some of them. In some other cases, unmyelinated axons were also present at the surface of reactive astroglial cells filled by numerous intermediate filaments. These central glial cells had migrated among the sciatic nerve collagen fibers. No axon was detected without glial cell contact. In a third series of experiments, we implanted semipermeable tubes previously filled with a fibrin-fibronectin-containing matrix provided by peripheral regeneration chambers. One week after the implantation of the tubes containing this peripheral substrate, different cell types were observed migrating into the conduit and replacing the fibrin-fibronectin-containing matrix. Among these cells astrocytes were present as revealed by GFAP-immunocytochemistry and electron microscopic examinations. During the following weeks, axons were detected in contact with the reactive astroglial cells. AChE-histochemistry showed that axons were able to cross the two millimeter distance separating the septal part and the hippocampal part of the lesion site. GABA (γ-aminobutyric acid)-ergic fibers were also detected in the regenerated structure. These experiments show that cellular or acellular substrates provided by the PNS can promote the regeneration of CNS GABAergic and cholinergic neurons. Our observations suggest that astrocytes can take an important part, after their migration or after extending processes, in the axonal regeneration in the adult CNS of the rat, possibly in furnishing a cellular terrain for the progression of growth cones over a distance of two millimeters and in maintaining regenerated axons at least until the sixth week after the operation.  相似文献   

8.
When grafted onto the cut optic nerve, chimeric peripheral nerve (PN) sheaths reconstituted with adult Schwann cells (SCs) support the regeneration of adult rat retinal ganglion cell (RGC) axons. Regrowth can be further enhanced by using PN containing SCs transduced ex vivo with lentiviral (LV) vectors encoding a secretable form of ciliary neurotrophic factor (CNTF). To determine whether other neurotrophic factors or different cell types also enhance RGC regrowth in this bridging model, we tested the effectiveness of (1) adult SCs transduced with brain-derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor (GDNF), and (2) fibroblasts (FBs) genetically modified to express CNTF. SCs transduced with LV-BDNF and LV-GDNF secreted measurable and bioactive amounts of each of these proteins, but reconstituted grafts containing LV-BDNF or LV-GDNF transduced SCs did not enhance RGC survival or axonal regrowth. LV-BDNF modified grafts did, however, contain many pan-neurofilament immunolabeled axons, many of which were also immunoreactive for calcitonin gene-related peptide (CGRP) and were presumably of peripheral sensory origin. Nor-adrenergic and cholinergic axons were also seen in these grafts. There were far fewer axons in LV-GDNF engineered grafts. Reconstituted PN sheaths containing FBs that had been modified to express CNTF did not promote RGC viability or regeneration, and PN reconstituted with a mixed population of SCs and CNTF expressing FBs were less effective than SCs alone. These data show that both the type of neurotrophic factor and the cell types that express these factors are crucial elements when designing bridging substrates to promote long-distance regeneration in the injured CNS.  相似文献   

9.
Summary Freeze-dried tibial nerve grafts were anastomosed to either the proximal stump or the distal stump of severed tibial nerves in adult inbred Fischer rats. In the case of grafts attached to the proximal stump the tibial nerve was ligated three times, the most distal ligature from the spinal cord being 1 cm from the site of anastomosis. In both types of experiment Schwann cells were, therefore, free to enter the initially acellular grafts without accompanying axons. The grafts were examined 17 days to 12 weeks after operation. Immunofluorescence for S-100 protein was used to evaluate the distance migrated by the Schwann cells and electron microscopy was used to examine the morphology of the cells which invaded the grafts. Schwann cell migration was similar from the proximal and distal stumps. The migrating Schwann cells formed columns which resembled bands of Bungner. They were found mainly, but not exclusively, inside the pre-existing basal lamina tubes left behind by the killed nerve fibres. Some Schwann cells secreted a thin, patchy basal lamina even though they lacked axonal contact. Schwann cell columns became partially compartmentalized by fibroblast processes. Myelin and other debris were removed most rapidly in those parts of the grafts penetrated by large numbers of Schwann cells. The maximum distance the Schwann cells penetrated into the grafts was 8.5 mm and this was achieved by 6 to 8 weeks after operation. This is about half the maximum distance migrated by Schwann cells accompanying regenerating axons through similar grafts. The reasons why Schwann cells migrate shorter distances without axons and the significance of these results for the interpretation of axonal regeneration experiments using acellular grafts are discussed.Supported by a grant from the Medical Research Council  相似文献   

