首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uropathogenic Escherichia coli (UPEC), the most frequent cause of urinary tract infection (UTI), is associated with an inflammatory response which includes the induction of cytokine/chemokine secretion by urothelial cells and neutrophil recruitment to the bladder. Recent studies indicate, however, that UPEC can evade the early activation of urothelial innate immune response in vitro. In this study, we report that infection with the prototypic UPEC strain NU14 suppresses tumor necrosis factor alpha (TNF-alpha)-mediated interleukin-8 (CXCL-8) and interleukin-6 (CXCL-6) secretion from urothelial cell cultures compared to infection with a type 1 piliated E. coli K-12 strain. Furthermore, examination of a panel of clinical E. coli isolates revealed that 15 of 17 strains also possessed the ability to suppress cytokine secretion. In a murine model of UTI, NU14 infection resulted in diminished levels of mRNAs encoding keratinocyte-derived chemokine, macrophage inflammatory peptide 2, and CXCL-6 in the bladder relative to infection with an E. coli K-12 strain. Furthermore, reduced stimulation of inflammatory chemokine production during NU14 infection correlated with decreased levels of bladder and urine myeloperoxidase and increased bacterial colonization. These data indicate that a broad phylogenetic range of clinical E. coli isolates, including UPEC, may evade the activation of innate immune response in the urinary tract, thereby providing a pathogenic advantage.  相似文献   

2.
Urinary tract infections are most commonly caused by uropathogenic strains of Escherichia coli (UPEC), which invade superficial bladder epithelial cells via a type 1 pilus-dependent mechanism. Inside these epithelial cells, UPEC organisms multiply to high numbers to form intracellular bacterial communities, allowing them to avoid immune detection. Bladder epithelial cells produce interleukin-6 (IL-6) and IL-8 in response to laboratory strains of E. coli in vitro. We investigated the ability of UPEC to alter epithelial cytokine signaling by examining the in vitro responses of bladder epithelial cell lines to the cystitis strains UTI89 and NU14. The cystitis strains induced significantly less IL-6 than did the laboratory E. coli strain MG1655 from 5637 and T24 bladder epithelial cells. The cystitis strains also suppressed epithelial cytokine responses to exogenous lipopolysaccharide (LPS) and to laboratory E. coli. We found that insertional mutations in the rfa and rfb operons and in the surA gene all abolished the ability of UTI89 to suppress cytokine induction. The rfa and rfb operons encode LPS biosynthetic genes, while surA encodes a periplasmic cis-trans prolyl isomerase important in the biogenesis of outer membrane proteins. We conclude that, in this in vitro model system, cystitis strains of UPEC have genes encoding factors that suppress proinflammatory cytokine production by bladder epithelial cells.  相似文献   

3.
Molecular epidemiological analyses of extraintestinal pathogenic Escherichia coli (ExPEC), which are also called "uropathogenic E. coli" since they are the principle pathogens in urinary tract infection, involve structured observations of E. coli as they occur in the wild. Careful selection of subjects and use of appropriate methods for genotyping and statistical analysis are required for optimal results. Molecular epidemiological studies have helped to clarify the host-pathogen relationships, phylogenetic background, reservoirs, and transmission pathways of ExPEC, to assess potential vaccine candidates, and to delineate areas for further study. Ongoing discovery of new putative virulence factors (VFs), increasing awareness of the importance of VF expression and molecular variants of VFs, and growing appreciation of transmission as an important contributor to ExPEC infections provide abundant stimulus for future molecular epidemiological studies. Published by Elsevier GmbH.  相似文献   

4.
Subset of faecal E. coli that can enter, colonize urinary tract and cause infection are known as uropathogenic E. coli (UPEC). UPEC strains act as opportunistic intracellular pathogens taking advantage of host susceptibility using a diverse array of virulence factors. Presence of specific virulence associated genes on genomic/pathogenicity islands and involvement of horizontal gene transfer appears to account for evolution and diversity of UPEC. Recent success in large-scale genome sequencing and comparative genomics has helped in unravelling UPEC pathogenomics. Here we review recent findings regarding virulence characteristics of UPEC and mechanisms involved in pathogenesis of urinary tract infection.  相似文献   

5.
Urinary tract infections (UTIs) are among the most common infections in human. Innate immunity recognizes pathogen‐associated molecular patterns (PAMPs) by Toll‐like receptors (TLRs) to activate responses against pathogens. Recently, we demonstrated that MrpH.FimH fusion protein consisting of MrpH from Proteus mirabilis and FimH from Uropathogenic Escherichia coli (UPEC) results in the higher immunogenicity and protection, as compared with FimH and MrpH alone. In this study, we evaluated the innate immunity and adjuvant properties induced by fusion MrpH.FimH through in vitro and in vivo methods. FimH and MrpH.FimH were able to induce significantly higher IL‐8 and IL‐6 responses than untreated or MrpH alone in cell lines tested. The neutrophil count was significantly higher in the fusion group than other groups. After 6 h, IL‐8 and IL‐6 production reached a peak, with a significant decline at 24 h post‐instillation in both bladder and kidney tissues. Mice instilled with the fusion and challenged with UPEC or P. mirabilis showed a significant decrease in the number of bacteria in bladder and kidney compared to control mice. The results of these studies demonstrate that the use of recombinant fusion protein encoding TLR‐4 ligand represents an effective vaccination strategy that does not require the use of a commercial adjuvant. Furthermore, MrpH.FimH was presented as a promising vaccine candidate against UTIs caused by UPEC and P. mirabilis.  相似文献   

6.
目的 研究尿道致病性大肠埃希菌(UPEC)菌株132与人膀胱上皮EJ细胞的相互作用,分析该菌株感染对EJ细胞基因表达谱的改变.方法 UPEC132感染EJ细胞,用倒置显微镜观察细菌与细胞的黏附,计算黏附率,并通过激光共聚焦显微镜观察UPEC132对细胞的侵袭.感染UPEC132的EJ细胞与未经细菌感染的细胞提取总RNA,用人类全基因组寡核苷酸微阵列芯片分析差异表达基因,并采用RT-PCR对基因芯片数据进行验证.结果 UPEC132能够黏附于EJ细胞表面,黏附率为(73.20±5.26)%;激光共聚焦显微镜观察发现部分细菌位于细胞内部,证实该菌对EJ细胞具有侵袭性.UPEC132感染后的EJ细胞与未经感染的细胞相比,共有28个基因上调,1个基因下调,主要涉及细胞增殖、炎症反应、细胞凋亡等相关基因.结论 UPEC与尿路上皮细胞的相互作用激活宿主细胞内部多种应答反应与信号转导途径,本研究为深入探索UPEC致病机制奠定基础.  相似文献   

7.
Uropathogenic Escherichia coli strains isolated from four patients with pyelonephritis were characterized by their O:K serotype, hemolysin production, mannose-resistant hemagglutination, and the serotype of the P fimbriae. These P fimbriae were serotyped with specific monoclonal antibodies. Serum samples from the patients were analyzed for the presence of specific antibodies to the P fimbriae. In all cases antifimbrial antibodies were found, strongly suggesting that these P fimbriae are expressed in vivo. However, the antibodies in the patient sera were not able to inhibit the mannose-resistant hemagglutination. This finding suggests that these antibodies react with the fimbrial components and not with the minor components which are responsible for adhesion.  相似文献   