10.
Porous hydrophilic sponges made from 2-hydroxyethyl methacrylate (HEMA) have a number of possible biomedical applications. We have investigated whether these poly(HEMA) hydrogels, when coated with collagen and infiltrated in vitro with cultured Schwann cells, can be implanted into the lesioned optic tract and act as prosthetic bridges to promote axonal regeneration. Nineteen rats (20–21 days old) were given hydrogel/Schwann cell implants. No obvious toxic effects were seen, either to the transplanted glia or in the adjacent host tissue. Schwann cells survived the implantation technique and were immunopositive for the low affinity nerve growth factor receptor, S100 and laminin. Immunohistochemical studies showed that host non-neuronal cells (astrocytes, oligodendroglia and macrophages) migrated into the implanted hydrogels. Astrocytes were the most frequently observed host cell in the polymer bridges. RT97-positive axons were seen in about two thirds of the implants. The axons were closely associated with transplanted Schwann cells and, in some cases, host glia (astrocytes). Individual axons regrowing within the implanted hydrogels could be traced for up to 900 μm, showing that there was continuity in the network of channels within the polymer scaffold. Axons did not appear to be myelinated by either Schwann cells or by migrated host oligodendroglia. In three rats, anterograde tracing with WGA/HRP failed to demonstrate the presence of retinal axons within the hydrogels. The data indicate that poly(HEMA) hydrogels containing Schwann cells have the potential to provide a stable three-dimensional scaffold which is capable of supporting axonal regeneration in the damaged CNS.  相似文献   

11.
Oxidized galectin-1 has recently been identified as a key factor that plays important roles in initial axonal growth in injured peripheral nerves. The aim of this study was to investigate the effects of oxidized galectin-1 on regeneration of rat spinal nerves using acellular autografts (containing no viable cells) and allografts (containing no cell membranes) with special attention to the relationship between axonal regeneration and Schwann cell migration. Immunohistochemically, endogenous galectin-1 was expressed in dorsal root ganglion (DRG) neurons, spinal cord motoneurons, and axons and Schwann cells in normal sciatic nerves. Administration of oxidized recombinant human galectin-1 (rh-gal-lox, 5 ng/ml) in autograft model promoted axonal regeneration from motoneurons as well as from DRG neurons; this was confirmed by a fluorogold tracer study (p < 0.05). Anti-rh-gal-1 antibody (30 microg/ml) strongly inhibited axonal regrowth (p < 0.05). Pretreatment of allografts with rh-gal-lox stimulated the migration of Schwann cells not only from proximal stumps but also from distal stumps into the grafts, resulting in accelerated axonal regeneration (p < 0.05). Moreover, Schwann cell migration preceded the axonal growth in the presence of exogenous rh-gal-lox in the grafts. These results strongly suggest that local administration of exogenous rh-gal-lox promotes the migration of Schwann cells followed by axonal regeneration from both motor and sensory neurons, resulting in acceleration of neuronal repair. This technique may also be of value in the repair of human nerves.  相似文献   

12.
Basement membrane component changes in nerve allografts and isografts   总被引:1,自引:0,他引:1  
This study describes immunocytochemical changes in laminin, which is an integral basement membrane (BM) component, during axonal regeneration through antigenic nerve allografts and nonantigenic nerve isografts. In normal rat nerve, laminin was localized in the BM of Schwann cells and the perineurium. During nerve allograft rejection, the perineurium and Schwann cells disappeared. However, the Schwann cell BMs persisted and became distorted and collapsed. In isografted nerves, the perineurium and Schwann cells were present, and only a few Schwann cell BMs appeared to be distorted; however, the staining for laminin was faint, indicating a possible BM breakdown. A new BM appeared as small rings around the Schwann cells after they had become associated with regenerated axons. Because only a limited axonal regeneration occurred in allografts as compared to isografts, it is concluded that the viable Schwann cells, and their BM architecture, are essential for regeneration through long nerve grafts.  相似文献   