8.
The role of Stenotrophomonas maltophilia fimbrin (SMF) to stimulate the bladder innate immune response was evaluated in this study. SMF was isolated and purified from clinical isolates of S .maltophilia. Different amounts of SMF (1, 5 and 15 μg) was instilled transurethrally. The innate immune response was evaluated in terms of IL-1β, TNF-α, IL-8 and NO concentrations, and mRNA expressions of IL-1β, TNF-α, IL-8 and iNOS in mouse bladder tissue. Moreover, neutrophil infiltration in urine, myeloperoxidase (MPO) activity in bladder tissue and bladder epithelial cells (BECs) activity to engulf and kill bacteria in vitro was studied. The maximum pro-inflammatory cytokines (IL-1β and TNF-α) and chemokine (IL-8) concentrations and their mRNA expressions were found in bladder homogenates of mice that were instilled with 15 μg of SMF transurethrally. The high levels of these mediators was concomitant with the high level of neutrophil infiltration in bladder tissue (MPO) and in collected urine (neutrophil count). The administration of SMF transurethrally activated the BECs in terms of bacterial uptake and intracellular bacterial killing in vitro. This study showed that the SMF administration increased the level of nitric oxide (NO) in bladder tissue. The present study proved for the first time that the administration of mice with SMF transurethrally induced cellular and molecular elements of innate immune response in mouse bladder.  相似文献   

9.
The genetic organization and epidemiology of Dr hemagglutinin was studied. Plasmids derived from pBJN406 and carrying transposon inserts were analyzed for their abilities to confer the mannose-resistant hemagglutination phenotype and expression of plasmid-encoded proteins. The 6.6-kilobase DNA fragment expressed five polypeptides with molecular masses of 15.5, 5, 18, 90, and 32 kilodaltons encoded by the draA, draB, draC, draD, and draE genes, respectively. Four genes, draA, draC, draD, and draE, were required for full mannose-resistant hemagglutination expression. Mutation in the draA gene, previously identified as encoding fimbrillin, resulted in loss of the adherence phenotype. We screened 658 strains isolated from patients with urinary tract infections (UTI) or from fecal samples for the presence of DNA sequences homologous to the draD gene. A significantly higher frequency of draD-related sequences was found among Escherichia coli strains from patients with cystitis than among strains from patients with other clinical forms of UTI. Association of draD-related sequences with O75 and other serotypes was observed. A possible role of Dr hemagglutinin as a virulence factor in lower UTI is discussed.  相似文献   

10.
The pap, prs, pil, and hly operons of the pyelonephritic Escherichia coli isolate J96 code for the expression of P, F, and type 1 adhesins and the production of hemolysin, respectively; the afaI operon of the pyelonephritic E. coli KS52 encodes an X adhesin. Using different segments of these operons as probes, colony hybridizations were performed on 97 E. coli urinary tract and 40 fecal clinical isolates to determine (i) the presence in the infecting bacteria of nucleotide sequences related to virulence operons, and (ii) the phenotypic properties associated with such sequences. Coexpression of P and F adhesins encoded by pap-related sequences was detected more frequently among isolates from patients with pyelonephritis (32 of 49, 65%) than among those with cystitis (11 of 48, 23%; P less than 0.0001) or from fecal specimens (6 of 40, 15%; P less than 0.0001). Therefore, the expression of both adhesins appears to be critical in the colonization of the upper urinary tract. In contrast, afaI-related sequences were detected significantly more frequently among isolates from patients with cystitis, suggesting that this class of X adhesin may have a role in lower urinary tract infections. Urinary tract isolates differed from fecal isolates by a low incidence of type 1 adhesin expression among pil probe-positive isolates. hly-related sequences were only detected in pap probe-positive isolates. The frequency of hemolysin production among pap probe-positive isolates was not associated with a particular pattern of infection. The distribution of these virulence factors was similar in the presence or absence of reflux, indicating that structural abnormalities of the urinary tract did not facilitate colonization by adhesin-negative isolates.  相似文献   