13.
PURPOSE: In the present study we have morphometrically examined a regeneration model in which axons normally residing in CNS have regrown and are interacting with Schwann cells from the PNS. This study will not only provide morphometric data on regenerated optic fibers but also shed light on possible factors in determining the fiber morphometry. METHODS: The optic nerves of rats aged 6 weeks were cut intra-orbitally and replaced with a autologous sciatic nerve. After a survival period of 9 months, the graft or "regenerated" nerves containing the regenerated optic axons and Schwann cells were processed for morphometric measurements. RESULTS: The mean myelinated axon diameter of regenerated nerve (1.8 +/- 0.2 micro m) was significantly (P < 0.05) greater than that of the optic nerve (0.9 +/- 0.03 micro m). However, unmyelinated regenerated optic axons had a smaller mean axon diameter (0.49 +/- 0.04 micro m) than normal myelinated optic axons. This may suggest that myelinating glial cells exert an influence on axon caliber and Schwann cells seem to have greater effect than oligodendrocytes. The mean g-ratio showing the relative myelin sheath thickness was found to be the highest in the optic nerve (0.78 +/- 0.003), least in the sciatic nerve (0.6 +/- 0.009) and intermediate in the regenerated nerve (0.68 +/- 0.01). The results indicated that Schwann cells myelinating the regenerated optic axons have produced a thinner myelin sheath. Intra-axonally, no significant difference was detected in the number of axonal microtubules and neurofilaments between the regenerated and optic nerves. Therefore the disposition of microtubules and neurofilaments into axon may be intrinsically determined. CONCLUSIONS: In this study, we have identified some of the extrinsic and intrinsic factors in determining the fiber morphometry of the regen-erated nerve. The axon-size and myelination by glial cells were determined through the external axon-glial interactions, whereas the number of axonal microtubules and neurofilaments were intrinsically determined.  相似文献   

14.
Peripheral nerve grafts promote vigorous regeneration of adult mammalian CNS axons. Elimination of nerve-associated cells by freeze-thawing abolishes this promoting quality, possibly by creating inhibitory cellular debris and/or destroying the production of stimulatory factors by living Schwann or other cells. Here, debris-free acellular peripheral nerve segments placed between the disconnected septum and the hippocampal formation acquired almost no cholinergic axons after 1 month. However, such acellular nerve grafts treated before implantation with purified beta-nerve growth factor (NGF) contained nearly as many longitudinally oriented cholinergic axons as did fresh cellular nerve grafts. These results suggest that (i) NGF is required for the regeneration of adult CNS cholinergic axons into nerve grafts and (ii) an important function of living cells within peripheral nerve may be the production of neuronotrophic factors such as NGF.  相似文献   

15.
Tissue-engineering as laboratory based alternative to human autografts and allografts provides "custom made organs" cultured from patient's material. To overcome the limited donor nerve availability different biologic nerve grafts were engineered in a rat sciatic nerve model: cultured isogenic Schwann cells were implanted into acellular autologous matrices: veins, muscles, nerves, and epineurium tubes. Autologous nerve grafts, and the respective biogenic material without Schwann cells served as control. After 6 weeks regeneration was assessed clinically, histologically and morphometrically. The PCR analysis showed that the implanted Schwann cells remain within all the grafts. A good regeneration was noted in the muscle-Schwann cell-group, while regeneration quality in the other groups (with or without Schwann cells) was impaired. The muscle-Schwann cell graft showed a systematic and organized regeneration including a proper orientation of regenerated fibers. All venous and epineurium grafts had a more disorganized regeneration. Seemingly, the lack of endoneural tube like structures in vein grafts lead to impaired regeneration. And, apparently, the beneficial effects of implanted Schwann cells into a large luminal structure can only be demonstrated to a limited extent if endoneural like structures are lacking. A tube offers less area for Schwann cell adhesion and it is more likely to collapse. This underlines the role of the basal lamina, or at least an inner structure acting as scaffold in axonal regeneration. Although the conventional nerve graft remains the gold standard, the implantation of Schwann cells into an acellular muscle provides a biogenic graft with basal lamina tubes as pathway for regenerating axons and the positive effects of Schwann cells producing neurotrophic and neurotropic factors, and thus, supporting axonal regeneration.  相似文献   

16.
After peripheral nerve injury, neurotrophins play a key role in the regeneration of damaged axons that can be augmented by exercise, although the distinct roles played by neurons and Schwann cells are unclear. In this study, we evaluated the requirement for the neurotrophin, brain-derived neurotrophic factor (BDNF), in neurons and Schwann cells for the regeneration of peripheral axons after injury. Common fibular or tibial nerves in thy-1-YFP-H mice were cut bilaterally and repaired using a graft of the same nerve from transgenic mice lacking BDNF in Schwann cells (BDNF(-/-)) or wild-type mice (WT). Two weeks postrepair, axonal regeneration into BDNF(-/-) grafts was markedly less than WT grafts, emphasizing the importance of Schwann cell BDNF. Nerve regeneration was enhanced by treadmill training posttransection, regardless of the BDNF content of the nerve graft. We further tested the hypothesis that training-induced increases in BDNF in neurons allow regenerating axons to overcome a lack of BDNF expression in cells in the pathway through which they regenerate. Nerves in mice lacking BDNF in YFP(+) neurons (SLICK) were cut and repaired with BDNF(-/-) and WT nerves. SLICK axons lacking BDNF did not regenerate into grafts lacking Schwann cell BDNF. Treadmill training could not rescue the regeneration into BDNF(-/-) grafts if the neurons also lacked BDNF. Both Schwann cell- and neuron-derived BDNF are thus important for axon regeneration in cut peripheral nerves.  相似文献   