11.
Lipopolysaccharide (LPS) binding protein (LBP) is an acute-phase protein that enhances the responsiveness of immune cells to LPS by virtue of its capacity to transfer LPS to CD14. To determine the role of LBP in the innate immune response to peritonitis, LBP gene-deficient (LBP(-/-)) and normal wild-type mice were intraperitoneally infected with Escherichia coli, the most common causative pathogen of this disease. LBP was detected at low concentrations in peritoneal fluid of healthy wild-type mice, and the local LBP levels increased rapidly upon induction of peritonitis. LBP(-/-) mice were highly susceptible to E. coli peritonitis, as indicated by accelerated mortality, earlier bacterial dissemination to the blood, impaired bacterial clearance in the peritoneal cavity, and more severe remote organ damage. LBP(-/-) mice displayed diminished early tumor necrosis factor alpha, interleukin-6, cytokine-induced neutrophil chemoattractant, and macrophage inflammatory protein 2 production and attenuated recruitment of polymorphonuclear leukocytes to the site of infection, indicating that acute inflammation was promoted by LBP. Locally produced LBP is an essential component of an effective innate immune response to E. coli peritonitis.  相似文献   

12.
Urinary tract infection (UTI) is one of the most frequently acquired bacterial infections. The vast majority of UTIs are caused by a large, genetically heterogeneous group of Escherichia coli. This genetic diversity has hampered identification of UTI-related genes. A three-step experimental strategy was used to identify genes potentially involved in E. coli UTI transmission or virulence: epidemiologic pairing of a UTI-specific strain with a fecal control, differential cloning to isolated UTI strain-specific DNA, and epidemiologic screening to identify sequences among isolated DNAs that are associated with UTI. The 37 DNA sequences initially isolated were physically located all over the tester strain genome. Only two hybridized to the total DNA of the sequenced E. coli K-12 strain; eight sequences were present significantly more frequently in UTI isolates than in fecal isolates. Three of the eight sequences matched to genes for multidrug efflux proteins, usher proteins, and pathogenicity island insertion sites, respectively. Using population characteristics to direct gene discovery and evaluation is a productive strategy applicable to any system.  相似文献   

13.
Uropathogenic Escherichia coli is the most common etiological agent of urinary tract infections. Bacteria can often express multiple adhesins during infection in order to favor attachment to specific niches within the urinary tract. We have recently demonstrated that type 1 fimbria, a phase-variable virulence factor involved in adherence, was the most highly expressed adhesin during urinary tract infection. Here, we examine whether the expression of type 1 fimbriae can affect the expression of other adhesins. Type 1 fimbrial phase-locked mutants of E. coli strain CFT073, which harbors genes for numerous adhesins, were employed in this study. CFT073-specific DNA microarray analysis of these strains demonstrates that the expression of type 1 fimbriae coordinately affects the expression of P fimbriae in an inverse manner. This represents evidence for direct communication between genes relating to pathogenesis, perhaps to aid the sequential occupation of different urinary tract tissues. While the role of type 1 fimbriae during infection has been clear, the role of P fimbriae must be further defined to assert the relevance of coordinated regulation in vivo. Therefore, we examined the ability of P fimbrial isogenic mutants, constructed in a type 1 fimbrial-negative background, to compete in the murine urinary tract over a period of 168 h. No differences in the colonization of these mutants were observed. However, comparison of these results with previous studies suggests that inversely coordinated expression of adhesin gene clusters does occur in vivo. Interestingly, the mutant that was incapable of expressing either type 1 or P fimbriae compensated by synthesizing F1C fimbriae.  相似文献   

14.
HIV's evasion of the cellular immune response   总被引:5,自引:0,他引:5  
Summary: Despite a strong cytotoxic T-lymphocyte (CTL) response directed against viral antigens, untreated individuals infected with the human immunodeficiency virus (HIV-1) develop AIDS, We have found that primary T cells infected with HIV-1 downregulate surface MHC class I antigens and are resistant to lysis by HLA-A2-restricted CTL clones. In contrast, cells infected with an HIV-1 in which the nef gene is disrupted are sensitive to CTLs in an MHC and peptide-specific manner. In primary T cells HLA-A2 antigens are downmodulated more dramatically than total MHC class I antigens, suggesting that nef selectively downmodulates certain MHC class I antigens. In support of this, studies on ceils expressing individual MHC class I alietes have revealed that nef does not downmodulate HLA-C and HLA-E antigens, This selective downmodulation allows Infected cells to maintain resistance to certain natural killer cells that lyse infected cells expressing low levels of MHC class I antigens. Downmodulation of MHC class I HLA-A2 antigens occurs not only in primary T cells, but also in B and astrocytoma cell lines. No effect of other HIV-1 accessory proteins such as vpu and vpr was observed. Thus Nef is a protein that may promote escape of HIV-1 from immune surveillance.  相似文献   

15.
The innate immune system provides the first line of host defence against invading pathogens. Key to upregulation of the innate immune response are Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns (PAMPs) and trigger a signaling pathway culminating in the production of inflammatory mediators. Central to this TLR signaling pathway are heterotypic protein–protein interactions mediated through Toll/interleukin-1 receptor (TIR) domains found in both the cytoplasmic regions of TLRs and adaptor proteins. Pathogenic bacteria have developed a range of ingenuous strategies to evade the host immune mechanisms. Recent work has identified a potentially novel evasion mechanism involving bacterial TIR domain proteins. Such domains have been identified in a wide range of pathogenic bacteria, and there is evidence to suggest that they interfere directly with the TLR signaling pathway and thus inhibit the activation of NF-κB. The individual TIR domains from the pathogenic bacteria Salmonella enterica serovar Enteritidis, Brucella sp, uropathogenic E. coli and Yersinia pestis have been analyzed in detail. The individual bacterial TIR domains from these pathogenic bacteria seem to differ in their modes of action and their roles in virulence. Here, we review the current state of knowledge on the possible roles and mechanisms of action of the bacterial TIR domains.  相似文献   

16.
Neutrophils in the innate immune response   总被引:1,自引:0,他引:1  
Polymorphonuclear leukocytes (PMNs or neutrophils) are an essential component of the human innate immune system. Circulating neutrophils are rapidly recruited to sites of infection by host- and/or pathogen-derived components, which also prime these host cells for enhanced microbicidal activity. PMNs bind and ingest microorganisms by a process known as phagocytosis, which typically triggers production of reactive oxygen species and the fusion of cytoplasmic granules with pathogen-containing vacuoles. The combination of neutrophil reactive oxygen species and granule components is highly effective in killing most bacteria and fungi. Inasmuch as PMNs are the most abundant type of leukocyte in humans and contain an arsenal of cytotoxic compounds that are non-specific, neutrophil homeostasis must be highly regulated. To that end, constitutive PMN turnover is regulated by apoptosis, a process whereby these cells shut down and are removed safely by macrophages. Notably, apoptosis is accelerated following phagocytosis of bacteria, a process that appears important for the resolution of infection and inflammation. This review provides a general overview of the role of human neutrophils in the innate host response to infection and summarizes some of the recent advances in neutrophil biology.  相似文献   