17.
Live or freeze-killed syngeneic adult muscularis externa, comprising myenteric plexus sandwiched between two layers of smooth muscle, was implanted into the corpus striatum of adult Fischer rats and examined electron microscopically 10 days to 6 weeks after operation. Living grafts contained healthy neurons and glial cells at all time-periods examined, although some areas of necrosis were observed. After 10 days, the glia limitans around the grafts were poorly developed and the adjacent brain tissue contained only a small number of small non-myelinated axons. After 3 and 6 weeks, the brain surrounding the living grafts contained many clusters of small non-myelinated axons. Bundles of putative central nervous system (CNS) axonal sprouts had invaded the grafts, making contact with enteric glia, despite the presence of a well-developed glia limitans at the interface with the brain. In the longer-term grafts some CNS axonal sprouts in the myenteric plexus enlarged and became myelinated. A few astrocyte processes but no axons were found in the freeze-kilied grafts. The brain surrounding the freeze-killed grafts appeared to contain fewer axonal sprouts than were present around the living grafts. The possibility that the living grafts may promote both the sprouting and the elongation of CNS axons is discussed.  相似文献   

18.
We have previously shown that a tendon autograft from the rat tail can support regeneration across a gap in the continuity of the rat sciatic nerve. In this study, we characterized the spatiotemporal progress of regeneration in such a graft bridging a 10-mm defect in the sciatic nerve of the rat. Regeneration was assessed 7, 10, 14, or 18 days postoperatively, by immunocytochemistry for axons, Schwann cells, and macrophages and histochemistry for blood vessels. Axonal regrowth into the grafts showed an initial delay period of 6.8 days, whereafter axons grew at a rate of 1.0 mm/day. Schwann cells grew into the grafts from both the proximal and distal nerve segments, proximally just ahead of the axonal front. Macrophages were initially preferentially located at the periphery of the grafts, but gradually increased inside the grafts. Blood vessels entered the grafts from both the proximal and distal aspects of the severed nerve. The onset of vascularization appeared to coincide with axonal regeneration into the grafts.  相似文献   

19.
Explants of adult or 10-day-old rat sciatic and optic nerves were implanted as "bridges" through a silicon grease seal in a three-compartment chamber culture system, leading from a narrow center chamber to two adjacent side chambers. Dissociated newborn rat sympathetic or sensory neurons were plated into the center chamber and grown in the presence of optimal concentrations of nerve growth factor (NGF). By light microscopy, nerve fibers were seen to grow out of the sciatic nerve explants in the side chambers after 2 to 3 weeks. Electron microscopy showed large numbers of axons present inside the sciatic nerves, irrespective of the presence and number of living Schwann cells. Besides their tendency to fasciculate, axons grew with high preference on Schwann cell membranes and the Schwann cell side of the basal lamina, a situation identical to in vivo regeneration. In contrast to the sciatic nerves, no axons could be found under any condition in the optic nerves. This result points to the existence of extremely poor, non-permissive substrate conditions in the differentiated optic nerves which cannot be overcome by the strong fiber outgrowth-promoting effects of NGF.  相似文献   

20.
The ability of peripheral nerve fibres to regenerate through the central nervous system (CNS) extracellular matrix in the presence of CNS myelin debris was examined using living and freeze-dried optic nerve grafts. The grafts were placed end-to-end with the proximal stumps of severed common peroneal nerves of inbred mice. Within a 4 week period, regenerating peripheral nervous system fibres were found in only two of 14 living grafts. However axons always grew into freeze-dried grafts within one week, despite the presence of CNS myelin debris. The regenerating axons in freeze-dried grafts were accompanied by Schwann cells and were initially found associated with the inner aspect of the glial basal lamina. Although the extracellular matrix of the freeze-dried CNS tissue was subsequently reorganized by invading cells, it seems likely that neither the nature of the CNS extracellular matrix nor the presence of CNS myelin debris had a major inhibitory influence on peripheral nerve regeneration. It is suggested that the presence of living astrocytes covered by a basal lamina at the proximal end of the living optic nerve grafts may inhibit their penetration by regenerating axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号