17.
The bladder epithelial cells elicit robust innate immune responses against urinary tract infections (UTIs) for preventing the bacterial colonization. Physiological fluctuations in circulating estrogen levels in women increase the susceptibility to UTI pathogenesis, often resulting in adverse health outcomes. Dr adhesin bearing Escherichia coli (Dr E. coli) cause recurrent UTIs in menopausal women and acute pyelonephritis in pregnant women. Dr E. coli bind to epithelial cells via host innate immune receptor CD55, under hormonal influence. The role of estrogens or estrogen receptors (ERs) in regulating the innate immune responses in the bladder are poorly understood. In the current study, we investigated the role of ERα, ERβ and GPR30 in modulating the innate immune responses against Dr E. coli induced UTI using human bladder epithelial carcinoma 5637 cells (HBEC). Both ERα and ERβ agonist treatment in bladder cells induced a protection against Dr E. coli invasion via upregulation of TNFα and downregulation of CD55 and IL10, and these effects were reversed by action of ERα and ERβ antagoinsts. In contrast, the agonist-mediated activation of GPR30 led to an increased bacterial colonization due to suppression of innate immune factors in the bladder cells, and these effects were reversed by the antagonist-mediated suppression of GPR30. Further, siRNA-mediated ERα knockdown in the bladder cells reversed the protection against bacterial invasion observed in the ERα positive bladder cells, by modulating the gene expression of TNFα, CD55 and IL10, thus confirming the protective role of ERα. We demonstrate for the first time a protective role of nuclear ERs, ERα and ERβ but not of membrane ER, GPR30 against Dr E. coli invasion in HBEC 5637 cells. These findings have many clinical implications and suggest that ERs may serve as potential drug targets towards developing novel therapeutics for regulating local innate immunity and treating UTIs.  相似文献   

18.
Hybrid Shiga toxin (Stx)-producing Escherichia coli (STEC) and uropathogenic E. coli (UPEC) strains are phylogenetically positioned between STEC and UPEC and can cause both diarrhea and urinary tract infections (UTIs). However, their virulence properties and adaptation to different host milieu in comparison to canonical UPEC and STEC strains are unknown.We determined phenotypes of the STEC/UPEC hybrid with respect to virulence including acid resistance, motility, biofilm formation, siderophore production, and adherence to human colonic Caco-2 and bladder T24 cells and compared to phenotypes of commensal strain MG1655, UPEC strain 536, and STEC strains B2F1 and Sakai. Moreover, we assessed the adaptation of the hybrid to artificial urine medium (AUM) and simulated colonic environment medium (SCEM).Overall acid resistance at pH 2.5 was high except in strains B2F1 and hybrid 05−00787 which showed reduced and extremely low acid resistance, respectively. Motility was reduced in hybrid 05−00787 and 09−05501 but strong in the remaining hybrids. While some hybrids showed high biofilm formation in LB, overall biofilm formation in SCEM and AUM were low and non-existent, respectively. All strains tested showed siderophore activity at equilibrium. All strains except MG1655 adhered to Caco-2 cells with the hybrid having similar adherence when compared to 536 but exhibited 2 and 3 times lower adherence when compared to B2F1 and Sakai, respectively. All Stx-producing strains adhered stronger to T24 cells than strains 536 and MG1655. Overall growth in LB, SCEM and AUM was consistent within the hybrid strains, except hybrid 05−00787 which showed significantly different growth patterns.Our data suggest that the hybrid is adapted to both, the intestinal and extraintestinal milieu. Expression of phenotypes typical of intestinal and extraintestinal pathogens thereby supports its potential to cause diarrhea and UTI.  相似文献   

19.
20.
Strains of uropathogenic E. coli (UPEC) are the primary cause of urinary tract infections, including both cystitis and pyelonephritis. These bacteria have evolved a multitude of virulence factors and strategies that facilitate bacterial growth and persistence within the adverse settings of the host urinary tract. Expression of adhesive organelles like type 1 and P pili allow UPEC to bind and invade host cells and tissues within the urinary tract while expression of iron-chelating factors (siderophores) enable UPEC to pilfer host iron stores. Deployment of an array of toxins, including hemolysin and cytotoxic necrotizing factor 1, provide UPEC with the means to inflict extensive tissue damage, facilitating bacterial dissemination as well as releasing host nutrients and disabling immune effector cells. These toxins also have the capacity to modulate, in more subtle ways, host signaling pathways affecting myriad processes, including inflammatory responses, host cell survival, and cytoskeletal dynamics. Here, we discuss the mechanisms by which these and other virulence factors promote UPEC survival and growth within the urinary tract. Comparisons are also made between UPEC and other strains of extraintestinal pathogenic E. coli that, although closely related to UPEC, are distinct in their abilities to colonize the host and cause disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号